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Abstract 

   

1 | Introduction  

Flexible Manufacturing Systems (FMS) play an essential role in production systems and promptly 

respond to customer demands [1]. In such systems, robots are typically responsible for picking up 

products and loading/unloading machines, consequently, robots can facilitate the process and 

improve system productivity. A robotic cell is a type of FMS consisting of  Computerized Numerical 

Control (CNC) machines; some robotic cells also have an input and output buffer. In robotic cell 

problems, the primary focus of research is on scheduling robot tasks. Scheduling optimization, which 

improves the system's productivity when a manufacturing system must deal with uncertainty, is 

essential. 

Scheduling is one of the most critical issues in all systems that optimize one or more objectives by 

considering the resource and operation constraints [2]. This issue’s application in various domains, 

such as production and service systems, can assist the systems in achieving their desired performance 
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goals [3]. As we can see in service systems such as hospitals, several factors can lead to a stop in 

operations, and proper scheduling that considers resources and constraints increases efficiency [4], [5]. 

Machine breakdowns and repair times have been relaxed in the scheduling optimization process of 

robotic cells so far. Therefore, the current study proposes scheduling a two-machine robotic cell that 

confronts breakdowns. The robot performs under the  cycle as the most commonly used robot’s 

movement cycle. We use the -constraint method to solve the small-sized and NSGA-II to solve the 

large-sized problems. 

The review of the literature is summarized in the following section. Section 3 defines the problem and 

presents the mathematical model used to model it. The solution approach is presented in Section 4, 

followed by some numerical examples, sensitivity analysis of results, and discussion based on the model 

in Section 5. Finally, Section 6 reports on the paper’s conclusions. 

2 | Literature Review 

In most previous studies on robotic manufacturing cells, the scheduling problem considers a single 

criterion. Their research’s most important objective functions were minimizing cycle time and 

maximizing the cell’s throughput. Such as the papers cited in [6]-[15]. Hoogeveen’s [16] survey of multi-

criteria scheduling was published. The problem of multi-objective scheduling in robotic cells has been 

studied by [17]-[30], among others. 

Given the importance of completing different tasks on time, deterioration and delays between tasks 

incur enormous costs. Consequently, maintenance is a crucial aspect of industrial environments. 

Although there have been numerous studies on deterministic robotic cells, the issue of determining an 

unreliable robotic cell in both machine breakdowns distributed according to an exponential distribution 

and stochastic processing time (due to the probability of repair time) remains unsolved. Stochastic 

models incorporate uncertainty and utilize probability distributions in which the data are either known 

or can be estimated. 

Recent studies have shown that stochastic factors, such as machine breakdown and uncertain repair 

time, significantly impact the scheduling in actual production environments. Considering a multilevel 

assembly system with multiple sublevel components, Sadeghi et al. [31] stated that it would be impossible 

to complete the items on time due to random machine breakdowns. They then proposed a mathematical 

model incorporating the uncertainty of lead time. Additionally, Sadeghi [32] stated that their operating 

costs might increase due to using tools and machines, thereby increasing the system's expenses. Utilizing 

preventive maintenance is proposed as a method for reducing operational costs. The history of the study 

of stochastic robotic cells is as follows. 

Some previous studies focus on robotic cells with random processing time, which can be referred to 

[13], [33]-[35]. Shafiei-Monfared et al. [33] considered a robotic cell consisting of three machines and a 

robot in the center of the cell when a part processing time element is stochastic. Comparing the cycle 

times of a variety of scenarios in this robotic cell was an attempt to determine the productivity benefits 

of each. Geismar and Pinedo [34] presented the first analytic study of robotic cell operations where the 

process has a stochastic processing time, as is typical in the microlithography portion of semiconductor 

manufacturing. It was demonstrated how the proximity of the stochastic process to the bottleneck 

process influences throughput measurement in such cells. The robot's sequence time distribution 

function was identified and validated through simulation. In a different study, a robotic cell problem 

with variable processing times was formulated, and the effectiveness of heuristic and metaheuristic 

solution methods for optimizing output rate was demonstrated [35]. Tonke et al. [13] developed an 

online-offline scheduling approach based on the assumption of uncertain processing times to address 

real-world applications such as cluster tools in semiconductor manufacturing. Their research involved a 

dual-gripper robotic cell problem with pick-up constraints. 
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According to other studies like [28], [30], [36]-[39], robotic cells operate under a production system with 

machine failures and repairs. Savsar and Aldaihani [36] developed a model to analyze Performance 

