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Abstract: For a graph G with no isolated vertex, a covering total double Roman

dominating function (CTDRD function) f of G is a total double Roman dominating
function (TDRD function) of G for which the set {v ∈ V (G)|f(v) 6= 0} is a vertex

cover set. The covering total double Roman domination number γctdR(G) equals the
minimum weight of an CTDRD function on G. An CTDRD function on G with weight

γctdR(G) is called a γctdR(G)-function. In this paper, the graphs G with small γctdR(G)

are characterised. We show that the decision problem associated with CTDRD is NP -
complete even when restricted to planer graphs with maximum degree at most four. We

then show that for every graph G without isolated vertices, γoitR(G) < γctdR(G) <

2γoitR(G) and for every tree T , 2β(T ) + 1 ≤ γctdR(T ) ≤ 4β(T ), where γoitR(G)
and β(T ) are the outer independent total Roman domination number of G, and the

minimum vertex cover number of T respectively. Moreover we investigate the γctdR of

corona of two graphs.
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1. Introduction

Throughout this paper, suppose that G be a finite simple graph with vertex set

V = V (G) and edge set E = E(G). For the terminologies and notations which are

not defined here explicitly, we may use [10] as a reference. The open neighborhood of

a vertex v ∈ V (G) is the set N(v) = {u | uv ∈ E(G)}. The closed neighborhood of a

vertex v ∈ V (G) is N [v] = N(v)∪ {v}. The open neighborhood of a set S ⊆ V is the

set N(S) = ∪v∈SN(v). The closed neighborhood of a set S ⊆ V is the set N [S] =
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N(S) ∪ S = ∪v∈SN [v]. We denote the degree of v by deg(v) = degG(v) = |N(v)|.
By ∆ = ∆(G) and δ = δ(G), we denote the maximum degree and minimum degree of

a graph G, respectively. We write Kn, Pn and Cn for the complete graph, path and

cycle of order n, respectively. A tree T is an acyclic connected graph. The corona of

two graphs G1 and G2 is the graph G1 � G2 formed from one copy of G1 and |G1|
copies of G2 where the ith vertex of G1 is adjacent to every vertex in the ith copy of

G2.

A set S ⊆ V in a graph G is called a dominating set if N [S] = V . The domina-

tion number γ(G) of G is the minimum cardinality of a dominating set in G, and

a dominating set of G of cardinality γ(G) is called a γ-set of G. A set of vertices

is independent if no two vertices in it are adjacent. The independence number α(G)

is the maximum cardinality among all independent sets of G. A vertex cover of G

is a set Q ⊆ V (G) that contains at least one endpoint of every edge. The vertex

cover number β(G) is the minimum cardinality among all vertex covers of G. An

independent dominating set of G is a dominating set that is also independent in G.

The independent domination number of G, denoted by γi(G), is the minimum size

of an independent dominating set in G. A total dominating set of a without isolate

graph G is a set S of vertices such that every vertex of G is adjacent to a vertex in

S. The total domination number of G, denoted by γt(G), is the minimum cardinality

of a total dominating set of G. A total dominating set of G of cardinality γt(G) is

called a γt(G)-set. The concept of total domination in graphs is now well studied (see

[10, 11]).

Given a graph G and a positive integer m, assume that g : V (G) → {0, 1, 2, . . . ,m}
is a function, and suppose that (V0, V1, V2, . . . , Vm) is the ordered partition of V

induced by g, where Vi = {v ∈ V |g(v) = i} for i ∈ {0, 1, . . . ,m}. So we can write

g = (V0, V1, V2, . . . , Vm). A Roman dominating function (RD function) on a graph G

is a function f : V → {0, 1, 2} such that if v ∈ V0 for some v ∈ V , then there exists a

vertex w ∈ N(v) with f(w) = 2. The weight of a Roman dominating function is the

sum wf =
∑

v∈V (G) f(v), and the minimum weight of a Roman dominating function

on G is called the Roman domination number of G, denoted by γR(G). Cockayne,

Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [6] introduced the concept of Roman

domination in graphs, and since then a lot of related variations and generalizations

have been studied (see [3–5]).

