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Abstract

The Rayleigh distribution has recently become popular as a model for a range of
phenomena. As a result, a number of goodness-of-fit tests have been developed for this
distribution. In this paper, we provide the first overview of goodness-of-fit tests for the
Rayleigh distribution and compare these tests in a Monte-Carlo study to identify the tests
that provide the highest powers against a wide range of alternatives. Our findings suggest
that two recently developed tests as well as a test based on the Laplace transform and a
test based on the Hellinger distance are the better performing tests.
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1. Introduction

The Rayleigh distribution naturally arises in a two dimensional setting when the resultant
of two independently normally distributed vectors are considered. As a result, this distri-
bution has applications in numerous research disciplines such as astronomy, see Bovaird and
Lineweaver (2017), environmental sciences, see Morgan, Lackner, Vogel, and Baise (2011);
Casas-Prat and Holthuijsen (2010) and medicine, see Belaid and Boukerroui (2018). A pri-
mary concern for researchers in the aforementioned fields is often if data originated from a
Rayleigh distribution. Our goal in this paper is therefore to investigate the existing goodness-
of-fit tests with a Monte Carlo simulation in a comparative study to assess the performance
of each of these tests. To proceed, we formally introduce the Rayleigh distribution and fix no-

tation. Let Z1, Z2 . . . Zn be i.i.d N(0, θ2) random variables. If D(Z1, Z2 . . . Zn) =
√∑n

i=1 Z
2
i ,

then D(Z1, Z2 . . . Zn) has probability density function (pdf),

h(x, n, θ) =
2xn−1 exp

(
−x2
2θ2

)
(2θ2)n/2Γ(n/2)

, (1)

where x > 0, θ > 0 and Γ(·) is the gamma function. Note that the geometric interpretation
of D(Z1, Z2 . . . Zn) is the Euclidean distance between a random point in Rn and the origin.
In the case where n = 2, i.e., the point (Z1, Z2), in (1) reduces to the Rayleigh distribution
with pdf given by

g(x, θ) =
x

θ2
exp

(
−x2

2θ2

)
, x ≥ 0 (2)
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and cumulative distribution function (cdf),

G(x, θ) = 1− exp

(
−x2

2θ2

)
, x ≥ 0. (3)

The pdf and cdf contain the population parameter θ, which has to be estimated when infer-
ence is performed. In considering the estimation of the parameter θ from a random sample
X1, X2, . . . , Xn, we have access to the maximum likelihood estimate (MLE),

θ̂ML
n =

√√√√(2n)−1

n∑
j=1

X2
j ,

and the methods of moment estimate (MME),

θ̂MM
n =

√
2

π
n−1

n∑
j=1

Xj .

It can easily be shown that θ̂MM
n is an unbiased estimator of θ, while θ̂ML

n is biased. However,
θ̂ML
n is asymptotically unbiased. Further properties of the univariate Rayleigh distribution

and its relationship to other distributions are discussed in, e.g., Siddiqui (1962) and Johnson,
Kotz, and Balakrishnan (1994).

The Rayleigh distribution also has inherent connections with other distributions. It is well
known that if a random variable X has a Rayleigh distribution with parameter θ, then X2 is
exponentially distributed with parameter 2θ2. The Rice distribution is also closely related to
the Rayleigh distribution which can be seen when the parameter υ of the Rice distribution,
the distance between a reference point and the centre of the bivariate distribution, is set to
zero. The popularity of the Rayleigh distribution and its various applications also sparked
interest in generalizations or modification of this distribution. See Balakrishnan and Kocher-
lakota (1985), Vodă (1976), Merovci (2013), Roy (2004), Simon and Alouini (1998) and Jensen
(1970) for more on this.

Now, let X,X1, X2, . . . , Xn be independent and identically distributed nonnegative random
variables. X ∼ Ral(θ) will denote that the random variable X follows a Rayleigh distribution
with pdf given in (2). The composite goodness-of-fit hypothesis to be tested is

H0 : the distribution of X is Ral(θ), (4)

for some θ > 0, against general alternatives. The majority of test statistics that we will
consider in this paper are based on the scaled values Yj = Xj/θ̂n, where θ̂n is a consistent es-

timator for θ (either θ̂ML
n or θ̂MM

n ). The use of scaled values is motivated from the invariance
property of the Rayleigh distribution with respect to scale transformations. Therefore we can
also write X/θ ∼ Ral(1). Denote by X(j) the order statistics, i.e., X(1) < X(2) < · · · < X(n).

The remainder of the paper outlines as follows. Section 2 provides an overview of exist-
ing tests for the Rayleigh distribution. Section 3 provides the details of the simulation setup
wherein the various tests are compared to each other and Section 4 discusses the results of
this Monte Carlo study. An example based on observed data is given in Section 5 and the
paper concludes in Section 6.

2. Goodness-of-fit tests for the Rayleigh distribution

In this section we present some of the existing goodness-of-fit tests for the Rayleigh distribu-
tion. These tests are arranged according to the property of the Rayleigh distribution that the
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tests are based on. Unless stated otherwise, the test under discussion is scale invariant and
Monte Carlo critical values can be calculated by simulating from a Ral(1) distribution.

2.1. Classical tests based on the empirical distribution function

The empirical cumulative distribution function (ecdf) is given by

Gn(x) =
1

n

n∑
j=1

I(Yj ≤ x).

where I(·) is the indicator function. There are various tests based on the deviation of the ecdf
and the cdf with estimated parameter θ̂n specified under the null hypothesis. One such test
is the Kolmogorov-Smirnov test which relies upon the maximum deviation between Gn(x)
and the hypothesized distribution G(x, θ̂n). The Kolmogorov-Smirnov test statistic has a
closed-form,

Dn = max(D+
n , D

−
n ),

where D+
n = max1≤j≤n[j/n − G0(Y(j))] and D−n = max1≤j≤n[G0(Y(j)) − (j − 1)/n], with

G0(Y(j)) = 1 − exp(−Y 2
(j)/2) and rejects the null hypothesis for large values of Dn. A test

that utilizes the L2-norm and aforementioned deviation is the Cramér-von Mises test with
closed-form,

Wn =
n∑
j=1

[
G0(Y(j))−

2j − 1

2n

]2

+
1

12n
.

The Anderson-Darling test is similar to that of the Cramér-von Mises test but with an incor-
porated weight function that gives it the closed-form,

An = −n− 1

n

n∑
j=1

2j − 1
[
logG0(Y(j)) + log{1−G0(Y(n−j+1))}

]
.

The Watson test incorporates the Cramér-von Mises test and is given by the closed form,

Vn = Wn − n(Ḡ0 − 1/2)2,

where Ḡ0 = 1/n
∑n

j=1G0(Y(j)). The aforementioned tests all reject the null hypothesis for
large values. See, Watson (1962) and D’Agostino (1986) for a more thorough treatment of
these classical tests.

2.2. Tests based on integral transforms

Below we consider tests based on integral transforms of an observed sample. We consider a
test based on the Laplace transform before considering tests based on the Mellin transform.

A test based on the Laplace transform by Meintanis and Iliopoulos (2003):

The Laplace transform of a random variable X with distribution function F (x) is defined as

L(t) = E
[
e−tx

]
=

∫ ∞
0

e−tx dF (x), (5)

where t is a real number. Furthermore, let

Ln(t) =
1

n

n∑
j=1

exp(−tXj),

be the empirical Laplace transform, which is an estimate of (5). For more details on the
Laplace transform refer to Schiff (1999). Now, consider the following characterisation of the
Rayleigh distribution based on the Laplace transform.