Measures (PFM) of a Flexible Manufacturing Cell (FMC) consisting of two machines and a robot under 

various operational conditions, including machine failures and repairs. The model was based on Markov 

processes and determined closed-form probabilities of system states for calculating PFMs. In a separate 

study [37], fault-tolerant conditions were incorporated into the model, allowing the FMC to operate in a 

degraded state. A Markovian model was developed to determine the system's dependability and 

productivity under various operational conditions. In a similar study by [38], the Markov chain model was 

developed for both single- and dual-machine FMCs. The model was subsequently generalized to FMC with 

 machines. Researchers [28], [30], [39] investigated random failures in robotic cells with two and three 

machines. In recent researches conducted by [30], [39]-[42], the robotic cell produces a variety of parts in 

an uncertain environment. 

This study addresses a stochastic issue for an unreliable two-machine robotic cell when it considers the 

probability of machine failure and its impact on cycle time uncertainty. A single gripper robot is utilized to 

load and unload identical parts. Here, the authors focused on the movement cycle, which is more 

complicated than the other cycles and is the most commonly used movement cycle for robots. 

3 | Problem Definition and Modeling 

One type of product flows over only one machine in the manufacturing cell, but there are two identical 

CNC machines, neither of which has operational priority. Typically, in a 2-machine cell, there are three 

possible robot cycle options for part displacement: , and  [6], [40]. As mentioned previously, 

the scope of this paper is restricted to the cycle.  

In the , a robot initially takes place before the Input Buffer (IB). Then the following operations are 

followed sequentially by the robot: 1) the robot picks up a part, 2) moves to the first machine (M1), 3) 

loads M1, 4) the robot moves to the second machine (M2), 5) waits for the previous process to be 

completed on the part (if it is needed), 6) robot unloads the part from M2, then, 7) transfers the product 

to the Output Buffer (OB), 8) loads the OB, 9) robot returns to M1, 10) if it is needed the robot waits until 

the completion of the process, 11) unloads from M1, 12) transports the part to the M2, 13) loads the part 

on the M2 and finally 14) robot turns back to the IB [6]. infers the sequence of activities in the 

 cycle as mentioned; is the robot’s activity sequence from station  to station  for , 1, 

,  (see [6], [40]). A typical linear two-machine robotic cell is shown in Fig. 1. 

Output Buffer

Machines

Robot

Input Buffer

 

Fig. 1. Linear two machines robotic cell. 

3.1 | Assumptions 

In addition to the assumptions in [28], the basic assumptions for this study are: 
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I. Failure in the machines is probable. 

II. Some repairs performed to the machine per part’s entrance to the cell follow an exponential 

distribution. The time to repair each machine is equivalent to its processing time. 

III. To produce each part, multiple operations are required. Some of the operations are done on the first 

machine and the rest is done on the second machine. 

IV. Existence of probability distribution in repair time may face the processing time with uncertainty. So, 

it is assumed that; the machines are unreliable and there is a possibility of failure during the operation. 

It is also assumed that the number of repairs performed per machine for each part follows the 

Exponential distribution. By arriving the part into the cell, considering the probability of machine 

failure, there are uncertain processing times that complicate the analysis and modeling of the robotic 

cell. The following model is developed to analyze the desired robotic cell. The layout of the assumed 

robotic cell was based on Fig. 1 and [21]. 

3.2 | Notations 

The following parameters and variables are used in the proposed mathematical model: 

 

3.3 | Modeling 

Literature reveals that various studies, such as [43], have focused on minimizing the total production 

costs of machining, tooling, and maintenance. In many instances, tooling cost is considered a constant 

value and has no impact on the optimization process. In the present study, tooling costs are also 

constant. It was added to the formula to complete the concept. Total production cost for the  part 

fed to the manufacturing cell was defined as the first objective function while minimizing partial cycle 

time for the  part was considered as the second objective function. Eqs. (1) and (2) represent the 

preferred objective functions.  

Machining cost per kth part ($/min). 

Repair cost for each breakdown ($/min): without setup costs. 

Preventive maintenance cost ($/min). 

Cost of tool ($/tool): tools replacement prohibited in an operating cycle. 

Failure rate: follows the Exponential distribution. 

Repair rate: follows the Exponential distribution. 

Processing time of operation  (min). 

Duration of a repair visit for machine  (min). 

Duration of maintenance in machine  (min). 

Robot’s waiting time in a cycle for the kth part fed to the cell (min). 

Total cost for the kth part fed to the cell ($). 

The partial cycle time of S2 for the kth part fed to the cell (min). 

