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Abstract 

 

1 | Introduction 

As the demand for systems safety and product quality increases, the role of process monitoring in 

industrial procedures becomes more prominent [1]. One of the most complex and costly systems 

in the industry is the Gas Turbine (GT). There is increasing attention to condition monitoring of 

GTs in power plants operations and maintenance. The main reasons for this consideration are to 

enhance the reliability and availability of these valuable assets [2]. As a result, employing the 

monitoring strategy appears to be important to ensure that faulty conditions are detected early 

and that a forced plant shutdown is avoided [3]. Because of the complexity of these assets, various 

indicators have been used to monitor the health condition of different parts of GT, such as coast 

down-time, vibration, performance, maximum turbine outlet temperature at minimum fuel flow, 
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One of the most complex and costly systems in the industry is the Gas Turbine (GT). Because of the complexity of these 

assets, various indicators have been used to monitor the health condition of different parts of the GT. Turbine Exit 
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deterioration and burner fault. The goal of this article is to use data-driven approaches to monitor TET data to 

detect faults early, as fault detection can have a significant impact on GT reliability and availability. In this study, the TET 

data of v94.2 GT is measured by six temperature transmitters to show a detailed profile. According to the statistical tests, 

TET data are high dimensional and time-dependent in the real world industry. Hence, three distinctive methods in the 

field of the GT are proposed in this study for early fault detection. Conventional Principal Component Analysis (PCA), 

Moving Window Principal Component Analysis (MWPCA), and Incremental Principal Component Analysis (IPCA) 

were implemented on TET data. According to the results, the conventional PCA model is a non-adaptive method, and 

the false alarm rate is high due to the incompatibility of this approach and the process. The MWPCA based on V-step-

ahead and IPCA approaches overcame the non-stationary problem and reduced the false alarm rate. In fact, these 

approaches can distinguish between the normal time-varying and slow ramp fault processes. The results showed that 

IPCA could detect fault situations faster than MWPCA based on V-step-ahead in this study. 
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Turbine Exit Temperature (TET) spread, Bearing temperature during coast down, etc. [4]. “TET 

spread” is one of the essential indicators that helps monitor and detect the presence of faults such as 

overall engine deterioration and burner fault. 

There are several conceptual approaches to detecting and diagnosing failure, as well as distinct categories 

presented by different researchers. None of these classifications are comprehensive, and each researcher 

has his or her own viewpoint. Zhang et al. [5] argued that fault detection methods could be either model-

based or data-based methods (Fig. 1). However, Chiang et al. [6] believed that three fault detecting and 

diagnosing methods are data-driven, analytical-based, and knowledge-based methods. 

Fig. 1. Classification of fault detection and diagnosis method [5]. 

The analytical approach utilizes first principles to construct mathematical models of the system [7]. The 

analytical model cannot be applied for large-scale and complex systems. According to [8], the 

knowledge-based methods are mostly rule-based expert systems. The failure cases and engineers’ 

experience are used to formulate the rules. When the detailed mathematical model cannot be reached, 

and when the number of inputs, outputs, and states of a system is logically small, the knowledge-based 

method will yield the best results [8]. The data-driven methods use product life-cycle data to detect faults 

and they do not depend on the first-principles models [9], [10]. 

Hence, data-driven methods can be used for large-scale and complex systems which are inexpensive and 

high accuracy [7], [11]. Upon the availability of the data of product or system, data-driven methods are 

chosen, but the system model is not [12]. As Fig. 1 shows, data-driven methods consist of statistical and 

non-statistical methods [5]. One of the data-driven statistical tools is Principal Component Analysis 

(PCA) models. Instead of using base-models, we introduced PCA models for monitoring and identifying 

early failures in a GT using TET spread indicators in this study. Because the basic principles for 

constructing mathematical models of GTs are not readily available, and such a model is typically difficult 

to obtain due to the complexity and high dimensionality of a GT, there appears to be sufficient historical 

data for employing a statistical method. 

Statistical Process Monitoring (SPM) developed the quality control charts to detect a system deviation 

from the normal behavior. When the number of variables or dimensions of a problem is beyond one 

value, it is necessary to use a multivariate statistical approach [13]. 

