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Abstract

Type I doubly left-censored data often arise in environmental studies. In this pa-
per, the power of the most frequently used goodness-of-fit tests (Kolmogorov-Smirnov,
Cramér-von Mises, Anderson-Darling) is studied considering various sample sizes and de-
grees of censoring. Attention is paid to testing of the composite hypothesis that the
data has a specific distribution with unknown parameters, which are estimated using
the maximum likelihood method. Performance of the tests is assessed by means of Monte
Carlo simulations for several distributions, specifically the Weibull, lognormal and gamma
distributions, which are among the most frequently used distributions for modelling of en-
vironmental data. Finally, the tests are used for identification of the distribution of musk
concentrations if fish tissue.
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1. Introduction

Type I left-censored data are often present in practice, especially in environmental studies
where an observed variable (e.g. a concentration of some chemical) frequently fall below
detection limits of a measuring instrument (El-Shaarawi and Piegorsch 2012; Helsel 2012).
Since there are usually two detection limits (the limit of detection and the limit of quantifi-
cation) that are fixed and known in advance, we have to deal with doubly left-censored data.
The parametric approach is usually used assuming that data has a specific distribution. In
environmental studies, data are typically skewed and various distributions such as the lognor-
mal (El-Shaarawi 1989; Baccarelli, Pfeiffer, Consonni, Pesatori, Bonzini, Patterson, Bertazzi,
and Landi 2005), gamma (Singh, Singh, and Iaci 2002; Hrdličková, Michálek, Kolář, and
Veselý 2008) and Weibull (Fusek, Michálek, and Vávrová 2015; Mbengue, Fusek, Schwarz,
Vodička, Holubová Šmejkalová, and Holoubek 2018; Fusek, Michálek, Buňková, and Buňka
2020) distributions are often used. Since selecting an unsuitable probability distribution can
lead to biased estimates and potentially misleading inferences, goodness-of-fit tests are of
great importance. There are several goodness-of-fit tests available in the literature based on
a complete sample and an excellent overview on this topic can be found in D’Agostino and
Stephens (1986). Nevertheless, there has been relatively little work done on the problem of
goodness-of-fit for Type I censored data and attention was usually paid only to right censoring
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(Bispo, Marques, and Pestana 2011; Pakyari and Balakrishnan 2013; Pakyari and Nia 2017).
In this paper, we focus on Type I left-censored data and three tests (Kolmogorov-Smirnov,
Cramér-von Mises, Anderson-Darling) based on the empirical distribution function (EDF).
The power of the tests is investigated by varying the null and the alternative distributions
for various sample sizes and degrees of censoring. It can bring readers valuable information
about the type II error that can be expected when having a dataset with a specific size and a
number of censored values. A similar study was carried out by Bispo et al. (2011) for right-
censored data, although, only for the completely specified alternative distributions. This is
usually not the case when modelling real data. On that account, this paper is focused on
a more complex problem of testing a composite hypothesis where the unknown parameters
of the tested distributions have to be estimated. As far as we know, no similar analysis has
been done before for the Type I left-censored data. The paper is organized as follows. Sec-
tion 2 describes the statistical inference for selected Type I doubly left-censored probability
distributions (Weibull, lognormal, gamma). Section 3 describes the goodness-of-fit tests used
in this paper, and their performance is assessed using simulations in Section 4. Real data
example is given in Section 5 and all the findings are summarized in the final Section 6.

2. Type I left-censored distributions

Let X1, . . . , Xn be a random sample from a distribution with cumulative distribution function
(CDF) F (x,θ) and probability density function (PDF) f(x,θ), where θ = (θ1, . . . , θk) ∈ Θ ⊂
Rk is a vector of parameters. The sample X1, . . . , Xn arranged in ascending order is denoted
by X(1) ≤ · · · ≤ X(n). Two detection limits d1, d2 are considered and Ni, i = 1, 2, is
the number of observations in the interval (di−1, di], where we put d0 = 0. The number of
uncensored observations X(n−N0+1), . . . , X(n) is denoted by N0. The log-likelihood function
of the censored sample is given by (Cohen 1991)

l(θ, N0, N1, N2, X(n−N0+1), . . . , X(n)) = log

(
n!

N1!N2!