4 A Review of Goodness-of-Fit Tests for the Rayleigh Distribution

Corollary 2.1. The Laplace transform of the standard Rayleigh distribution is given by

`(t) = 1−
√
π

2
tet

2/4 erfc

(
t

2

)
,

with the complement error function erfc(z) = 2/
√
π
∫∞
z e−u

2
du. `(t) is the unique solution to

the differential equation

t`′(t)− [1 +
t2

2
]`(t) + 1 = 0 (6)

subject to limt→∞ `(t) = 0.

The test statistic is based on the characterisation in Corollary 2.1 and utilizes the differential
equation given in (6) to set up the test

MIn,ϕ = n

∫ ∞
0

D2
n(t)w(t) dt,

where Dn(t) = t`′n(t)− [1 + (t2/2)]`n(t) + 1, `n(t) = n−1
∑n

j=1 exp(tYj) and w(t) = exp(−ϕt)
with ϕ > 0 being a chosen tuning parameter. The test statistic rejects for large values of
MIn,ϕ. A closed-form expression of MIn,ϕ, adapted for our parametrisation, is given by

MIn,ϕ =
n

ϕ
+

√
2

n

n∑
j=1

n∑
k=1

{
1

(Yj + Yk + ϕ)
+

Yj + Yk

(Yj + Yk + ϕ)2 +
2 (YjYk + 2)

(Yj + Yk + ϕ)3 +
6 (Yj + Yk)

(Yj + Yk + ϕ)4

+
24

(Yj + Yk + ϕ)5

}
− 2
√

2

n∑
j=1

{
1

(Yj + ϕ)
+

Yj

(Yj + ϕ)2 +
2

(Yj + ϕ)3

}
.

Meintanis and Iliopoulos (2003) derived the null distribution and proved the consistency of
the test and further provided insightful theoretical properties of the test statistic when the
MLE and MME are used. From a power study, Meintanis and Iliopoulos (2003) concluded
that the Laplace transform based test with ϕ = 2 leads to highly competitive results against
the existing tests considered in their study.

A test based on the Mellin transform by Liebenberg and Allison (2019):

Liebenberg and Allison (2019) considered the Mellin transform of a random variable X,

MX(t) = E[Xt] =

∫ ∞
0

xt dF (x), (7)

with t = s− 1 > 0 taken to be real valued and proposed the differential equation,

2M ′(t)−
{

log(2)− 2 log(θ) + ψ

(
1 +

t

2

)}
M(t) = 0, (8)

with digamma function ψ(·) and boundary condition M(0) = 1 as a starting point for the
test. The differential equation and subsequent test is motivated by the fact that the Mellin
transform m(t) = 2t/2Γ(1 + t/2) of the standard Rayleigh distribution is the unique solution
to the differential equation D(t) = 2m′(t) −

{
log(2) + ψ

(
1 + t

2

)}
m(t) = 0. In estimating

D(t) by its empirical counterpart Dn(t) = 2m′n(t) −
{

log(2) + ψ
(
1 + t

2

)}
mn(t), Liebenberg

and Allison (2019) suggested a test statistic of the form

LAn,ϕ = n

∫ ∞
0

D2
n(t)w(t) dĜn(t),
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where w(t) is an appropriate nonnegative weight function, Ĝn(t) is any consistent estimator
of G and mn(t) = n−1

∑n
j=1 Y

t
j is the empirical Mellin transform which is an estimate for (7).

For a closed form of the test statistic the MLE, the weight function w(t) = exp(−ϕt2) with
tuning parameter ϕ > 0 and Ĝn(t) as the ecdf were implemented to give

LAn,ϕ =

n∑
k=1

2

n∑
j=1

Y Yk
j log(Yj)−

{
log(2) + ψ

(
1 +

Yk
2

)} n∑
j=1

Y Yk
j

2

exp(−ϕY 2
k )

It is also known that if the Mellin transform exists, it has the following connection to the
Laplace transform, MX(t) = LZ(t) = E[e−tZ ], where Z = − log(X). The authors commented
that the test is consistent and also concluded from a simulation study that the test performed
well compared to its counterparts.

2.3. Tests based on entropy

Below we consider tests based on the entropy of an observed sample. We consider tests based
on cumulative residual entropy, the Kullback–Leibler divergence, the Hellinger distance and
the quantile function.

A cumulative residual entropy test by Baratpour and Khodadadi (2012):

The differential entropy of a random variable X is defined as

H(f) = −
∫
f(x) ln f(x) dx,

where f(x) is the pdf of X. The cumulative residual entropy (CRE) is the result of exchanging
the density function in the definition of the well-known Shannon entropy by the survival
function, S(x) = P (X > x) = 1 − F (x). Rao, Chen, Vemuri, and Wang (2004) established
the new CRE as a nonnegative entropy measure of the form

CRE(X) = −
∫ ∞

0
S(x) lnS(x) dx. (9)

By using S(x) = exp(−x2/2θ2) in (9) it can be shown that the CRE of the Rayleigh distri-

bution is CRE(X) = E[X/2] = θ
√

2π
4 . This ultimately leads to the following characterisation

of the Rayleigh distribution.

Corollary 2.2. The random variable X attains maximum CRE among all nonnegative, abso-
lutely continuous random variables Y subject to E[Y ] = υ, E[Y 3] = ω and θ2 = ω

3υ if, and
only if, X has the Rayleigh distribution with parameter θ.

The authors defined a new measure of distance between two distributions based on CRE and
named it the cumulative Kullback-Leibler (CKL) divergence. If F and G are distributions of
two nonnegative random variables X1 and X2 then the CKL is given by

CKL(F,G) =

∫ ∞
0

F̄ (x) log
F̄ (x)

Ḡ(x)
dx− {E(X1)− E(X2)},

where F̄ (x) = 1 − F (x) and Ḡ(x) = 1 − G(x) are the survival functions of X1 and X2. By
using the characterisation given in Theorem 2.2 for the Rayleigh distribution and utilizing a
discrimination information statistic based on the CKL, a test statistic of the form

CKn =
1

X̄

(
n−1∑
i=1

(
n− i
n

)(
log

(
n− i
n

))
(X(i+1) −X(i)) +

√
π

2

√ ∑n
i=1X

3
i

3
∑n

i=1Xi

)
,
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can be constructed, where X̄ = 1
n

∑n
i=1Xi. Rao et al. (2004) proved the consistency of the

CRE and Baratpour and Khodadadi (2012) extended the proof to the test statistic CKn.

A Kullback–Leibler divergence test by Alizadeh Noughabi, Alizadeh Noughabi, and Be-
habadi (2012):

This test is based on an estimator of the well-known Kullback–Leibler divergence function
given by

KL(g||g0) =

∫ ∞
−∞

g(x) log

(
g(x)

g0(x)

)
dx,

where g0(x) is the density under the null hypothesis (i.e., the Rayleigh density function) and
g(x) is the density function of a random variable X. The estimator is formed by first noting
that KL(g||g0) reduces to

KL(g||g0) = −H(g)−
∫ ∞

0
g(x) log{g0(x)} dx,

where H(g) = E[− log g(X)] is the entropy of a random variable X. The sample estimate of
KL(g||g0) is then given by

KLn,m = −Hn,m + 2 log(θ̂n)− 1

n

n∑
i=1

log(Xi) + 1,

where Hn,m = (1/n)
∑n

i=1 log
{

(n/2m)(X(i+m) −X(i−m))
}

is the sample-entropy estimator
introduced by Vasicek (1976) and m is a window width restricted to m ≤ n/2. The choice of
θ̂n is restricted to the maximum likelihood estimate in KLn,m. The consistency and standard
normal asymptotic distribution under the null hypothesis was proven in the original paper.