Monitoring, in a power plant context, means assessing the measured data in the simplest form to 

distinguish data of the normal operation from abnormal data. Nowadays, GTs are equipped with a lot 

of sensors, of which the collected data are used for monitoring purposes [14]. 
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The idea of monitoring the TET spread monitoring has been proposed for more than two decades, and 

different methods have been suggested until now [4], [15]-[21]. Various research has been done in TET 

spread monitoring since 1992 [4], [15]-[21]. All of them mentioned the importance of TET monitoring to 

prevent catastrophic GT damages. In an ideal condition, the measurements of all thermocouples in exhaust 

must be the same. Nevertheless, in the real world, it is not. Knowles [17] described all possible reasons for 

this fact and suggested monitoring temperature patterns instead of temperature spread. In this method, a 

pattern is extracted from the healthy condition of the GT to compare the current TET pattern. Tsalavoutas 

et al. [21] presented a statistical method to evaluate the changes in temperature patterns. None of these 

researchers considered the influence of operation status and ambient conditions on their models. 

Some researchers applied TET to diagnose a specific failure. Medina et al. [19] focused on combustion 

chambers failure detection with the aid of TET monitoring. They developed a TET model based on the 

basic principles of a GT, which estimates the TET, then compared the actual temperature measurement 

with the TET estimation to detect each combustor chamber failure. Korczewski [18] delivered a method 

to detect the failures of the automatic engine control system according to the alteration in TET during 

transient conditions such as start-up and acceleration processes. Besides, he presented diagnostic tolerances 

based on the statistical quality control methods. Jinfu et al. [16] presented an early fault detection method 

of the hot component. They introduced an indicator to detect the early faults of the hot component in the 

GT. Kenyon et al. [22] proposed an anomaly detection in exhaust gas temperature system by data mining 

algorithm to monitor the related parameters when anomalies are identified. Navi et al. [23] proposed partial 

kernel PCA for sensor fault detection of an industrial GT. Palmé et al. [20] used Auto Associative Kernel 

Regression method to simulate the TET pattern. In this method, the value of each thermocouple 

measurement would be estimated according to the previous records of exhaust temperature. Literature 

review shows that previous studies were often in the field of fault detection of the GT with an analytical 

approach, and there was no special attention to the important point that the trend of TET measured data 

is high dimensional and non-stationary. They are affected by operation status and ambient conditions. 

According to our findings, no research has been conducted on early fault detection by monitoring TET 

spread using a statistical approach with non-stationary and high-dimensional data assumptions. This study 

aims to find an appropriate approach for early fault detection of turbine gas using TET spread, with a 

focus on data that will change over time, namely non-stationary data. In this paper, a low and 

straightforward calculation cost method will be proposed. It will help us better understand the condition 

of the TET pattern during the encounters of any fault generation and propagation. This study presents 

two approaches to cope with high-dimensional and time-dependent features. The Moving Window 

Principal Component Analysis (MWPCA) and Incremental Principal Component Analysis (IPCA) are two 

new approaches that can solve the dimensionality and time-dependent problems. 

This paper also looks into the basic PCA, MWPCA, and IPCA in Section 2. In addition, Section 3 presents 

the details of the results of implementation and fault detection methods based on the conventional PCA, 

MWPCA, and IPCA. Finally, the conclusion is given in Section 4. 

2 | The Multivariate Statistical Approach based on PCA, MWPCA, 

IPCA 

Researchers believe that among the monitoring of multivariate processes, PCA, partial least squares, 

canonical correlation analysis and factor analysis are the suitable monitoring approaches [24]. 

The mentioned approaches and their expansion indicate the capability of conducting a high-dimensional 

data process. All turn the high-dimensional process into a lower-dimensional subspace and control the 

process behavior accordingly [25]. In the PCA, the original space variables, usually correlated, are 

transformed linearly into a new space of variables; these new variables are uncorrelated or orthogonal to 

each other [26]. If  is the standardized data matrix with zero mean and unit variance with the scale 

parameter vectors  and S as the mean and variance vectors, respectively, where n denotes the sample 
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number and m represents the variable number. Defining the covariance matrix R is the first step to 

obtain PCA: 

 

Then accomplishing Singular-Value Decomposition (SVD) decomposition on R is as follows: 

where Λ represents a diagonal matrix consisting of the non-negative real eigenvalues as decreasing (

). Columns of matrix V are the eigenvectors of R. Based on r principal eigenvalues, the 

transformation matrix  is generated by choosing r eigenvectors or columns of V. The space of 

the measured variables is turned into the reduced dimension space by matrix P: 

 

The columns of P are called loading and items of T are called scores. Scores are the values of the original 

measured variables that have been converted into the reduced dimension space [27]. According to Eq. 