Number of repairs performed to the machine  for the kth part entered to the cell 
(integer random variable, exponential distribution (meaning  ). 

The processing time for a part on the 1st machine. 

The processing time for a part on the 2nd machine. 

Loading/unloading time. 

Time is taken by a robot to move between two adjacent stations. 

The probability of breakdown occurrence for the Time Interval (TI) between

and . 
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In the proposed model, the constraints for robotic cell scheduling are Eqs. (3)-(5) and (8). These equations 

are derived from the robot's move cycle definitions and redefined based on the assumed problem. The 

time between two consecutive repairs for the first machine is  and for the second machine, . Each 

machine's maintenance time is represented by Eq. (6). The failure rate per machine for each model run is 

calculated using an Exponential distribution. Eqs. (7) and (9) are decision variables related to the allocation 

of operations to machines. The formulation example follows: 

 

4 | Solution Approach 

Bi-objective optimization problems aim to identify a set of Pareto optimal solutions. This research uses 

the evolved -constraint method for small-scale problems. Recently, Vaisi [44] reviewed the application of 

optimization tools in robotic systems and revealed that the authors of nearly half of the research papers 

published between 2005 and September 2021 had used heuristic/metaheuristic algorithms to optimize 

robotic manufacturing system problems. Consequently, a well-known multi-objective meta-heuristic 

approach, NSGA-II, is utilized to solve the bi-objective model in the current study for large-scale problems. 

This algorithm is one of the most popular multi-objective optimization algorithms. After presenting the 

first version of this algorithm in 1995, its developers, the most significant among whom is Debb, presented 

the second version, NSGA-II, in 2002. Algorithm 1 shows the Pseudo code of the NSGA-II. 

 Algorithm 1. The NSGA-II Pseudo code. 

 

 

 

 

 

 (1) 

 (2) 

s.t.  

  (3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

1. Create: 
Population size =  
Repeat for a maximum number of iterations, 

2. Generate child population =  
 Apply: 

- Binary Tournament selection 

- One-point crossover and probable mutation 

3. Combine  and  to create a new population called Npop 
4. Assign rank for each solution based on the non-domination sorting process 
5. Create next-generation, (Pt) based on the lowest obtained ranks and highest Crowding 

Distance (CD) 
6. Check the stopping criterion.  

While Maximum number of Iterations, do: 

If Yes (Go to step 7)/ If No (Go to step 2) 
7. End of the algorithm. 
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4.1 | Crowding Distance Computation 

The following two criteria determine the measures for better solutions: 

Rank measure 

The solution with the lower non-domination rank is preferred between two alternatives with different 

ranks. Alternatively, if both points belong to the same front, the point located in a region with fewer 

points is preferred [45]. 

Crowding distance 

In instances where two selected particles occupy the same rank (both on the same side), the CD criterion 

is applied, as explained below: 

For particles 2 to , the CD, , is calculated based on Eqs. (10) and (11). 

The Eq. (11) represents the CD for the objective function . Therefore,  must be calculated and 

summed for all objective functions, as specified in Eq. (10). After calculating the CD, the particle with 

the highest CD is selected, [46], [47]. 

4.2 | Solution Representation 

The main objective is to determine the assignment of operations to machines and to plan the arrival of 

parts and their processes in the robotic cell. For setting parameters in the experimental design, this study 

uses a certain amount of algorithm repetition as a stopping criterion. The experiments were designed 

using the Taguchi method to adjust the algorithm's parameters. Therefore, a Taguchi-based experiment 

on ten randomly generated test problems was designed. Three experiment levels were chosen for each 

parameter, including crossover rate ( ) and mutation rate ( ), based on previous research and trial and 

error. The experiment levels of these parameters are displayed in Table 1. 

Table 1. Levels of taguchi experiment. 

 

 

As a result of the experiments and the fact that smaller response values are taken into account, the 

middle level in Table 1 consists of appropriate combinations based on the average response factor: 

Crossover = 80%, Mutation = 15%. 

The population size and stopping criteria must be modified to implement the algorithm. By increasing 

the population size, the algorithm searches for more points in the space, and the quality and distribution 

of the results improve; however, if the number of population members becomes ten times greater, the 

time or required memory to solve the problem will be 100. Therefore, the population size for the 

proposed algorithm is 50. By increasing the number of algorithm replications, the model is given 

sufficient time to be solved, resulting in better results for larger values of this parameter. However, it 

should be noted that increasing the number of algorithm replications also increases the elapsed time. 