A Hellinger distance test by Jahanshahi, Habibi Rad, and Fakoor (2016):

This entropy-based statistic utilizes the Hellinger distance,

Dg,g0 =
1

2

∫ ∞
0

{√
g(x)−

√
g0(x)

}2
dx, (10)

instead of the traditionally used Kullback–Leibler divergence which experiences difficulties
when the probability density function is zero. The Hellinger distance evaluates the deviation
of a density g(x) from the hypothesized density g0(x). By setting the distribution function
G(x) = p, (10) can be rewritten as

Dg,g0 =
1

2

∫ 1

0

√( d

dp
G−1(p)

)−1

−
√
G−1(p) exp(−(G−1(p))2/2θ2)

θ2

2

d

dp
G−1(p) dp.

Using the approximation (d/dp G−1(p))−1 ∼=
{
n

2m

(
X(i+m) −X(i−m)

)}−1
leads to the follow-

ing test statistic

DHn,m =
1

2n

n∑
i=1

[√(
n

2m

(
X(i+m) −X(i−m)

))−1 −

√(
X(i)e

(
−X2

(i)
/2θ̂2n

)
/θ̂2
n

) ]2

{
n

2m

(
X(i+m) −X(i−m)

)}−1 ,

where X(i) = X(1) for i < 1, X(i) = X(n) for i > n and m is a window width subject to
m ≤ n/2. Jahanshahi et al. (2016) provides a proof for the consistency of the test.
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A quantile function based test by Ahrari, Baratpour, Habibirad, and Fakoor (2019):

LetQ(·) be the quantile function of a random variableX and letQ0(x, θ) = θ {−2 log(1− p)}1/2
be the quantile function of the Rayleigh distribution. With this as starting point, Ahrari et al.
(2019) proposed three new distance measures between the quantile functions of two distribu-
tions P and Q. The measures resemble the Kulback-Leibler divergence measures and Tsallis
generalized entropy measure, see Tsallis (1998). Conforming to the notation of Ahrari et al.
(2019), let Q1 and Q2 be the respective quantile functions of two nonnegative random variables
X and Y . The three new distance measure are given by

DKL1 (Q1‖Q2) =

∫ 1

0
Q1(x) log

Q1(x)

Q2(x)
dx−

∫ 1

0
Q1(x)dx log

∫ 1
0 Q1(x)dx∫ 1
0 Q2(x)dx

,

DKL2 (Q1‖Q2) =

∫ 1

0
Q1(x) log

Q1(x)

Q2(x)
dx−

∫ 1

0
Q1(x)dx+

∫ 1

0
Q2(x)dx,

DT (Q1‖Q2) =
1

(α− 1)

{∫ 1

0
Qα1 (x)Q1−α

2 (x)dx− α
∫ 1

0
Q1(x)dx

− (1− α)

∫ 1

0
Q2(x)dx

}
,

with 0 < α < 1. The authors prove that the divergence measures are larger or equal to
zero and are zero if, and only, if Q1 = Q2. The test statistics based on the aforementioned
divergence measures are then

QKL1 =
DKL1

(
Qn‖Q0(·; θ̂n)

)
X̄n

=
1

n

n∑
i=1

Xi

X̄n
log

Xi

X̄n
− 1

2

n∑
i=1

X(i)

X̄n

∫ i
n

i−1
n

log(−2 log(1− x))dx+ log

(√
π

2

)
,

QKL2 =
DKL2

(
Qn‖Q0(·; θ̂n)

)
X̄n

=
1

n

n∑
i=1

Xi

X̄n
logXiθ̂n − 1 +

θ̂n
X̄n

√
π

2
− 1

2

n∑
i=1

X(i)

X̄n

∫ i
n

i−1
n

log(−2 log(1− x))dx,

QT = DT

(
Qn‖Q0(·; θ̂n)

)
=

1

α− 1


n∑
i=1

Xα
(i)θ̂

(1−α)
n

X̄n

∫ 1
n

i−1
n

(−2 log(1− x))
1
2

(1−α)dx

− α
+

θ̂n
X̄n

√
π

2
,

where θ̂n is the MLE of θ, Qn(t) = X(r),
r−1
n < t < r

n , is the r-th order statistic and the
empirical counterpart of Q1. The authors prove the test to be consistent.

2.4. Tests based on the Phi-divergence measure

Below we consider tests based on the the Phi-divergence measure.

A Phi-divergence test by Zamanzade and Mahdizadeh (2017):

In the paper by Zamanzade and Mahdizadeh (2017), several test statistics are based on the
Phi-divergence measure

Dφ(P1||P2) =

∫
Ω
φ

(
dP1

dP2

)
dP2,
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where P1 and P2 are probability measures and φ(·) is a convex function such that φ(1) = 0
and second derivative φ′′(1) > 0. Let Dn(g||ĝh) be a sample estimate of Dφ(·) written in the
form

Dn(g||ĝh) =
1

n

n∑
i=1

φ

(
g(Xi, θ̂n)

ĝh(Xi)

)
,

where ĝh(x) = (nh)−1
∑n

i=1 k((Xi − x)/h), k is a kernel function and h is a suitably chosen
bandwidth. The new test statistics are constructed by choosing appropriate functions for φ(·).
Zamanzade and Mahdizadeh (2017) specifically studied the following selection of functions
and resultant test statistics:

• φ(t) = − log(t) resulting in the Kullback-Leibler distance with test statistic

PKLn =
1

n

n∑
i=1

log

(
ĝh(Xi)

g(Xi, θ̂n)

)
.

• φ(t) = 1
2(1−

√
t)2 resulting in the Hellinger distance with test statistic

PHn =
1

2n

n∑
i=1

1−

(
g(Xi, θ̂n)

ĝh(Xi)

)1/2
2

.

• φ(t) = (t− 1) log(t) resulting in the Jeffreys distance with test statistic

PJn =
1

n

n∑
i=1

(
g(Xi, θ̂n)

ĝh(Xi)
− 1

)
log

(
g(Xi, θ̂n)

ĝh(Xi)

)
.

• φ(t) = |t− 1| resulting in the total variation distance with test statistic

PTVn =
1

n

n∑
i=1

∣∣∣∣∣g(Xi, θ̂n)

ĝh(Xi)
− 1

∣∣∣∣∣ .
• φ(t) = 1

2(1− t)2 resulting in the chi-square distance with test statistic

PCn =
1

2n

n∑
i=1

(
1− g(Xi, θ̂n)

ĝh(Xi)

)2

.

The authors found that among the proposed tests, the Jeffreys and Hellinger distance tests
performed the best.