(3), the scores can also be turned into the original space as follows 

The residual matrix E is calculated as: 

 

Finally, the original data space can be computed as 

 

The important part of the implementation of PCA is choosing the number of principal components, 

which should be done carefully because  illustrates the main source of variability and E represents 

the variability known as noise [28]. Several methods are proposed for choosing the number of principal 

components. SCREE procedure and Cumulative Percent Variance (CPV) approach are the most 

popular methods. 

A plot of the eigenvalues is built in descending order by the SCREE procedure [28], which is a graphical 

approach that detects the knee in the curve. The number of knees on the plot indicates the count of 

principal components. CPV is the other method [29], [30] which determines the percent variance 

 calculated by the first r principal components as follows [31]: 

 

2.1 | Multivariate Statistical Process Control based on PCA 

After constructing a PCA model based on the historical data collected, it is necessary to have an 

instrument that controls variation. It is possible to plot the multivariate control charts using the 

Hotelling  and Square Prediction Error (SPE) or Q to detect the fault. Determining two orthogonal 

subspaces of the original space can decrease the monitoring of these two variables (  and Q). 

The significant variation and the random noise in the data can be controlled by  and Q, respectively. 

The statistic can be calculated for each new observation x by: 

 

where  is the squared matrix constructed by the first r rows and columns of Λ and, as previously 

mentioned, P is r eigenvectors or columns of V. The upper confidence limit for  is acquired using the 

F-distribution: 

(1) 

(2) 

. (3) 

. (4) 

. (5) 

. (6) 

(7) 

(8) 
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where r is the number of the principal components and n is the number of samples in the data and α is the 

level of significance. A violation of the threshold would mean that variations of the system are out of 

control. Another statistic is the SPE or Q that can monitor the portion of the measurement space related 

to the lowest m-r eigenvalues. In fact, the Q statistic is calculated as the sum of squares of residuals. 

where  is the identity matrix. 

The upper confidence limit for the Q can be calculated from its approximate distribution: 

where  is the value of the normal distribution with the α level significance. A violation of the threshold 

would indicate that an unusual event has occurred that had changed the covariance structure of the model 

[28]. 

Monitoring and fault detection based on the PCA model considers two steps: 

1. Off-line: Acquire training data, collected under normal operation, this matrix must be normalized to zero 

mean and unit variance with the scale parameter vectors  and S as the mean and variance vectors, 

respectively. Then, we should implement PCA algorithm, find eigenvalue and eigenvector and determine 

the number of principal components and finally the upper control limits for  and Q statistics. 

2. Online: 

 Get a new instance and scale it using the scale parameter vectors  and s. 

 Calculate and Q statistics using the result of PCA model. 

 When the value of statistics is compared to thresholds, the violation is interpreted as an alarm. 

 Repeat from step A. 

The monitoring process with PCA is indicated in Fig. 2. 

 

Fig. 2. Monitoring process with PCA method diagram [32]. 
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(10) 
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2.2 | Multivariate Statistical Process Control Based on MWPCA 

The process parameters, such as the mean or covariance, change with time, making the process non-

stationary [33]. Several complementary MSPM methods have been introduced to tackle the time-varying 

issue. Three classes of approaches of Recursive Principal Component Analysis (RPCA), MWPCA and 

IPCA were applied to develop PCA methods to address non-stationary data [34]. 

Ketelaere et al. [35] investigated PCA-based statistical process-monitoring methods in terms of time-

dependent and high-dimensional data, including MWPCA and RPCA [35]. RPCA techniques update the 

model for ever-increasing data consisting of new samples without discarding the old ones. Although 

RPCA is theoretically simple, it has been successfully employed for process monitoring. However, its 

implementation might not be easy for two main reasons: the ever-growing data set on which the model 

is updated, which eventually slows down the speed of adaptation as the data size increases. RPCA also 

consists of older data that are unrepresentative of the time-varying process. The forgetting factor cannot 

be easily selected without a priori knowledge of likely fault conditions when given to down-weight older 

samples [36]. The MWPCA method can tackle some of the limitations mentioned above by gathering a 

sufficient number of data points in the time-window to help build an adaptive process. Specifically, 

MWPCA removes older samples to choose the new samples representing the current operation process. 