The total Roman dominating function (TRD function) on a graph G with no isolated

vertex is an RD function f on G with the additional property that the subgraph

of G induced by the set {v ∈ V : f(v) 6= 0} has no isolated vertices. The total

Roman domination number γtR(G) is the minimum weight of a TRD function on

G. A TRD function on G with weight γtR(G) is called a γtR(G)-function [1]. An

outer independent Roman dominating function (OIRD function) of a graph G is a

Roman dominating function f : V → {0, 1, 2} for which V0 = V f
0 is independent.

The outer independent Roman domination number (OIRD number) γoiR(G) is the

minimum weight of an OIRD function of G. An outer independent total Roman

dominating function (OITRD function) on a graph G is a TRD function for which

V f
0 is independent. The outer independent total Roman domination number γoitR(G)
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equals the minimum weight of an OITRD function of G [14].

A double Roman dominating function on a graph G is a function f : V → {0, 1, 2, 3}
such that the following conditions are met:

(a) if f(v) = 0, then vertex v must have at least two neighbors in V2 or one neighbor

in V3.

(b) if f(v) = 1, then vertex v must have at least one neighbor in V2 ∪ V3.

The weight of a double Roman dominating function is the sum wf =
∑

v∈V (G) f(v),

and the minimum weight of wf for every double Roman dominating function (DRD

function) f on G is called double Roman domination number of G. We denote this

number with γdR(G) and a double Roman dominating function of G with weight

γdR(G) is called a γdR(G)-function of G. Double Roman domination was studied in

[2, 12, 13, 15, 18] and elsewhere.

The total double Roman dominating function (TDRD function) on a graph G with

no isolated vertex is a DRD function f on G with the additional property that the

subgraph of G induced by the set {v ∈ V |f(v) 6= 0} has no isolated vertices. The

total double Roman domination number γtdR(G) is the minimum weight of a TDRD

function on G. A TDRD function on G with weight γtdR(G) is called a γtdR(G)-

function [8, 9]. Another invariant of double Roman dominating function is defined as

follows.

A covering total double Roman dominating function (CTDRD function) on a graph

G with no isolated vertex is a TDRD function for which V \ V0 = {v ∈ V |f(v) 6= 0}
is a vertex cover set or V0 = V f

0 = {v ∈ V |f(v) = 0} is an independent set. The

covering total double Roman domination number γctdR(G) equals the minimum weight

of a CTDRD function of G (See [17]).

The paper is organized as follows. In Section 2, the graphs G with small γctdR(G) are

characterised. We show that the decision problem associated with CTDRD is NP -

complete even when restricted to planer graphs with maximum degree at most four

in Section 3. Then we show that for every graph G γoitR(G) < γctdR(G) < 2γoitR(G)

and for every tree T , 2β(T ) + 1 ≤ γctdR(T ) ≤ 4β(T ), where γoitR(G) is the outer

independent total Roman domination number of G and β(T ) is the minimum vertex

cover number of T . Moreover, we investigate the γctdR of corona of two graphs in

Section 4.

2. Connected graphs with small CTDRD numbers

In this section, we characterize the family of all connected graphs G for which

γctdR(G) ∈ {3, 4, 5}. To this end, let G be the family of all graphs of the form

G1, G2 depicted in the Figure 1. In the figure, the number of vertices w1, · · · , wk in

G1, G2 is at least 1 and 0, respectively.

We next define other four necessary families of graphs, that is, the families Fi,

1 ≤ i ≤ 4. To this end, we shall use the following conventions. For a given set of

vertices {v1, . . . , vk} with k ≥ 1, let Vv1,...,vk = {v ∈ V (G)|N(v) = {v1, . . . , vk}}.
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Figure 1. The graphs G1 and G2

Such convention shall be used also while proving some results.