A test based on a new proximity measure by Torabi, Montazeri, and Grané (2016):

In this paper we adapt the test of Torabi et al. (2016) specifically for the Rayleigh distribution.
Torabi et al. (2016) suggested a new proximity measure which was inspired by the Phi-
divergence approach. This measure is used to develop a test for the location-scale family of
distribution and specifically implemented to test for the normal distribution. The discrepancy
measure between the hypothesized null distribution F0 (in this case the normal distribution
with unknown mean, µ, and variance, σ2) and the unknown distribution F of the data, is
defined as

D(F0||F ) =

∫ ∞
−∞

Ψ

(
1 + F0(x)

1 + F (x)

)
dF (x),
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where Ψ(·) : (0,∞) → R+ is continuous, decreasing on (0, 1) and increasing on (1,∞) with
Ψ(1) = 0. Now, estimating F by the ecdf Fn, leads to the easily calculable test statistic

Hn = n−1
n∑
i=1

Ψ

(
1 + F0(Z(i))

1 + i/n

)
,

where Z(i) = (X(i)− µ̂)/σ̂ is the scaled residuals for the location-scale families with consistent
estimators µ̂ and σ̂. Torabi et al. (2016) discussed possible options for the function Ψ(·)
and suggest choosing Ψ(x) = ((x − 1)/(x + 1))2 as it exhibited the highest powers for test-
ing normality in their simulation study. The authors showed the test to be invariant under
location-scale transformations and proved the test to be consistent.

In testing for the Rayleigh distribution the test statistic maintains the form

Cn = n−1
n∑
i=1

Ψ

(
1 +G0(Y(i))

1 + i/n

)
,

with the only change being the scaled observations are now Y(i) = X(i)/θ̂n, and G0(Y(i)) =
1− exp(−Y 2

(i)/2).

2.5. Tests adapted for the Rayleigh distribution

Below we consider a transformation to uniformity test that we adapt for the Rayleigh distri-
bution.

A transformation to uniformity test by Meintanis (2009):

The test by Meintanis (2009) states that for a suitable transformation Gθ(x) = Uθ(x), where
Gθ(x) is the hypothesized distribution under the null hypothesis with unknown parameter θ, a
test statistic can be constructed between the empirical characteristic function of Uj = Uθ(Xj)
and the characteristic function of the standard uniform distribution, φU (t). More formally,
the test statistic can be written as

Mn =

∫ ∞
−∞
|φn(t)− φU (t)|2w(t) dt, (11)

where w(t) is a suitable chosen weight function, φn(t) = n−1
∑n

i=1 exp(itUj) is the character-
istic function of the (unknown) Uj and φU (t) = t−1{sin t + i(1 − cos t)} is the characteristic

function of a uniform random variable on (0, 1). If we now estimate θ by θ̂n (in the case of
testing for the Rayleigh distribution) we obtain

Ûj = G
θ̂n

(Xj) = 1− exp

(
−Xj

2θ̂2
n

)
.

Meintanis (2009) shows that different closed forms for (11) can be obtained for different choices
of the weight function. Specifically, by choosing w(t) = exp(−ϕ|t|) with tuning parameter
ϕ > 0, and with Uj replaced by Ûj , Mn becomes

M1n,ϕ =
1

n

n∑
j=1

n∑
k=1

2ϕ

Û2
jk + ϕ2

+ 2n

[
2 tan−1

(
1

ϕ

)
− ϕ log

(
1 +

1

ϕ2

)]

− 4

n∑
j=1

[
tan−1

(
Ûj
ϕ

)
+ tan−1

(
1− Ûj
ϕ

)]
, (12)

where Û2
jk = (Ûj − Ûk)2. Instead of using the probability integral transforms as is the case

in (12), we adapt the approach for the Rayleigh distribution by considering the following
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transformation for exponentiality given by Alzaid and Al-Osh (1991):
Let X1 and X2 be two independent observations from a distribution F , then X1

X1+X2
is dis-

tributed standard uniform U(0, 1) if, and only if, F is exponential. The transformation holds
true for the Rayleigh distribution by noting that, if X ∼ Ral(θ), then X2/2θ2 follows a
standard exponential distribution. This result is now formally stated in Corollary 2.3.

Corollary 2.3. Let X1 and X2 be two independent observations from a distribution G(x), then
X2

1

X2
1+X2

2
follows a standard uniform distribution U(0, 1) if, and only if, G(x) is the Rayleigh

distribution with parameter θ (i.e., G(x) = 1− exp(−x2/2θ2)).

Proof. If X1 ∼ Ral(θ), then X2
1/2θ

2 follows a standard exponential distribution. The same
holds for X2. Thus we have that

X2
1

2θ2

X2
1

2θ2
+

X2
2

2θ2

=
X2

1

X2
1 +X2

2

,

follows a standard uniform distribution if, and only if, X2
1 and X2

2 are exponentially dis-
tributed, or then if, and only if, X1 and X2 follows a Rayleigh distribution.

Now, let Ẑij = X2
(i)/(X

2
(i) +X2

(j)), i, j = 1, . . . , n, i 6= j, then the test statistic in (11), which
is now based on this new transformation to uniformity, becomes

M2n,ϕ =
1

n(n− 1)

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

i 6=j k 6=l

2ϕ

(Ẑij − Ẑkl)2 + ϕ2

+ 2n

[
2 tan−1

(
1

ϕ

)
− ϕ log

(
1 +

1

ϕ2

)]
− 4

n∑
i=1

n∑
j=1

[
tan−1

(
Ẑij
ϕ

)
+ tan−1

(
1− Ẑij
ϕ

)]
, i, j, k, l = 1, 2, . . . n.

This test statistic is based on a four-fold sum and is thus more computer intensive.

2.6. Other tests for the Rayleigh distribution

Below we consider tests based on a conditional expectation characterisation, the empirical
likelihood ratio, moments, as well as the transformation of the data.

A test based on a conditional expectation characterisation by Liebenberg, Ngatchou-
Wandji, and Allison (2020):

Liebenberg et al. (2020) considered the characterisation by Ahsanullah and Shakil (2013) and
proposed an analogous statement in Corollary 2.4 that served as the basis of their goodness-
of-fit test.

Corollary 2.4. Let X be a nonnegative random variable with absolutely continuous cumulative
distribution function F satisfying F (0) = 0, F (x) > 0 for all x > 0, and with finite E(X2k),
for some fixed k ≥ 1. Then X has a Rayleigh distribution with parameter θ, if, and only if,
for all t > 0,

E[X2kI(X > t)] = S(t)νk,θ(t),

where νk,θ(t) :=
∑k

l=0 2lθ2lk(l)t2(k−l), with k(l) = k(k − 1) . . . (k − l + 1) and k(0) = 1.

The approach for the test rests on the fact that E[X2kI(X > t)]−S(t)νk,θ(t) = 0 if, and only
if, for all t > 0 the random variable X has a Rayleigh distribution. By taking a normalized
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empirical version of the above statement,

Tn(t) =
1√
n

n∑
i=1

I(Xi > t)[X2k
i − νk,θ̂n(t)],

and by considering the Kolmogorv-Smirnov (KS) and Cramér-von Mises (CM) distance mea-
sures, new test statistics can be defined as

KSn = sup
t∈Θ
|Tn(t)| and CMn =

∫
Θ
T 2
n (t)w(t) dF̃n(t),

where w is a suitable weight function and F̃n is any consistent estimator of F . Although the
authors based their test on Xj , we will implement it on Yj = Xj/θ̂n, which renders the test
scale invariant. The authors proved the consistency of the test CMn and derived the limiting
null distribution.