Hence, for window size H, the data matrix at time t is =  and, at time t + 1, it is 

= . The observations in the new window can be used to obtain the updated 

 and  [37]. The window includes a number of samples to cover enough process variation for 

modeling and monitoring purposes. Thus, window size is important. If a high number of samples select 

for the window, the MWPCA computation speed reduces drastically. If the result data used to enhance 

the computational efficiency is in a smaller window size, the relationship between the process variables 

will be important. If the model's adaptability to the process changes rapidly, it will be difficult to notice 

abnormal behavior, and the narrow window will be risky. Chiang et al. [6] determined the window size 

needed to estimate the -statistic accurately. This was done according to the convergence of the  

distribution to the F distribution suggesting that minimum window sizes should be greater than 

approximately 10 times the number of variables. The monitoring process with MWPCA is indicated in 

Fig. 3. It is worth noting that over-fitting might be observed in MWPCA and a slow ramp could not be 

detected. As a result of the introduction of V-step-ahead prediction, MWPCA is based on the application 

delay. This approach is implemented using a model estimated at time t to predict the system behavior at 

time t + V and observe the likely faults. This step is used to ensure that the model does not over-adapt 

to the data and that it can detect faults that develop over time and are identified as regular observations 

at each time point [36], [38]. 

Fig. 3. Monitoring process with MWPCA method diagram [32]. 
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2.3 | Multivariate Statistical Process Control based on IPCA 

In adaptive methods, the monitoring models are updated by new sample and the normal time-varying 

information is added to the monitoring model to recognize between the normal time-varying and slow 

ramp fault processes. Another approach is IPCA.  

Unlike the adaptive method, this method presents a novel approach in which the monitoring model is 

constant. When the PCA model implements time-varying process data, the PCs are also time-varying. This 

method introduces a new parameter as Incremental Principal Component (IPC). IPC calculate as follows: 

The IPC is proposed to define the variations of the PCs. IPCs explain time-varying information. L indicates 

the number of PCs used to calculate the mean subtracted, and W indicates the interval of the two moments 

( ). A good introduction to IPCA can be found in [39]. IPCA model contains two steps as follows: 

1. Offline: 

I. Acquire training data set A, which is collected under normal operation. This matrix must be normalized 

to zero mean and unit variance with the scale parameter vectors 𝑥̅ and S as the mean and variance 

vectors, respectively. 

II. Construct the conventional PCA model with training data set, using the eigenvalue decomposition 

algorithm without reducing the dimension, and keep the loading matrix P and PCs. 

III. Compute the IPCs according to Eq. (12) in dataset A, and then compute the corresponding of each 

sample with the IPCs according to Eq. (13). 

IV. Use the Kernel Density Estimation (KDE) algorithm to define the control limit and CL of as 

well as the threshold  of  with the 99% confidence level. 

2. Online step: 

I. Collect  normal online samples, where . Normalize the samples through the means 

and variances of the training dataset A, and compute the PCs with the loading matrix P. 

II. Collect a new online sample. Normalize the sample with the means and variances of the training dataset 

A and calculate the PCs with the loading matrix P of the PCA model. 

III. Compute   of the  sample with the PCs of the forward W +2*L samples through Eq. (12). 

IV. Compute the statistic of the sample with the  of the  sample through Eq. (13). 

V. If , then a fault may be present in the process. Otherwise, the sample is a normal one. In 

addition, when > , the corresponding  is replaced by . 

VI. Repeat (II) – (III). 

The monitoring process with IPCA is indicated in Fig. 4. 

(12) 

(13) 
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Fig. 4. Monitoring process IPCA method diagram. 

3 | Static PCA, MWPCA Based on V-Step-Ahead and IPCA Applied to 

TET Spread 

GTs are designed for many different purposes. In the industry, they are commonly used to drive 

compressors to transport gas through pipelines and generators that produce electrical power [40], [41]. 

In the past, the use of GTs has traditionally been limited to generating power during times of peak 

demand. Still, nowadays, they are being used in combined cycle power plants for baseload production 

[42]. Consequently, their availability, as well as reliability, play a significant role in these machines. The 

development of the GT in recent years has been facilitated most considerably by three factors: 

I. Metallurgical developments that can be used to apply high temperatures in the combustor and turbine 

components. 