- F1: We begin with a path P = abc. Then we add three sets Va,b, Vb,c and Va,b,c
such that one of the following conditions holds.

(a1): Va,b = ∅ = Vb,c and |Va,b,c| ≥ 2.

(b1): only one of the sets Va,b and Vb,c is of order 0, and |Va,b,c| ≥ 1.

(c1): |Va,b| ≥ 1, |Vb,c| ≥ 1.

- F2: We begin with a cycle of order three C = abca and proceed as above, by adding

the sets Va,b, Vb,c and Va,b,c. Then, one of the following situations holds.

(a2): |Va,b,c| ≥ 1.

(b2): |Va,b| ≥ 1, |Vb,c| ≥ 1.

- F3: We begin with a path P = abc. Then we add sets Va,b and Va,b,c such that one

of the following conditions holds.

(a3): |Va,b| = 0 and |Va,b,c| ≥ 2.

(b3): |Va,b| ≥ 1, |Va,b,c| ≥ 1.

- F4: We begin with a path P = abc. Then we add the set Va,c and add the set Va,b,c.

(a4): |Va,c| = 0 and |Va,b,c| ≥ 2.

(b4): |Va,c| ≥ 1.

Proposition 1. Let G be a connected graph of order n ≥ 2. Then,
(i) γctdR(G) = 3 if and only if G = K2.
(ii) γctdR(G) = 4 if and only if G ∈ G.
(iii) γctdR(G) = 5 if and only if G ∈ ∪4

i=1Fi.

Proof. (i) It is clear.

(ii) Assume that G ∈ G. If we assign the value 3 to the vertex v1, the value 1 to the
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vertex v2 and 0 to the other vertices, then γctdR(G) ≤ 4.

Conversely, let G be a graph with γctdR(G) = 4 and let f = (V0, V1, V2, V3) be a

γctdR(G)-function. We note that the assumption (|V0|, |V1|, |V2|, |V3|) = (0, 2, 1, 0) is

possible if and only if G = K3. So, G is of the form of G1.

Now assume that there are two adjacent vertices {v1, v2} ⊆ V2. So, G is of the form

of G1 with k ≥ 1. Let v1 and v2 in G such that v1 ∈ V3 and v2 ∈ V1. If k ≥ 1, then G

is of the form of G1 or G2 and if k = 0, then G is of the form of G2. Therefore, such

a graph should be of the form G1 or G2 in G.

(iii) If G ∈ F1 ∪ F2 ∪ F3, then (f(a), f(b), f(c)) = (1, 3, 1) and f(v) = 0 otherwise,

is a CTDRD function of G, thus γctdR(G) ≤ 5. If G ∈ F4, then (f(a), f(b), f(c)) =

(2, 1, 2) and f(v) = 0 otherwise, is a CTDRD function of G, thus γctdR(G) ≤ 5. By

items (i) and (ii), we get the desired equalities.

Conversely, we assume that f : V (G)→ {0, 1, 2, 3} is a γctdR(G)-function of weight 5.

If V1 = ∅, then there exist two adjacent vertices a and b such that (f(a), f(b)) = (3, 2)

and f assigns 0 to the other vertices. Each vertex v with f(v) = 0 must be adjacent

only to the vertex a or to the vertices a and b, but not only to the vertex b. So, we

can assign value 1 to b and therefore γctdR(G) ≤ 4, that is a contradiction.

Now assume that V1 6= ∅. Let |V1| = 1 and b is the only member of V1. Therefore,

there exist two vertices a and c assigned 2 under f . We first consider b is adjacent to

both a and c. Note that the remaining vertices must be adjacent to both a and c, as

well. If Va,c − {b} = ∅ and |Va,b,c| ≤ 1, then we have γctdR(G) ≤ 4. Thus |Va,b,c| ≥ 2.