A test based on the empirical likelihood ratio by Safavinejad, Jomhoori, and Alizadeh
Noughabi (2015):

When testing for the Rayleigh distribution, the likelihood ratio tests statistic takes the form

R =

∏n
i=1 fH1(Xi)∏n
i=1 fH0(Xi)

=

∏n
i=1 fH1(Xi)

(
∏n
i=1Xi/θ2n) exp(−

∑n
i=1Xi/2θ2)

,

where fH1 is the density under the alternative hypothesis and fH0 is the density under H0. A
density-based empirical likelihood technique is employed by Safavinejad et al. (2015) to esti-
mate

∏n
i=1 fH1(Xi). Given X1, X2, . . . , Xn i.i.d. from a random sample Vexler and Gurevich

(2010) and Safavinejad et al. (2015) states the empirical likelihood function to be Lp =
∏n
i=1 pi

where pi , i = 1, 2, . . . , n are components that maximize the function Lp. The density based
likelihood function under H1 is then

Lf =

n∏
i=1

f(X(i)) :=

n∏
i=1

fi .

The approach rests on finding values for fi that maximizes Lf subject to empirical constraints
dependent on H1 that are exemplified in Vexler and Gurevich (2010) and Safavinejad et al.
(2015). The authors conclude that using a Lagrange multiplier method to maximize log(fi)
yields a usable expression to estimate fH1(Xi) in the form

fj =
2m

n
(
X(j+m) −X(j−m)

) ,
where X(j) = X(1), if j ≤ n and X(j) = X(n), if j ≥ 1 and m is a window width. Noting
the test statistic is dependent on the parameter m, Safavinejad et al. (2015) adopted the
modification suggested by Vexler and Gurevich (2010) to consider choices of m in the range
(1, n1−δ) , 0 < δ < 1, which then leads to the tests statistic

R̂n =
min1≤m<n1−δ

∏n
i=1

{
2m/n

(
X(i+m) −X(i−m)

)}(∏n
i=1Xi/θ̂2n

n

)
exp

(
−
∑n

i=1X
2
i /2θ̂

2
n

) .

A proof of the consistency of the test is provided in the paper by Safavinejad et al. (2015).

A test based on transformation of the data by Gulati (2011):

Gulati (2011) also offers a method based on transforming the data to exponentiality under
the null hypothesis and suggests using a test statistic based on the work by Brain and Shapiro
(1983). The first step in the process of Gulati (2011) is to transform the data to exponentiality
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by using Ỹ(i) = X2
(i)/2θ̂

2
n. The subsequent test statistic is the sum of two components where

each component is a test statistic in itself proposed by Brain and Shapiro (1983). The test
utilizes weighted spacing which can be obtained by calculating

Zi = (n− i+ 1)(Ỹ(i) − Ỹ(i−1)) , i = 1, 2, . . . , n.

and Ỹ(0) = 0. The test statistics is then given by V = V 2
1 + V 2

2 where

V1 =
√

12(n− 1)

(
ū− 1

2

)
,

with ū = (n− 1)−1
∑n−1

i=1

(∑i
j=1 Zj/

∑n
j=1 Zj

)
, and

V2 =

√
5(n− 1)

(n+ 1)(n− 2)
(n− 2 + 6ū)− 12

n−1∑
i=1

(∑i
j=1 Zj∑n
j=1 Zj

)(
i

n− 1

)
.

The author notes that V1 and V2 have standard normal distributions, therefore V follows a
χ2

2 distribution.

3. Simulation study

In this section, we compare the finite-sample performance of selected test statistics against
general alternatives with a Monte Carlo study.

3.1. Simulation setting

As all the tests considered in this section are scale invariant, critical values were calculated
based on 50 000 independent samples from a standard Rayleigh distribution at a α = 5%
significance level. Note that all of the test statistics in the study reject the null hypothesis
in (4) for large values. A number of tests rely on a tuning parameter ϕ > 0 or window-
width m > 0 that has to be chosen. In this study, the power estimates were obtained over
a wide range of tuning parameter and window-width values. Only the tuning parameter and
window-width values that exhibited the highest power estimates are reported in Table 2 and
Table 4. For comparability, an attempt was made to keep the tuning parameter and window-
width values as similar as possible across the tests and consistently the same over tables.
The power estimates in the aforementioned tables and throughout the rest of the simulation
study including the real data example are obtained by using MLE. The tests considered in
the simulation study are listed below,

• Classical tests: Kolmogorov-Smirnov test (Dn), Watson test (Vn), Cramér-von Mises
test (Wn) and Anderson-Darling test (An).

• Kullback–Leibler divergence test (KLn,m),

• Hellinger distance test (DHn,m),

• test based on the Laplace transform (MIn,ϕ),

• adapted tests (M1n,ϕ,M2n,ϕ),

• test based on a new proximity measure (C1n,C2n),

• cumulative residual entropy test (CKn),

• Phi-divergence tests (PHn,PJn,PTVn,PCn),

• tests based on a conditional expectation characterisation (CMn,ϕ,KSn),
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• test based on the Mellin transform (LAn,ϕ).

The tests of Torabi et al. (2016), adapted for the Rayleigh distribution, are implemented for
functions ψ(x) = [(x − 1)/(x + 1)]2 in C1n and ψ(x) = x log(x) − x + 1 in C2n. For ease of
reference, Table 1 lists the parametrization of the various alternative distributions used in the
study. These distributions are commonly used as alternatives for the Rayleigh distribution
and include distributions with constant hazard rates (CHR), decreasing hazard rates (DHR),
increasing hazard rates (IHR) and non-monotone hazard rates (NMHR). Power estimates are

Table 1: Probability density functions for choices of the alternative distributions

Alternative f(x) Notation

Gamma
1

Γ(θ)
xθ−1e−x, x > 0 Γ(θ)

Weibull θxθ−1 exp(−xθ), x > 0 W(θ)

Power
1

θ
x(1−θ)/θ, 0 < x < 1 PW(θ)

Dhillon
θ + 1

x+ 1
exp

{
− (log(x+ 1))

θ+1
}

(log(x+ 1))
θ
, x > 0 DL(θ)

Chen 2θxθ−1 exp
{
xθ + 2

(
1− exp

(
xθ
))}

, x > 0 CH(θ)

Linear failure rate (1 + θx) exp(−x− θx2/2), x > 0 LF(θ)

Extreme value
1

θ
exp

(
x+

1− ex

θ

)
, x > 0 EV(θ)

Lognormal exp

{
−1

2
(log(x)/θ)

2

}
/
{
θx
√

2π
}

, x > 0 LN(θ)

Inverse Gaussian

[
θ

2πx3

]1/2
exp

{
−θ(x− 1)2

2x

}
, x > 0 IG(θ)

Gompertz exp [−θx] exp

[
−
(

1

θ

)
(exp(θx)− 1)

]
, x ≥ 0 GO(θ)

Exponential θ exp (−θx), x ≥ 0 EXP(θ)

Beta exponential θe−x(1− e−x)θ−1, x > 0 BEX(θ)

Exponential logarithmic
1

− ln θ

(1− θ)e−x

1− (1− θ)e−x
, x ≥ 0 EL(θ)

Exponential Nadarajah Haghighi
θ(1 + x)−0.5e1−(1+x)0.5

2
[
1− e1−(1+x)0.5

]1−θ , x > 0 ENH1(θ)

Exponential geometric
(1− θ)e−x

(1− θe−x)2
, x > 0 EG(θ)

Beta
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
xθ1−1(1− x)θ2−1, 0 < x < 1 B(θ1, θ2)

Half normal

(
2

π

)2

exp

(
−x2

2

)
, x ≥ 0 HN

obtained with 10 000 independent Monte Carlo replications for each of the considered tests
and displayed in Table 2 for sample sizes n = 20 and in Table 4 for sample sizes n = 30.