II. Increased underlying knowledge of aerodynamics and thermodynamics. 

III. Designing and simulating turbine airfoils and combustor and turbine blade cooling configurations by 

computer software. 

Fig. 5. Siemens V94.2 GT, from left to right: compressor, combustion chamber, turbine [43]. 

After compressing the air in the compressor, the fuel will be injected into it and combustion will increase 

the temperature of the gas. Turbine Inlet Temperature (TIT) is the average temperature of the flue gas 

that will face the first stage of turbine blades. During the expansion of the flue gas in the turbine, the 

pressure and temperature will decrease and the flue gas will leave the turbine with TET. The overview 

of a V94.2 GT manufactured by Siemens is shown in Fig. 5. 
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If TIT could be increased, GT's efficiency and specific power would improve. Nonetheless, there is a 

technological limit to designing and producing turbines that can withstand larger TIT. Since TIT is too hot 

to be measured directly, it is usually calculated by measuring TET. Both TET and TIT have a profile on 

their section due to the flue gas stream's rotation and turbulence. In v94.2 GTs, TET is being measured 

by six temperature transmitters to show a detailed profile. GT manufacturers use various methods to 

calculate the TIT regarding the measured TET. The operator keeps the GT in a protected condition by 

monitoring the TET. 

The TET of an Iranian GT company is used to show the behavior of the methods throughout this study. 

As shown in Fig. 6, the data consists of six sensors, with each sensor representing the TET of V94-2 GT 

measured approximately with 1500-minute intervals. 

 

Fig. 6. Trends of TET data for normal process. 

These data were collected when all parameters were under control. Statistical tests were implemented to 

detect the behavior of the data. These data are non-stationary following the test of Kwiatkowski–Phillips–

Schmidt–Shin (KPSS). In this subsection, a static PCA model was applied on TET data for controlling the 

behavior of GT and early detecting fault. 

PCA model was introduced into that data along with the results of the observations. Since all data was 

present, missing data methods were not used. Preprocessing is normally done in various fields. The type 

of preprocessing depends on the type of process. In the case of the TET data, no special preprocessing is 

necessary; standardizing the data was the only necessary procedure. After static PCA was applied to the 

TET data, three components were retained following the CPV criterion. The - and Q-statistics were 

plotted. The first 400 observations were used to fit the underlying model. No considerable change in the 

vibration intensity of any of the sensors during this period was observed. The estimated model was 

evaluated against the well-behaved data observed before t = 400, and the confidence limit was set to 99%. 

Therefore, a distinction is made between phase I, which occurs when t > 400, and phase II. As shown in 

Fig. 7, conventional PCA cannot be a good instrument for TET data since the mean of data changes over 

time, and static PCA created a model with the first bunch of data and was unable to update the model over 

time. As a result, the model generates a false alarm, despite the fact that these changes are an essential 

element of the system. The first chart from the left is  control chart and the second chart indicate 

monitoring by Q. 
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Fig. 7. Monitoring performance of conventional PCA for normal process. 

As explained in the previous section, the MWPCA based on V-step-ahead prediction and IPCA were 

applied to the TET data to solve this problem. The  and Q-statistics regarding MWPCA based on V-

step-ahead were plotted in Fig. 8. Considering the points mentioned in the previous section, the opinion 

expert window size and delay size were 400 and 40, respectively. The confidence limit was set to 99%. 

The first chart from the left is  control chart and the second chart indicate monitoring by Q. 

Fig. 8. Monitoring performance of MWPCA based on V-step-ahead for normal process. 

Also, the IPCA method was applied to TET data. As shown in Fig. 9, the PCs are also non-stationary 

because the TET data is time-varying. The red lines represent the means of all PCs, and as can be seen, 

the PCs gradually deviate from the means. IPCs are computed through Eq. (12), and the parameters L 

and W are set as 6 and 40, respectively. The results of IPCs were plotted in Fig. 10. This figure shows 

IPCs remained around mean and a statistic made by the IPCs will not increase slowly for the normal 

time-varying process. 
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Fig. 9. Trends of PCs for normal process. 