)
+

2∑
i=1

Ni log [F (di,θ)− F (di−1,θ)]

+
n∑

i=n−N0+1

log
[
f(X(i),θ)

]
, (1)

and for N0 = 0 we put
∑n

i=n−N0+1 log
[
f(X(i),θ)

]
= 0. The maximum likelihood (ML)

estimate θ̂ of parameter θ can be obtained by maximizing the log-likelihood function (1)
using, for example, the Nelder-Mead simplex algorithm in Matlab (version R2020b). Another
option is to derive likelihood equations and solve them using the Newton-Raphson method.

In this paper, following probability distributions are used:

1) The Weibull distribution with parameter θ = (λ, τ) ∈ (0,∞)× (0,∞), and CDF

F (x,θ) =

{
1− exp

[
−
(
x
λ

)τ ]
for x ≥ 0,

0 for x < 0,
(2)

where λ is the scale parameter and τ is the shape parameter.

2) The lognormal distribution with parameter θ = (µ, σ) ∈ (−∞,∞)× (0,∞), and CDF

F (x,θ) =

 1
σ
√

2π

x∫
0

1
t exp

[
− (log(t)−µ)2

2σ2

]
dt for x > 0,

0 for x ≤ 0,
(3)

where µ is the location parameter and σ is the scale parameter of the variable’s natural
logarithm.
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3) The gamma distribution with parameter θ = (λ, κ) ∈ (0,∞)× (0,∞), and CDF

F (x,θ) =

 1
λκΓ(κ)

x∫
0

tκ−1 exp
(
− t
λ

)
dt for x > 0,

0 for x ≤ 0,

where λ is the scale parameter and κ is the shape parameter.

4) The Gumbel distribution with parameter θ = (µ, σ) ∈ (−∞,∞)× (0,∞), and CDF

F (x,θ) = 1− exp

[
− exp

(
x− µ
σ

)]
for x ∈ R, (4)

where µ is the location parameter and σ is the scale parameter.

5) The normal distribution with parameter θ = (µ, σ) ∈ (−∞,∞)× (0,∞), and CDF

F (x,θ) =
1

σ
√

2π

x∫
−∞

exp

[
−(t− µ)2

2σ2

]
dt for x ∈ R, (5)

where µ is the location parameter and σ is the scale parameter.

3. Goodness-of-fit test statistics

Let X1, . . . , Xn be a random sample from a distribution with CDF F (x). We consider a
problem of testing a composite hypothesis

H0 : F (x) ∈
{
F0(x,θ),θ ∈ Θ ⊂ Rk

}
,

where F0 is a CDF of a known parametric family. In case θ is fully specified, then H0 is
a simple hypothesis and the distribution theory of EDF statistics is well developed. When θ
is unknown, it can be replaced by its estimate θ̂, and distributions of EDF statistics depend
on the tested distribution, the estimated parameters and the sample size. It is well known fact
(D’Agostino and Stephens 1986) that in case the unknown components in θ are location or
scale parameters, distributions of EDF statistics do not depend on the true values of the un-
known parameters, and depend only on the tested distribution and on the sample size. When
the unknown component in θ is the shape parameter, distributions of EDF statistics depend
on the true value of this parameter. In our case, it was possible to transform the distribu-
tions depending on the shape parameter to another distributions depending on the location
and scale parameters only. Specifically, if a random variable X has the Weibull distribution,
then log(X) has the Gumbel distribution. Therefore, testing the null hypothesis that the
data follow the Weibull distribution (2) is equivalent to testing that the log-transformed data
follow the Gumbel distribution with location parameter µ = log(λ), scale parameter σ = 1/τ ,
and CDF (4). Moreover, a random variable X has the lognormal distribution if log(X) has
the normal distribution. For that reason, testing the null hypothesis that the data follow the
lognormal distribution (3) is equivalent to testing that the log-transformed data follow the
normal distribution with mean µ, standard deviation σ, and CDF (5).

Critical values of the EDF statistics can be obtained by means of Monte Carlo simulations
using the following steps:

1) Generate a Type I doubly left-censored sample X1, . . . , Xn with a pre-chosen sample size
n and detection limits from the distribution being tested. Detection limits are selected
as quantiles of the tested distribution depending on the degree of censoring.

2) Calculate the ML estimates of the unknown parameters of the selected distribution.
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3) Calculate the EDF statistic.

4) Repeat steps 1–3 a large number of times and determine the (1 − α)th quantile of the
test statistic as the required critical value of that goodness-of-fit statistic.

Three test statistics based on the EDF Fn(x) are applied (see D’Agostino and Stephens 1986,
for more details).