The suggested number of replications for the NSGA-II algorithm is 500, and the algorithm stops upon 

(10) 

(11) 

Parameters Levels  

 Low Middle High 
0.6 0.8 0.9 
0.1 0.15 0.2 
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reaching 500 replications. Therefore, the maximum number of iterations is established as a stopping 

criterion, and 500 iterations are set as the stopping criterion. 

A 2-string chromosome is employed to represent the assignment of processing times of operations to the 

machines. The first string represents the processing times assigned to the M1 and the second string is the 

processing times assigned to the second machine. There are  operations available for each part to be 

processed, so the probability density function of selecting operations is uniform. Consequently, in these 

two strings, a number between 2 and  shows the equivalent processing time allocated to the associated 

machine.  means assigning the  processing time to machine . Fig. 2 shows a chromosome with eight 

operations as an initial population sample. 

t1(1) t2(2) t3(1) t4(1) t5(2) t6(1) t7(2) t8(2)

 

Fig. 2. Forming an initial population. 

Creating an initial population is the first step. In this study, the initial population is generated by generating 

2-string chromosomes proportional to the size of the population. As stated previously, the 2-string 

chromosomes contain the processing times of operations required to produce  part. After forming the 

initial generation, individuals must be chosen to form the subsequent generation. Location of solutions in 

a Pareto front (lower fronts are superior) and CD are the selection criteria (in the same lower fronts). The 

new generation should be formed by altering specific characteristics of the parents.  

In designing this algorithm, one-point Crossover and Probable Mutation have been used. Fig. 3 represents 

the Crossover operation. The numerical values in Fig. 3, as an example, specify the value of processing 

times of operations to produce  part. 

Fig. 3. One-point Crossover. 

 

5 | Results and Discussion 

The proposed solution approach was tested on ten different test problems. These test problems are 

randomly generated by MATLAB R2016b and executed on an ASUS laptop with 8 GB of RAM and an 

Intel(R) Core(TM) i7-4500U processor running at 1.80 GHz 2.40 GHz. The designated test problems are 

listed in Table 2. Table 3 describes the parameters and defined values for the considered robotic cell. 

 Forming the initial population for this problem (2-string chromosomes):

 
Parent 1 
 
 
Parent 2 4.22 8.4 8.79 7.64 9.6 5.56 2.95 6.05

2.78 5.88 2.28 3.36 4.53 5.92 3.31 4.04

 After One-point Crossover

Child 1 

 

 
 Child 2 

4.22 8.4 8.79 7.64 9.6 5.92 3.31 4.04

2.78 5.88 2.28 3.36 4.53 5.56 2.95 6.05
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Table 2. Designated examples. 

 

 

 

 

 

Table 3. Characteristics of required parameters. 

 

 

The results of running the NSGA-II algorithm on the test problems are presented in Table 4. It should 

be noted that for each test problem, the algorithm has been executed five times, and Table 4 contains 

the best answers. Processing times have a uniform distribution within the specified range. In most test 

problems, the distance between the upper and lower bounds of the objective functions increases as the 

number of part operations increases. 

Table 4. Characteristics. 

 

 

Fig. 4. Lower/upper bound changes of the first objective function in the test problems. 

 

Test Problem Number of Operations Per Part Processing Times 

1 8 (2,5) 
(2,10) 
(2,15) 

2 8 
3 8 
4 8 (2,30) 
5 20 (2,5) 
6 20 (2,10) 
7 20 (2,15) 
8 30 (2,5) 
9 30 (2,10) 
10 30 (2,15) 

Parameters 

=5 =2 =2 

=100 =0.5 =3 
=20 =12 =[2,3] 

Test 
Problem 

The Lower Bound of 
the First Objective 
Function 

The Upper Bound of 
the First Objective 
Function 

The Lower Bound of 
the Second 
Objective Function 

The Upper Bound of 
the Second 
Objective Function 

1 2265.34 2346.18 
2721.64 
2369.03 

91.01 91.21 
2 2474.10 110.72 117.54 
3 2309.42 102.96 104.51 
4 5452.48 6275.21 428.44 1002.29 
5 7652.46 8153.35 909.26 1092.75 
6 6345.30 6353.20 731.17 777.68 
7 6316.70 7321.20 725.25 731.91 
8 11566.08 12492.32 2153.21 2307.21 
9 15698.68 17440.95 3486.69 3747.26 
10 19225.42 21234.51 4275.92 4483.20 
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Figs. 4 and 5 demonstrate that the objective functions increase in value as the number of operations per 

part increases. In addition, the difference between the upper and lower bounds in the small-sized problems 

is not detectable, except for test problem number 4. As the processing time increases in this test problem, 

it affects the cycle time and total cost. The difference between the bounds is minor in instances with more 

than eight operations per part. 