  

 

 

 

 

 

Fig. 10. Trends of PCs for normal process. 
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Then was plotted in Fig. 11. 

Fig. 11. Monitoring performance of IPCA process with fault 1. 

A good fault detection technique should have robust against the training data set and react quickly in 

fault detection. The robustness is measured by computing the False Alarm Rate (FAR) upon fault free 

testing data set. Promptness fault detection is quantified by calculating Delay Time Detection (DTD) 

upon faulty testing data set. According to Eq. (14), a FAR was calculated [44]. 

The results show that both MWPCA based on V-step-ahead and IPCA methods overcome non-

stationary in this case. Table 1 shows the percentage of false alarms rate and shows that IPCA performs 

better than MWPCA based on V-step-ahead. 

(14) 
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 Table 1. FAR percentage. 

 

 

Two types of faults were added deliberately to check the power of MWPCA based on V-step-ahead 

prediction and IPCA in finding fault early. 

Fault 1. Step change of second TET is introduced at the 1001st sample. 

Fault 2. Linear ramp with 0.3 increments of second TET again is introduced beginning from the 1001st. 

As it was explained in the previous section, the  statistic describes the useful information about system 

variation, and Q statistic represents model error or noise information. In case of a problem, the covariance 

structure of the model will be altered and the statistics can represent it. The results of MWPCA based on 

V-step-ahead are shown in Figs. 12 and 13.  

 

Fig. 12. Monitoring performance of MWPCA based on V-step-ahead for process with fault 1. 

  

 

 

 

 

 

 

Fig. 13. Monitoring performance of MWPCA based on V-step-ahead process with fault 2. 

 

 MWPCA based on V-step-ahead IPCA 

5.3% 3.5% 

Q 4%  
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The results of IPCA are presented in Figs. 14 and 15. The DTD index was used to compare these two 

methods: 

 

 

 

 

 

 

  

Fig. 14. Monitoring performance of IPCA process with fault 1. 

 

 

 

 

 

  

  

Fig. 15. Monitoring performance of IPCA process with fault 2. 

As shown in Table 2, both of the methods easily detected the step-change process in time. Also, these 

charts can distinguish the normal time-varying and slow ramp fault processes. 

But according to Table 2, slow ramp fault can be detected more quickly by the IPCA model in this case 

based on the TET data. 

 Table 2. Detection time delay. 

 

 

4 | Conclusion 

Early fault detection can play an important role in the reliability and availability of GTs. Therefore, 

providing a monitoring approach is necessary to guarantee early detection of faulty conditions before 

they lead to a forced plant shut down. The efficiency and specific power of GT would be improved if 

TIT could be increased. Since the TIT is too hot to be measured directly, it is usually calculated by 

measuring TET. This study used an appropriate data-driven approach for early fault detection of GTs. 

To detect faults, data-driven approaches rely on product life-cycle data rather than first-principles 

models. Hence, data-driven methods can be used for large-scale and complex systems; they are also 

cheap and inexpensive. PCA model is one of the data-driven methods. Still, unlike simulated data, actual 

data has ambient and system characteristics, and these parameters do not provide stationary data over 

 (15) 

 MWPCA based on V-Step-Ahead IPCA 
 Q 

Fault 1 0 0 0 
Fault 2 18 11 9 
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time. Finding an approach for early detection is important. In this study, the PCA model is implemented 

on six TET sensors, but it is not a suitable approach due to the non-stationary data. For this purpose, 

MWPCA based on V-step-ahead and IPCA are implemented on data. MWPCA based on V-step-ahead is 

a novel monitoring approach for non-stationary TET data. MWPCA based on V-step-ahead is an adaptable 

approach since it can update the monitoring model and control limit when the newly monitored sample is 

detected as a normal one. On the other hand, in the IPCA approach, the monitoring model remains 

unchanged and uses the new statistic called  to monitor data. 

The results reveal that these approaches are data compatible and can detect a step-change fault in real time. 

However, when it comes to incremental ramp faults, the IPCA approach performs better. According to 

TET data behavior which is non-stationary and changes over time, a suitable approach has been 

recommended for early fault detection of turbine gas. In the future, there'll be more work to be done about 

how monitor high-dimensional, non-stationary, and autocorrelation data from GTs. It is also suggested to 

find the root of the faults by new fault isolation method and compare their results with classical methods. 
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