3.1. Kolmogorov-Smirnov statistic

The Kolmogorov-Smirnov (KS) statistic is defined by

D = sup
d2≤x<∞

|Fn(x)− F0(x)|

with the useful alternative form for computational purposes

D = max
n−N0+1≤i≤n

{∣∣∣∣ in − F0

(
x(i), θ̂

)∣∣∣∣ , ∣∣∣∣F0

(
x(i), θ̂

)
− i− 1

n

∣∣∣∣ , ∣∣∣∣F0

(
d2, θ̂

)
− n−N0

n

∣∣∣∣} .
3.2. Cramér-von Mises statistic

The Cramér-von Mises (CM) statistic is defined by

W 2 = n

∞∫
d2

[Fn(x)− F0(x)]2 dF0(x)

with an alternative form for computational purposes

W 2 =

N0+1∑
i=1

(
Z(i) −

2i− 1

2n

)2

+
N0 + 1

12n2
+
n

3

(
Z(N0+1) −

N0 + 1

n

)3

,

where Z(i) = 1− F0(x(n−i+1), θ̂), i = 1, . . . , N0, and Z(N0+1) = 1− F0(d2, θ̂).

3.3. Anderson-Darling statistic

The Anderson-Darling (AD) statistic is a modification of the CM statistic placing more weight
in the tails of the underlying distribution. It is defined by

A2 = n

∞∫
d2

[Fn(x)− F0(x)]2

F0(x)[1− F0(x)]
dF0(x)

with an alternative form for computational purposes

A2 = − 1

n

N0+1∑
i=1

(2i− 1)
[
log(Z(i))− log(1− Z(i))

]
− 2

N0+1∑
i=1

log(1− Z(i))

− 1

n

[
(N0 + 1− n)2 log(1− Z(N0+1))− (N0 + 1)2 log(Z(N0+1)) + n2Z(N0+1)

]
,

where again Z(i) = 1− F0(x(n−i+1), θ̂), i = 1, . . . , N0, and Z(N0+1) = 1− F0(d2, θ̂).
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4. Simulation study

The empirical significance level as well as the power of the above mentioned tests was stud-
ied by means of Monte Carlo simulations. Tested models included the Weibull (denoted by
Wbl(λ, τ)), lognormal (denoted by LN(µ, σ)) and gamma (denoted by Gam(λ, κ)) distribu-
tions as these are among the most frequently used distributions when modelling censored
environmental data. In case of the Weibull (lognormal respectively) distribution, the previ-
ously described transformation to the Gumbel (normal respectively) distribution was applied.
The power of the goodness-of-fit tests was estimated by the proportion of the correct rejec-
tions of the null hypothesis at the significance level of α = 0.05. The power of each statistic
was simulated from 100,000 replications considering sample sizes n = 10, 20, 30, 50, 100, 200
and censoring schemes c1, . . . , c4, which represent proportions of censored observations be-
tween 10% and 70% (with a step of 20%). For example, c3 represents 50% of censored values.
Detection limits d1, d2 were selected as quantiles of the particular distribution using equations
qi = F (di,θ), i = 1, 2, where q2 = 0.1, 0.3, 0.5, 0.7 and q1 = q2/2. Critical values of the test
statistics were obtained by means of Monte Carlo simulations using 2,000,000 repetitions.
When the alternative model is the model from which the data are simulated, the rejection
probabilities give the power of the tests. In case the null hypothesis is true, it is expected that
the statistics maintain the type I error rate. Overall, differences between the nominal level
of 0.05 and the actual levels were very small for various censoring schemes and sample sizes,
which shows a reliable performance of the goodness-of-fit statistics for left-censored data (see
Tables 1–3).

Table 1: Estimated power for various alternatives and censoring schemes when testing for the
Weibull distribution; n = 30, 100

n = 30 n = 100

Alt. model Stat. c1 c2 c3 c4 c1 c2 c3 c4

Wbl(1,0.5)
KS 0.0504 0.0493 0.0485 0.0499 0.0506 0.0505 0.0501 0.0500
CM 0.0508 0.0494 0.0500 0.0488 0.0502 0.0503 0.0506 0.0515
AD 0.0505 0.0493 0.0501 0.0490 0.0500 0.0496 0.0505 0.0506

Wbl(1,2)
KS 0.0493 0.0497 0.0496 0.0506 0.0501 0.0506 0.0511 0.0505
CM 0.0498 0.0498 0.0500 0.0496 0.0509 0.0499 0.0510 0.0503
AD 0.0496 0.0494 0.0498 0.0496 0.0507 0.0503 0.0514 0.0498