Fig. 5. Lower/upper bound changes of the second objective function in the test problems. 

Changes in the first objective function are compared to alterations in the processing TI under the 

assumption of a constant number of operations. These variations are illustrated in Figs. 6 to 8. 

Consequently, increasing the processing TI causes the difference between the upper and lower total cost 

bounds to rise (first objective function). 

Fig. 6. Changes in the first objective function compared to changes in the processing TI for eight 

operations (problems 1 to 4). 

Fig. 7. Changes in the first objective function compared to changes in the processing TI for 20 operations 

(problems 5 to 7). 
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Fig. 8. Changes in the first objective function compared to changes in the processing 

TI for 30 operations (problems 8 to 10). 

 

5.1 | Comparison of the Algorithms 

Different test problems of varying sizes are executed to compare the proposed algorithms. The 

performance of the algorithms is then evaluated using three standard evaluation indices (criteria): 

computational time, maximum spread (D), and Non-Dominated Solutions (NDS). The size of the 

problem is the number of operations per part. The computational time is the average time required to 

provide a solution. Maximum spread evaluates the variety and distribution of Pareto front solutions 

using Eq. (12). The performance of an algorithm with a higher maximum spread is superior. Finally, 

NDS displays the number of NDS obtained for each test problem [48], [49]. 

Table 5 displays the mean values of the comparison metrics for each test problem based on the GAMS 

and NSGA-II results. 

Table 5. The result of the NSGA-II algorithm and GAMS for the proposed programming. 

 

According to Table 5, the -constraint method can achieve the Pareto optimal solution set for small-

sized problems. However, the NSGA-II algorithm could obtain the Pareto optimal solution set for the 

first four test problems; in the following four test problems, with 20 operations per part, the NSGA-II 

 (12) 

 
Test 
Problem 

  GAMS Results NSGA-II Results 

Number of 
Operations Per 
Part 

Processing  
Times 

NDS D T(s) NDS D T(s) 

1 8 (2,5) 9 1913.10 539 9 1913.10 42 
2 8 (2,10) 12 1284.20 932 12 1284.20 85 
3 8 (2,15) 17 2455.20 1450 17 2455.20 259 
4 8 (2,30) 24 2884.40 4356 23 2884.40 587 
5 20 (2,5) 29 12871.30 5124 27 12256 218 
6 20 (2,10) 45 23105.38 9879 45 22890 759 
7 20 (2,15) 49 40972.12 15491 46 39681 1412 
8 20 (2,30) 58 52321.72 35270 56 50227 3104 
9 30 (2,5) 35 17981.00 22872 32 17683 1862 
10 30 (2,10) 56 40201.00 42501 52 39681 2412 
11 30 (2,15) 67 82812.23 61731 60 80685 2810 
12 30 (2,30) 76 145238.45 71025 73 142256 3654 
13 50 (2,5) 49 46208.39 48654 44 45773 3940 
14 50 (2,10) __ __ * 59 55764 4105 
15 50 (2,15) __ __ * 65 85282 6120 
16 50 (2,30) __ __ * 74 149283 7345 
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results are very close to the results of the GAMS. Furthermore, the larger the size of the test problems, the 

more the proposed solutions have computational time. Therefore, to solve the large-sized problems, the 

NSGA-II algorithm was applied. 

Relative Percentage Deviation (RPD) is calculated for 12 samples of the test problems using Eq. (13) to 

evaluate the results of NSGA-II. The average of RPD per index is determined for the algorithm, and 

according to the low value of RPD, this method applies to larger problems as well. Table 6 displays the 

results. 

 

Table 6. The RPD of the NSGA-II algorithm for the test problems. 

 

6 | Conclusion 

The proposed model was primarily concerned with minimizing the production cost and  cycle time in a 

two-machine, identical-parts robotic manufacturing cell subject to breakdowns such as machine failures 

and repairs. The problem was formulated, and a well-known metaheuristic algorithm, NSGA-II, was used 

to solve this bi-objective model. The solution approach was evaluated on some randomly generated 

problems, and the results were presented as the upper and lower bounds for the two objective functions. 

Due to the insignificant difference between the upper and lower bounds, the mean value can represent the 

real-valued amount of the objective functions. The results showed the robustness of the model and the 

algorithm. Expanding this problem and working on multiple parts of robotic cells for future research are 

recommended. 
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