Results for local power estimates are also displayed and are obtained as follows: A sample of
size n is generated as individual values from either a Ral(1)-distribution with probability p,
or a chosen alternative distribution with probability 1 − p. The parameter p determines the
level of contamination, i.e., p = 0 indicates a sample purely from the Ral(1)-distribution and
p > 0 indicates the introduction of values from the chosen alternative distribution. Table 6
shows power estimates in the case where the Γ(1.5) distribution is used. All calculations and
simulations were performed using R software, R Core Team (2013).
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4. Simulation results

If we observe the classical tests (Dn, Vn, Wn, An) in isolation, it is clear that the Anderson-
Darling test (An) outperforms all the other classical tests. The Cramér-von Mises (Wn) test
is overall the second best performer in terms of power estimates. This trend is observed in
both the n = 20 and n = 30 cases. Turning our attention to the entropy tests with window-
width m (KLn,m, DHn,m), the DHn,m test performs better than the KLn,m test for both
sample sizes considered. Interestingly, KLn,m outperforms its counterpart for the PW (1)
and n = 30 case. Considering entropy tests together (KLn,m, DHn,m, CKn), we observe that
CKn is outperformed by its competitors. Next we turn our attention to tests based on the
Phi-divergence (C1n, C2n, CKn, PKLn, PHn, PJn, PTVn, PCn). Here we observe that PCn
either matches or performs slightly better than the PHn, PJn, PTVn tests. The aforemen-
tioned tests generally seem to outperform C1n, C2n, CKn in most instances. However, for
n = 20, the C1n test outperforms its competitors against the DL(1.5), IG(1.5) and LN(0.8)
distributions. For n = 30 it tends to rather match than outperform the other Phi-divergence
distance tests for the specific distributions mentioned. The PKLn test exhibit lower powers
than the other tests. Focusing on the tests adapted for the Rayleigh distribution (M1n,ϕ,
M2n,ϕ, C1n, C2n), we find that the transformation test M1n,ϕ by Meintanis (2009) tends to
either match or outperform the M2n,ϕ, C1n and C2n tests. The tuning parameter for M1n,ϕ
and M2n,ϕ provides an edge in performance over the competitors that do not contain a tun-
ing parameter. Furthermore, M2n,ϕ only slightly falls short of the performance of M1n,ϕ.
However, M2n,ϕ proves the better performer by some margin against the G(2), W (3), DL(1),
IG(0.5), IG(1.5) and LN(0.8) distributions.

We find that there is very little difference between the powers of the tests considered against
the alternatives with constant and decreasing hazard rates. The tests have extremely high
powers against these alternatives, this could be attributed to the fact that the Rayleigh dis-
tribution has an increasing hazard rate. The tests, CMn,ϕ and LAn,ϕ perform very well when
compared to the other tests in the study. When compared to each other in isolation, we
find that LAn,ϕ is superior. For distributions with increasing hazard rates, we see that the
LAn,ϕ and MIn,ϕ tests outperform its competitors in terms of power estimates for n = 20 and
n = 30. However, the DHn,m test performs better than MIn,ϕ against the distributions Γ(2),
GO(0.5) in the case where n = 20. For distributions with non-monotone hazard rates, we find
that LAn,ϕ exhibits the highest powers in the majority of cases considered, closely followed by
the DHn,m and MIn,ϕ tests. Overall, LAn,ϕ performs the best among all tests considered.
The tuning parameter choices ϕ = 2 and ϕ = 5 for the tests LAn,ϕ and CMn,ϕ result in the
highest powers in most cases. The tuning parameter value ϕ = 0.5 mostly results in the high-
est power for the MIn,ϕ test. For the DHn,m test, the window-width exhibiting the highest
powers is m = 6. In general, LAn,ϕ, CMn,ϕ, DHn,m and MIn,ϕ prove to be the superior tests.

For the local powers we find that the DHn,m test with m = 6 attains the highest power
in the case where p = 0.05 and n = 20. For n = 30 we find that the LAn,ϕ test performs the
best. For the cases p = 0.10 to p = 0.20 (n = 20 and n = 30), the LAn,ϕ test with ϕ = 1
outperforms all other tests. As we move further from the Rayleigh distribution (p = 0.25 to
0.50), it is evident that LAn,ϕ still performs the best, however, for p = 0.25 (n = 20) and
p = 0.45 (n = 20) the LAn,ϕ test is matched by DHn,m test with m = 6. The adapted test
M2n,ϕ consistently performs better than the M1n,ϕ test for this mixture distribution.

5. Real data application

The following popular data set that is associated with the Rayleigh distribution and is anal-
ysed in order to demonstrate the use of the existing tests in a real-world setting. The data
set appears in Best, Rayner, and Thas (2010) and is populated with 30 average wind speed
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Table 2: Estimated powers for the alternative distributions in Table 1 and sample size n = 20

Dn Vn Wn An KLn,3 KLn,4 KLn,6 DHn,3 DHn,4 DHn,6 MIn,.5 MIn,2 MIn,5 M1n,1 M1n,2 M1n,5 M2n,1

CHR
Exp(1) 86 77 89 95 84 84 84 94 95 96 96 97 95 93 94 94 91

DHR
BEX(0.7) 97 94 98 100 97 98 97 99 100 100 100 100 99 99 99 99 98
BEX(0.9) 91 84 93 98 90 90 90 97 97 98 98 98 97 96 96 96 94
EG(0.2) 90 83 93 97 89 89 89 96 97 98 97 98 97 95 96 96 94
EG(0.5) 96 92 97 99 95 96 95 99 99 99 99 99 99 98 98 98 98
EG(0.8) 99 98 99 100 99 99 99 100 100 100 100 100 100 99 100 100 99
EL(0.2) 97 94 98 99 97 97 97 99 99 100 99 100 99 99 99 99 99
EL(0.5) 92 86 95 98 92 92 91 97 98 99 98 99 98 97 97 97 96
EL(0.8) 88 80 92 96 87 87 87 95 96 97 97 98 96 95 95 95 93
W(0.8) 97 95 98 100 98 98 98 99 100 100 100 100 100 99 99 99 98

IHR
Ral(5) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CH(1) 55 47 61 78 53 55 55 73 77 80 84 83 76 78 78 78 64
CH(1.5) 7 7 7 12 7 8 7 10 11 11 21 13 9 13 13 13 7
EV(1.5) 23 22 25 45 27 29 30 39 43 46 63 51 38 48 49 49 26
Γ(1.5) 57 45 63 73 44 44 42 71 74 77 70 76 74 63 64 64 67
Γ(2) 32 23 36 43 19 18 15 46 49 52 33 44 45 30 30 29 41
GO(0.5) 16 17 17 36 22 23 25 30 32 35 56 39 26 36 38 39 17
GO(1.5) 48 40 52 71 47 48 48 67 70 73 80 77 68 72 73 73 55
LF(2) 37 31 42 61 35 36 37 56 61 65 71 67 58 60 61 61 46
LF(4) 25 21 29 46 24 25 25 42 47 50 59 53 44 46 47 47 32
PW(1) 15 26 19 39 44 47 48 41 43 39 55 34 17 33 34 35 13
W(1.4) 36 27 41 53 25 25 24 52 56 59 55 58 53 47 48 47 46