If Va,c − {b} 6= ∅ then γctdR(G) = 5. This shows that G ∈ F4.

Let b be adjacent to only one vertex in {a, c}, say c. Therefor a must be adjacent to

c. Then the other vertices belong to Va,c ∪ Va,b,c. If Va,c = ∅ and |Va,b,c| ≤ 1, then

γctdR(G) ≤ 4, so |Va,b,c| ≥ 2. If Va,c 6= ∅ and Va,b,c = ∅, then γctdR(G) ≤ 4. Therefore,

Va,b,c 6= ∅. In such case, G ∈ F3.

We now consider a situation in which |V1| = 2. Let V1 = {a, c}. Then both a and c

must be adjacent to a vertex b assigned 3 under f . It follows that, the other vertices

belong to Vb ∪ Va,b ∪ Vb,c ∪ Va,b,c. We need to consider two possibilities depending on

the adjacency between a and c. First, let ac /∈ E(G) and assume that Va,b = Vb,c = ∅.
If |Va,b,c| ≤ 1, then we have γctdR(G) ≤ 4, and so |Va,b,c| ≥ 2. If only one of the sets

Va,b and Vb,c is empty, Va,b,c = ∅, then γctdR(G) ≤ 4. Thus, Va,b,c 6= ∅. We note that

if Va,b, Vb,c 6= ∅, then we have no conditions on the set Va,b,c 6= ∅. This argument

guarantees that G ∈ F1.

On the other hand, let ac ∈ E(G). Hence, we have a cycle abca. If at least one of the

sets Va,b and Vb,c is empty, then we must have Va,b,c 6= ∅, for otherwise γctdR(G) ≤ 4.

If both Va,b and Vb,c are nonempty, then we have no conditions on the set Va,b,c.

Therefore, G ∈ F2.

Finally, in the case |V1| = 3, we have V0 = V3 = ∅ and only one vertex is assigned 2

under f . In such situation, G ∼= K4 ∈ F2. This completes the proof.
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3. Decision problem associated with CTDRD

We first consider the problem of deciding whether a graph G has the CTDRD number

at most a given integer. That is stated in the following decision problem. Note that

Mojdeh et al. [16] proved that the problem of computing the OIDRD number of

graphs is NP-hard, even when restricted to planar graphs of maximum degree at

most four.

CTDRD problem

INSTANCE: A graph G and an integer k ≤ 2|V (G)|.
QUESTION: Is γctdR(G) ≤ k?

Our aim is to show that the CTDRD problem is NP-complete for planer graphs

with maximum degree at most four. To this end, we make use of the well-known

INDEPENDENCE NUMBER PROBLEM (IN problem) which is known to be NP-

complete from [7].

IN problem

INSTANCE: A graph G and an integer k ≤ |V (G)|.
QUESTION: Is α(G) ≥ k?

Moreover, the problem above remains NP-complete even when restricted to some

planer graphs. Indeed, we have the following result.

Theorem 1. ([7]) The IN problem is NP-complete even when restricted to planer graphs
with maximum degree at most three.

Theorem 2. The CTDRD problem is NP -complete even when restricted to planer
graphs with maximum degree at most four.

Proof. Let G be a planer graph with V (G) = {v1, . . . , vn} and maximum degree

∆(G) ≤ 3. Let H be a graph with 4 vertices u, a, b, c such that u is adjacent to the

vertices a, b, c and a is adjacent to b. For any 1 ≤ i ≤ n, we add a copy of the H

with vertices ui, ai, bi, ci. We now construct a graph G′ by joining vi to ui, for each

1 ≤ i ≤ n. Clearly, G′ is a planer graph, |V (G′)| = 5n and ∆(G′) ≤ 4.