LN(0,0.5)
KS 0.2083 0.1679 0.1487 0.1324 0.5902 0.4462 0.3812 0.3503
CM 0.2396 0.1891 0.1751 0.1612 0.6835 0.5303 0.4731 0.4238
AD 0.2396 0.2044 0.1866 0.1631 0.6906 0.5607 0.4919 0.4130

LN(0,2)
KS 0.2073 0.1701 0.1481 0.1318 0.5854 0.4464 0.3858 0.3514
CM 0.2399 0.1901 0.1759 0.1605 0.6819 0.5328 0.4793 0.4249
AD 0.2388 0.2063 0.1860 0.1624 0.6892 0.5623 0.4970 0.4131

Gam(0.5,0.5)
KS 0.0696 0.0643 0.0628 0.0619 0.1278 0.1074 0.0992 0.0911
CM 0.0720 0.0639 0.0617 0.0545 0.1469 0.1181 0.1069 0.0842
AD 0.0726 0.0615 0.0597 0.0529 0.1546 0.1176 0.1053 0.0819

Gam(0.5,2)
KS 0.0627 0.0605 0.0588 0.0559 0.0952 0.0848 0.0768 0.0746
CM 0.0676 0.0637 0.0628 0.0611 0.1093 0.0921 0.0869 0.0841
AD 0.0683 0.0664 0.0653 0.0621 0.1141 0.0968 0.0913 0.0847

Table 1 shows that power of all the test statistics is very low when data generated from the
gamma distribution are tested for the Weibull distribution. Similar behavior is observed when
data generated from Gam(0.5,2) are tested for the lognormal distribution (Table 2), and data
generated from LN(0,0.5) and Wbl(1,2) are tested for the gamma distribution (Table 3). It is
caused by the fact that it is very difficult to distinguish between the gamma, lognormal and
Weibull distributions in some cases (see Fig. 1).

As expected, the statistical power of the studied tests increases with increase in the sample
size, and decreases with the increasing proportion of censored values. The relation between
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Table 2: Estimated power for various alternatives and censoring schemes when testing for the
lognormal distribution; n = 30, 100

n = 30 n = 100

Alt. model Stat. c1 c2 c3 c4 c1 c2 c3 c4

LN(0,0.5)
KS 0.0491 0.0492 0.0507 0.0497 0.0507 0.0500 0.0497 0.0499
CM 0.0487 0.0500 0.0502 0.0484 0.0505 0.0495 0.0494 0.0494
AD 0.0485 0.0503 0.0508 0.0493 0.0509 0.0497 0.0497 0.0484

LN(0,2)
KS 0.0488 0.0496 0.0500 0.0508 0.0506 0.0496 0.0500 0.0492
CM 0.0490 0.0495 0.0501 0.0491 0.0515 0.0498 0.0498 0.0497
AD 0.0490 0.0495 0.0494 0.0493 0.0512 0.0500 0.0500 0.0499

Wbl(1,0.5)
KS 0.2188 0.1530 0.1219 0.0921 0.6180 0.4565 0.3461 0.2335
CM 0.2636 0.1757 0.1195 0.0731 0.7501 0.5660 0.3809 0.1962
AD 0.2673 0.1796 0.1227 0.0781 0.7870 0.6016 0.4099 0.2253

Wbl(1,2)
KS 0.2175 0.1543 0.1228 0.0919 0.6177 0.4552 0.3459 0.2320
CM 0.2635 0.1758 0.1198 0.0735 0.7493 0.5653 0.3820 0.1954
AD 0.2685 0.1792 0.1237 0.0786 0.7858 0.6003 0.4102 0.2235

Gam(0.5,0.5)
KS 0.3763 0.2675 0.2014 0.1336 0.8906 0.7563 0.6158 0.4062
CM 0.4778 0.3221 0.1965 0.1012 0.9664 0.8753 0.6633 0.3301
AD 0.5026 0.3394 0.2137 0.1169 0.9803 0.9077 0.7223 0.4100

Gam(0.5,2)
KS 0.1250 0.0970 0.0831 0.0696 0.3406 0.2421 0.1916 0.1414
CM 0.1432 0.1065 0.0814 0.0589 0.4249 0.2961 0.2079 0.1227
AD 0.1410 0.1052 0.0815 0.0600 0.4476 0.3110 0.2159 0.1314