NMHR
B(0.5) 87 87 89 98 96 97 97 98 98 98 99 98 95 98 98 98 88
DL(1) 64 51 69 74 49 48 45 75 77 80 61 75 76 55 56 55 73
DL(1.5) 26 17 29 31 13 13 10 38 40 43 16 29 34 14 14 14 32
ENH1(2) 91 85 93 96 86 86 85 96 96 97 94 97 96 90 91 91 94
HN(1) 47 38 52 71 45 46 46 65 69 73 78 75 67 69 70 70 54
IG(0.5) 36 26 40 39 27 25 20 50 52 53 6 28 38 4 4 4 41
IG(1.5) 92 87 94 95 86 86 84 95 96 97 87 95 96 81 82 81 95
LN(0.8) 66 54 70 72 52 51 45 76 79 79 47 68 74 37 37 38 74
PW(2) 87 87 88 98 96 97 97 97 98 98 99 99 95 98 98 98 88
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Table 3: *
Estimated powers for the alternative distributions in Table 1 and sample size n = 20 continued

M2n,2 M2n,5 C1n C2n CKn PKLn PHn PJn PTVn PCn CMn,1 CMn,2 CMn,5 KSn LAn,1 LAn,2 LAn,5

CHR
Exp(1) 92 91 95 94 88 90 97 97 96 97 95 97 96 88 97 98 98

DHR
BEX(0.7) 98 98 99 99 97 99 100 100 100 100 99 100 100 97 100 100 100
BEX(0.9) 94 94 97 97 92 94 99 99 98 99 97 98 98 92 98 99 99
EG(0.2) 94 94 97 96 92 93 98 98 98 98 97 98 98 92 98 99 98
EG(0.5) 98 98 99 99 96 97 99 99 99 99 99 99 99 97 99 100 99
EG(0.8) 100 99 100 100 99 99 100 100 100 100 100 100 100 99 100 100 100
EL(0.2) 99 98 99 99 98 98 100 100 100 100 99 100 100 98 100 100 100
EL(0.5) 96 96 98 97 94 95 99 99 98 99 98 99 98 94 99 99 99
EL(0.8) 93 93 96 96 90 91 98 98 97 98 96 98 97 91 97 98 98
W(0.8) 99 98 99 99 98 99 100 100 100 100 99 100 100 98 100 100 100

IHR
Ral(5) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CH(1) 64 62 75 74 58 64 85 85 83 85 78 82 83 59 82 87 88
CH(1.5) 6 6 11 11 5 8 19 18 19 20 12 16 18 7 11 17 21
EV(1.5) 24 23 39 37 20 36 59 59 58 59 42 50 55 23 48 59 64
Γ(1.5) 68 68 75 74 64 54 79 79 74 78 76 78 76 63 79 82 77
Γ(2) 42 43 48 47 40 24 49 49 41 45 49 51 45 38 53 54 46
GO(0.5) 15 14 29 27 12 30 51 50 49 51 28 37 44 15 36 47 55
GO(1.5) 54 53 68 66 48 58 80 80 78 80 69 74 76 50 76 82 83
LF(2) 46 45 58 56 41 47 72 72 69 71 59 65 66 41 67 74 74
LF(4) 32 32 44 42 29 35 60 59 56 58 44 50 53 28 54 61 62
PW(1) 8 7 25 24 21 39 51 50 55 57 23 32 42 14 27 41 52
W(1.4) 46 46 55 54 43 34 63 62 58 61 55 59 57 41 61 66 62

NMHR
B(0.5) 84 81 95 95 84 97 99 99 99 99 96 97 98 86 98 99 99
DL(1) 74 74 78 77 72 56 78 78 70 75 79 80 74 70 81 82 75
DL(1.5) 34 35 38 36 36 18 35 36 24 29 37 37 29 32 43 40 28
ENH1(2) 95 95 96 96 93 89 97 97 95 96 97 97 97 93 97 98 97
HN(1) 55 53 68 66 50 57 80 80 77 79 67 73 75 50 75 81 82
IG(0.5) 43 44 46 45 47 22 35 36 16 25 41 39 25 42 50 42 21
IG(1.5) 95 95 96 96 94 86 95 95 93 95 96 96 95 94 96 97 95
LN(0.8) 74 75 77 76 73 53 72 72 60 67 77 75 68 71 80 77 66
PW(2) 84 81 95 94 84 97 99 99 99 99 95 97 98 85 98 99 99
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Table 4: Estimated powers for the alternative distributions in Table 1 and sample size n = 30

Dn Vn Wn An KLn,3 KLn,4 KLn,6 DHn,3 DHn,4 DHn,6 MIn,.5 MIn,2 MIn,5 M1n,1 M1n,2 M1n,5 M2n,1

CHR
EXP(1) 96 92 98 99 96 96 96 98 99 99 99 100 99 99 99 99 98

DHR
BEX(0.7) 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BEX(0.9) 91 84 93 98 90 90 90 97 97 98 98 98 97 96 96 96 94
EG(0.2) 98 95 99 100 98 98 98 99 100 100 100 100 100 99 99 99 99
EG(0.5) 99 99 100 100 99 99 99 100 100 100 100 100 100 100 100 100 100
EG(0.8) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
EL(0.2) 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
EL(0.5) 99 97 99 100 99 99 99 100 100 100 100 100 100 100 100 100 99
EL(0.8) 97 94 98 99 97 97 97 99 99 99 99 100 99 99 99 99 99
W(0.8) 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

IHR
Ral(5) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CH(1) 74 65 79 90 74 75 74 85 87 90 94 93 89 91 90 91 81
CH(1.5) 8 9 8 14 10 10 10 12 12 13 28 15 10 15 16 17 7
EV(1.5) 32 31 35 58 41 42 42 49 52 55 77 63 50 61 62 64 36
Γ(1.5) 75 64 81 88 64 65 63 82 86 89 84 89 88 80 80 81 83
Γ(2) 46 34 52 57 29 29 26 55 59 64 45 57 60 41 41 42 56
GO(0.5) 21 23 24 46 34 34 35 37 40 42 69 50 35 48 49 52 23
GO(1.5) 65 56 71 86 66 67 67 78 81 85 92 89 83 86 86 87 72
LF(2) 53 44 58 76 53 53 52 68 72 76 85 80 74 76 76 77 62
LF(4) 36 30 42 60 37 37 37 52 56 61 74 66 57 60 61 62 45
PW(1) 21 39 27 53 67 70 72 57 58 57 69 41 20 41 43 46 17
W(1.4) 52 41 59 69 39 40 37 62 66 71 70 72 70 63 63 65 62

NMHR
B(0.5) 97 97 97 100 100 100 100 100 100 100 100 100 99 100 100 100 97
DL(1) 81 70 85 88 69 69 66 85 88 91 78 88 89 72 71 73 87
DL(1.5) 36 24 40 42 22 22 19 45 50 54 22 39 46 19 19 19 45
ENH1(2) 98 96 99 99 96 96 96 99 99 99 99 99 99 98 98 98 99
HN(1) 64 55 70 84 64 65 64 77 81 84 90 88 83 85 84 85 72
IG(0.5) 51 39 55 54 42 42 37 61 65 67 9 36 51 6 5 5 57
IG(1.5) 99 97 99 99 96 97 96 99 99 99 96 99 99 94 93 94 99
LN(0.8) 82 73 86 87 71 71 68 86 88 90 62 83 88 52 52 53 88
PW(2) 97 97 97 100 99 100 100 100 100 100 100 100 99 100 100 100 97
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Table 5: *
Estimated powers for the alternative distributions in Table 1 and sample size n = 30

continued

M2n,2 M2n,5 C1n C2n CKn PKLn PHn PJn PTVn PCn CMn,1 CMn,2 CMn,5 KSn LAn,1 LAn,2 LAn,5