Let f be γctdR(G′)-function. Since ui is adjacent to three vertices, f must assign

a weight of at least four to ui together with the three vertices adjacent to it. So,

without loss of generality, we may consider that f(ui) = 3, and that f assigns 0

to ai, ci and 1 to bi for each 1 ≤ i ≤ n. Since V f
0 is independent, it follows that

the number of vertices vi ∈ V (G) which can be assigned 0 under f is at most

α(G). Furthermore, the other vertices of V (G) are assigned at least 1 under f .

Consequently, we obtain that γctdR(G′) ≥ 4n+ (n− α(G)) = 5n− α(G).
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On the other hand, let I be an α(G)-set. It is easy to observe that the function

g(v) =


3, if v ∈ {u1, . . . , un},
0, if v ∈ {a1, c1, . . . , an, cn} or v ∈ I,
1, otherwise.

is a CTDRD function of G′ with weight 5n − α(G), which leads to the equality

γctdR(G′) = 5n − α(G). Now, by taking j = 5n − k, it follows that γctdR(G′) ≤ j

if and only if α(G) ≥ k, which completes the reduction. Since the IN problem is

NP -complete for planer graphs of maximum degree at most three, we deduce that

the CTDRD problem is NP -complete for planer graphs of maximum degree at most

four.

As a consequence of Theorem 2, we conclude that the problem of computing the

CTDRD number even when restricted to planer graphs with maximum degree at

most four is NP -hard.

4. CTDRD versus other parameters in graphs

In consequence, it would be desirable to bound the CTDRD number in terms of

several different invariants of the graph.

Theorem 3. For any nontrivial connected graph G, γctdR(G) < 2γoitR(G).

Proof. If f = (V0, V1, V2) is a γoitR(G), it is easy to observe that g = (V g
0 = V0, V

g
1 =

∅, V g
2 = V1, V

g
3 = V2) is a CTDRD function of G. Therefore,

γctdR(G) ≤ 2|V1|+ 3|V2| ≤ 2|V1|+ 4|V2| = 2γoitR(G). (1)

We now let γctdR(G) = 2γoitR(G). This equality along with the inequality chain (1)

imply that V2 = ∅, and since f is an OITRD function of G, V0 = V g
0 = ∅ as well.

Therefore, all vertices of G are assigned 2 under g. Now assigning value 1 to one

vertex of G and value 2 to the remaining vertices introduces a CTDRD function of

weight 2γoitR(G)− 1 which is a contradiction. Thus γctdR(G) < 2γoitR(G)− 1.

As an immediate consequence of the equation (1), we have the following result.

Corollary 1. If G is a connected graph and f = (V0, V1, V2) is a γoitR(G)-function, then
γctdR(G) ≤ 2γoitR(G)− |V2|.

For the equality in the upper bound given in Corollary 1, consider the double stars.
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Lemma 1. For every graph G, γoitR(G) < γctdR(G).

Proof. Let f = (V0, V1, V2, V3) be any γctdR(G)-function. If V3 6= ∅, then g = (V g
0 =

V0, V
g
1 = V1, V

g
2 = V2 ∪V3) is an OITRD function on G, therefore γoitR(G) ≤ ω(g) <

ω(f) = γctdR(G) that is, γoitR(G) < γctdR(G). Hence, assume that V3 = ∅. Since

V2 ∪ V3 dominates G, it follows that V2 6= ∅. Thus, all vertices are assigned the

values 0, 1 or 2 under f and all vertices in V0 must have at least two neighbors in V2
and all vertices in V1 must have at least one neighbor in V2. In such case, at least

one vertex in V2 can be reassigned the value 1 under g and the resulting function

g will be an OITRD function of G, as well. Therefore, γoitR(G) < γctdR(G). If

V2 = V , then g = (∅, V1, ∅) is an OITRD. It is clear γoitR(G) < γctdR(G). All in all

γoitR(G) < γctdR(G).

Corollary 2. For any nontrivial connected graph G, γoitR(G) < γctdR(G) < 2γoitR(G).