Table 3: Estimated power for various alternatives and censoring schemes when testing for the
gamma distribution; n = 30, 100

n = 30 n = 100

Alt. model Stat. c1 c2 c3 c4 c1 c2 c3 c4

Gam(0.5,0.5)
KS 0.0501 0.0507 0.0496 0.0505 0.0493 0.0506 0.0501 0.0505
CM 0.0497 0.0516 0.0515 0.0512 0.0499 0.0498 0.0510 0.0509
AD 0.0501 0.0514 0.0504 0.0509 0.0501 0.0494 0.0506 0.0507

Gam(0.5,2)
KS 0.0501 0.0505 0.0507 0.0501 0.0499 0.0497 0.0497 0.0512
CM 0.0502 0.0504 0.0499 0.0502 0.0507 0.0498 0.0501 0.0504
AD 0.0501 0.0502 0.0502 0.0498 0.0511 0.0503 0.0502 0.0509

LN(0,0.5)
KS 0.0963 0.0883 0.0829 0.0768 0.2097 0.1706 0.1521 0.1419
CM 0.1061 0.0967 0.0933 0.0904 0.2486 0.2033 0.1848 0.1709
AD 0.1152 0.1068 0.1019 0.0961 0.2640 0.2213 0.1956 0.1712

LN(0,2)
KS 0.5613 0.4790 0.4177 0.3751 0.9746 0.9395 0.8968 0.8565
CM 0.6307 0.5401 0.4826 0.4389 0.9893 0.9678 0.9395 0.9002
AD 0.6286 0.5504 0.4891 0.4293 0.9893 0.9701 0.9409 0.8901

Wbl(1,0.5)
KS 0.1385 0.1229 0.1133 0.1064 0.3723 0.3148 0.2817 0.2664
CM 0.1610 0.1424 0.1348 0.1324 0.4465 0.3814 0.3469 0.3266
AD 0.1648 0.1501 0.1396 0.1311 0.4568 0.4006 0.3612 0.3209

Wbl(1,2)
KS 0.0833 0.0722 0.0686 0.0645 0.1741 0.1391 0.1224 0.1011
CM 0.0887 0.0743 0.0674 0.0546 0.2068 0.1610 0.1300 0.0896
AD 0.0830 0.0693 0.0640 0.0516 0.2078 0.1611 0.1287 0.0892
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Figure 1: Densities of some alternative distributions (solid lines) compared with densities of
the fitted distributions (dashed lines) for n = 30 and 30% of censored values

the power of the test and the sample size is visualized for several cases in Fig. 2. Note
that the AD test seems to have the best performance for most cases in comparison to the
CM and KS tests. In general, there is not much difference between the powers of the AD
and CM tests and the KS test usually performs the worst. Let us look more closely at the
tests’ performance with regards to the proportion of censored values in a sample. If there
is at most 50% of censored values (schemes c1–c3) in a sample, the AD test can be used
without much hesitation. Nevertheless, when the proportion of censored values is high (70%;
scheme c4), the KS and CM tests sometimes outperform the AD test. In case of testing
data with sample size n < 100 for the lognormal distribution, the KS test has the highest
power (i.e. the lowest type II error), see Fig. 3. When testing lognormally distributed data
with sample size n > 50 for the Weibull distribution and/or data generated from LN(0,2)
for the gamma distribution, the CM test has the highest power. There are few other cases
in which the KS test performs the best, specifically when data generated from Gam(0.5,0.5)
are tested for the Weibull distribution and/or when data generated from Wbl(1,2) are tested
for the gamma distribution. Similarly, when data generated from Wbl(1,0.5) are tested for
the gamma distribution, the CM test performs the best. Nevertheless, in these three cases,
the differences in tests’ powers are very small and they can be considered negligible from the
practical point of view.

5. Distribution of musk concentrations

Fusek et al. (2015) analyzed various musks in fish tissue. We can take a look, for example,
at tonalide, which is a synthetic polycyclic musk. Fusek et al. (2015) assumed that tonalide
concentrations formed an independent and identically distributed Type I left-censored random
sample with the Weibull distribution. There were two detection limits, specifically d1 = 1.9846
µg/kg, d2 = 6.6154 µg/kg, and N1 = 6 non-detectable values, N2 = 17 non-quantifiable values
and following observed values:

7.1215, 7.2008, 7.4243, 7.993, 8.2360, 10.5176, 15.1702.
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Figure 2: Estimated power for various alternatives as a function of the sample size and the
proportion of censored values c1 (10%), c2 (30%), c3 (50%), c4 (70%) when testing for the
Weibull (left), gamma (middle) and lognormal (right) distributions