The following observation has routine proof and so its proof is left.

Observation 4. For every graph G, γoidR(G) ≤ γctdR(G).

According to Observation 4, any lower bound for outer-independent double Roman

domination number is a lower bound for covering total double Roman domination

number.

The following theorem is from [16].

Theorem 5. ([16] Theorem 4) For any connected graph G of order n ≥ 2 with maximum
degree ∆,

max{γ(G),
2

∆
α(G)}+ β(G) ≤ γoidR(G) ≤ 3β(G).

These bounds are sharp.

Similar to the Theorem 5 we have the result.

Corollary 3. For any connected graph G of order n ≥ 2 with maximum degree ∆,

max{γ(G),
2

∆
α(G)}+ β(G) ≤ γctdR(G) ≤ 4β(G).

Proof. Let I be an α(G)-set and C be a β(G)-set. Then, assigning 3 to the vertices

of C, 1 to the only one vertex in N(x) if x ∈ C and N(x) ∩ C = ∅ and 0 to the

remaining vertices, introduces a CTDRD function f on G with ω(f) ≤ 4(n− α(G)).

Since α(G) + β(G) = n, it follows that γctdR(G) ≤ ω(f) ≤ 4β(G). This upper bound

is sharp for stars.
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On the other hand, by Observation 4 and Theorem 5, we obtain

max{γ(G),
2

∆
α(G)}+ β(G) ≤ γctdR(G).

Thus the proof is complete.

The following theorem is from [16].

Theorem 6. ([16] Theorem 5) For any tree T , 2β(T ) + 1 ≤ γoidR(T ) ≤ 3β(T ).

As an immediate result from Corollary 3 and Theorem 6 we have.

Corollary 4. For any tree T , 2β(T ) + 1 ≤ γctdR(T ) ≤ 4β(T ).

Let G and H be graphs where V (G) = {v1, . . . , vn}. The corona G � H of graphs

G and H is obtained from the disjoint union of G and n disjoint copies of H, say

{H1, . . . ,Hn}, such that for all i ∈ {1, . . . , n}, the vertex vi ∈ V (G) is adjacent

to every vertex of Hi. We next present an exact formula for γctdR(G � H) when

∆(H) ≤ |n(H)| − 2.

In [16] it has been shown that:

Theorem 7. ([16] Theorem 7) Let G be a graph of order n, and H be a graph such that
∆(H) ≤ |n(H)| − 2 and δ(H) ≥ 1. Then γoidR(G�H) equals
min{|V0|(n(H) + γ(H)) + |V1|(γoidR(H) + 1) + |V2|(γoiR(H) + 2) + |V3|(β(H) + 3)},
taken over all possible function fG = (V0, V1, V2, V3) over V (G) for which the vertices labeled
with 0 form an independent set.

As a remark on the proof of Theorem 7 in [16], it is easy to see that the set of vertices

with positive weight has no isolated vertex. Therefore we have.

Theorem 8. Let G be a graph of order n, and H be a graph such that ∆(H) ≤ |n(H)|−2
and δ(H) ≥ 1. Then γctdR(G�H) equals
min{|V0|(n(H) + γ(H)) + |V1|(γoidR(H) + 1) + |V2|(γoiR(H) + 2) + |V3|(β(H) + 3)},
taken over all possible function fG = (V0, V1, V2, V3) over V (G) for which the vertices labeled
with 0 form an independent set.

5. Conclusion and problems

In this paper, we studied the covering total double Roman domination of graphs. We

characterize the graphs G with small γctdR(G). The complexity of CTDRD of planar

graph with maximum degree four was investigated. We also compared the covering

total double Roman domination number to other parameter such as OITR, covering
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and independence number of graphs. So for further, it is natural to pose the following

open problems.

Problem 1. Characterise the graphs G with large γctdR(G).

Problem 2. For any graph G, obtain the lower and upper bound for γctdR(G).
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