The data consists of little bit more than 70% of censored values which roughly corresponds
to censoring scheme c4. Tables 1–3 (n = 30, censoring scheme c4) shows that when testing
for the Weibull distribution, the lowest type II error (i.e. the highest power) occurs mostly in
case of the AD test. When testing for the lognormal and/or gamma distribution, the lowest
type II error occurs mostly in case of the KS test. Table 4 presents the test statistics and
corresponding p-values when testing for the Weibull, lognormal and gamma distributions.
All the p-values are quite large, strongly supporting the corresponding null hypothesis of the
Weibull distribution. Moreover, p-values associated with the gamma distribution are slightly
larger than those corresponding to other distributions, suggesting that the gamma distribution
can be more suitable for fitting the data. This example illustrates, among other things, that
choosing the right model distribution can be difficult and sometimes there are alternatives that
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Figure 3: Estimated power for Wbl(1,2) alternative as a function of the sample size n and
the proportion of censored values c1 (10%), c2 (30%), c3 (50%), c4 (70%) when testing for
lognormal distribution

Table 4: Test statistics (Stat.) and the corresponding p-values for tonalide concentrations
when testing for the Weibull, lognormal and gamma distributions

AD CM KS

Distribution Stat. p-value Stat. p-value Stat. p-value

Weibull 0.2445 0.5151 0.0271 0.5243 0.1315 0.4827
Lognormal 0.0637 0.5415 0.0043 0.3886 0.0690 0.3686
Gamma 0.1602 0.6421 0.0128 0.5366 0.1014 0.5388

give similar results. For example, in Stadlober, Hübnerová, Michálek, and Kolář (2012), daily
averages of PM10 were modelled using two different approaches, specifically the multiple linear
regression with square root transformation and the generalized linear model with gamma
distribution and log-link. It was shown that both approaches are suitable and give similar
results.

Finally, it should be pointed out that musk concentrations can be viewed as compositions.
Such an approach may be considered in subsequent research. Nevertheless, many values are
below the detection limit, which causes problems for the compositional approach (Lubbe,
Filzmoser, and Templ 2021).

6. Conclusion

This paper studied statistical powers of the three frequently used goodness-of-fit tests (Kol-
mogorov-Smirnov, Cramér-von Mises, Anderson-Darling) for Type I doubly left-censored data
in case the distribution function F0(x,θ) in the hypothesis is not fully specified. Performance
of the statistics was assessed using simulations for several alternative distributions (Weibull,
lognormal, gamma) considering various sample sizes and degrees of censoring. In that way
readers can get and utilize information about the type II error that can be expected when
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having a dataset with a specific size and a number of censored values. The Monte Carlo
simulation study showed that all test statistics works very well in terms of recovering the
nominal level of significance of 0.05 even for high degrees of censoring and small sample
sizes. Despite the fact that the Anderson-Darling test seems to have the best performance
in most cases and it is usually the recommended test by many statisticians, a different test
may be preferred for a specific combination of the sample size and the number of censored
values. If there is at most 50% of censored values in a sample, the Anderson-Darling test
can be recommended. Nevertheless, when the proportion of censored values is very high
(70%), the Kolmogorov-Smirnov and Cramér-von Mises tests can sometimes outperform the
Anderson-Darling test. For example, in case of testing data with sample size n < 100 for the
lognormal distribution, the Kolmogorov-Smirnov test has the highest power (i.e. the lowest
type II error). Moreover, when testing lognormally distributed data with sample size n > 50
for the Weibull distribution or data generated from LN(0,2) for the gamma distribution,
the Cramér-von Mises test has the highest power. Sometimes, the alternative distributions
are hard to be distinguished from the model under the null hypothesis. For example, the
power of all test statistics is very low when data generated from the gamma distribution are
tested for the Weibull distribution. In addition, theoretical results were applied to tonalide
concentration data. It was shown that various distributions could be used for modelling
of tonalide concentration and the Kolmogorov-Smirnov test has the lowest type II error in
most cases when testing for the lognormal or gamma distributions. Results of this study
can be utilized for identification of the correct distribution of Type I left-censored data, and,
above all, for assessing the power and the type II error of the goodness-of-fit tests for various
alternatives, sample sizes and degrees of censoring, which is an often discussed topic, especially
in case of highly censored data.
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