CHR
EXP(1) 98 98 99 99 96 98 100 100 99 100 99 99 99 97 99 100 100

DHR
BEX(0.7) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BEX(0.9) 94 94 97 97 92 94 99 99 98 99 97 98 98 92 98 99 99
EG(0.2) 99 99 100 99 98 98 100 100 100 100 100 100 100 98 100 100 100
EG(0.5) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
EG(0.8) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
EL(0.2) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
EL(0.5) 99 99 100 100 99 99 100 100 100 100 100 100 100 99 100 100 100
EL(0.8) 99 98 99 99 97 98 100 100 100 100 99 100 100 98 100 100 100
W(0.8) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

IHR
Ral(5) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CH(1) 80 78 88 87 72 80 94 94 93 94 89 92 93 76 92 95 95
CH(1.5) 6 6 13 12 5 9 22 22 23 23 13 17 23 7 12 20 26
EV(1.5) 33 31 51 49 23 47 73 72 70 72 52 61 68 31 58 70 76
Γ(1.5) 84 83 89 88 79 72 92 92 87 90 88 90 89 80 91 93 91
Γ(2) 57 57 62 61 54 34 63 63 52 57 61 62 57 52 68 68 59
GO(0.5) 20 18 37 35 14 39 63 62 60 63 37 47 58 20 42 58 67
GO(1.5) 71 70 83 82 61 73 92 91 90 91 83 87 89 66 87 92 93
LF(2) 62 61 73 71 52 62 85 85 81 84 74 78 81 55 80 86 87
LF(4) 44 44 56 54 36 47 73 73 67 71 57 63 68 39 65 73 75
PW(1) 9 7 33 32 35 55 69 68 77 76 29 41 55 18 27 49 64
W(1.4) 61 62 71 69 56 48 77 76 70 74 70 73 73 58 75 79 77

NMHR
B(0.5) 95 92 99 99 94 100 100 100 100 100 99 100 100 96 100 100 100
DL(1) 88 88 90 90 85 72 90 90 83 87 90 90 87 85 92 92 88
DL(1.5) 46 48 48 47 47 25 45 46 29 36 47 46 37 43 56 53 37
ENH1(2) 99 99 99 99 98 97 100 100 99 99 100 100 99 99 100 100 100
HN(1) 71 70 82 81 63 72 91 90 88 90 82 86 88 66 87 92 92
IG(0.5) 57 58 60 59 60 35 49 50 22 36 56 50 35 57 65 57 29
IG(1.5) 99 99 99 99 99 96 99 99 98 99 99 99 99 99 99 100 99
LN(0.8) 88 89 89 89 86 70 86 87 74 81 89 88 82 86 91 90 81
PW(2) 95 92 99 99 94 100 100 100 100 100 99 100 100 96 100 100 100

Table 6: Estimated local powers for n = 20 (top row) and n = 30 (bottom row) for the
Γ(1.5)−Ral(1) mixture distribution

p n Dn Vn Wn An KLn,3 KLn,4 KLn,6 DHn,3 DHn,4 DHn,6 MIn,.5 MIn,2 MIn,5 M1n,1 M1n,2 M1n,5 M2n,1

0
20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0.05
20 7 6 7 8 6 5 5 9 10 11 8 8 9 6 6 6 8
30 8 6 8 9 7 6 5 11 12 12 8 8 9 6 5 6 9

0.10
20 9 7 10 11 7 6 5 14 15 14 10 10 11 7 6 7 11
30 10 7 12 13 8 7 6 17 17 18 11 11 14 7 6 7 12

0.15
20 11 8 12 14 7 7 5 18 19 20 13 14 15 8 8 8 14
30 14 9 16 17 10 9 7 22 24 25 15 16 19 9 9 9 17

0.20
20 13 10 15 18 9 8 6 22 24 24 16 17 19 10 10 10 16
30 17 11 20 22 12 11 9 28 29 31 20 21 24 11 11 11 22

0.25
20 16 11 18 21 10 9 7 27 28 30 19 21 12 12 12 12 20
30 21 14 24 27 14 13 11 32 34 37 24 27 30 14 15 16 27

0.30
20 19 12 22 25 12 10 9 31 31 34 23 26 27 14 14 15 23
30 25 16 29 32 17 16 13 37 40 43 28 33 36 18 19 19 32

0.35
20 22 15 25 29 13 12 10 35 36 38 26 30 31 17 17 17 28
30 29 18 33 37 20 18 16 42 44 48 33 39 42 22 23 23 36

0.40
20 24 16 28 32 15 14 12 38 40 42 29 33 36 20 19 20 31
30 32 21 37 43 23 20 18 46 49 53 38 44 47 25 27 27 41

0.45
20 27 18 31 36 16 16 13 41 44 48 33 38 40 23 23 23 35
30 36 24 42 48 26 24 21 51 53 57 43 49 52 31 31 32 45

0.50
20 29 20 34 40 19 19 15 45 48 50 36 42 44 27 27 28 38
30 41 28 46 52 29 28 24 54 57 61 47 54 57 36 36 37 51
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Table 7: *
Estimated local powers for n = 20 (top row) and n = 30 (bottom row) for the

Γ(1.5)−Ral(1) mixture distribution continued

p n M2n,2 M2n,5 C1n C2n CKn PKLn PHn PJn PTVn PCn CMn,1 CMn,2 CMn,5 KSn LAn,1 LAn,2 LAn,5

0
20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0.05
20 8 9 8 8 10 7 10 10 7 8 9 8 8 8 10 10 8
30 9 10 9 9 12 9 12 12 7 8 9 9 8 9 13 12 9

0.10
20 11 11 12 12 14 10 15 15 9 11 12 11 11 11 16 14 12
30 13 13 14 14 18 13 17 18 9 11 13 13 12 13 20 17 13

0.15
20 15 15 16 15 18 12 19 19 12 14 16 16 14 14 21 19 15
30 18 19 19 18 24 17 23 24 12 15 18 18 16 18 27 24 18

0.20
20 18 19 19 19 22 14 24 24 15 18 19 19 17 17 26 24 19
30 23 24 24 23 29 20 30 31 16 20 23 23 21 22 34 31 23

0.25
20 22 23 23 22 25 17 28 28 18 21 23 23 21 20 30 29 23
30 28 30 29 28 34 23 35 36 20 25 29 29 27 27 40 38 29

p0.30
20 26 26 28 27 29 19 32 33 22 25 27 28 25 24 35 34 28
30 34 35 35 34 38 26 41 42 24 30 35 35 32 31 46 44 35

0.35
20 29 30 32 31 32 22 36 37 25 30 32 33 28 27 39 38 31
30 40 40 40 39 43 30 47 47 29 35 40 41 38 36 51 50 40

0.40
20 32 35 36 34 36 24 41 42 30 34 36 36 33 30 44 43 37
30 44 45 45 44 47 34 52 53 34 41 45 46 43 40 56 56 46

0.45
20 36 38 40 38 39 27 45 45 34 38 41 40 36 33 35 32 34
30 48 50 51 49 50 37 57 57 40 47 50 51 48 44 61 60 52

0.50
20 39 41 44 42 42 29 49 50 38 42 45 45 42 37 53 52 45
30 53 54 55 53 54 41 62 62 45 52 55 56 53 48 66 66 57

observations (km/h) recorded in 2007 in a suburb of Sydney, Australia. The observations
are given in Table 8. A number of authors have utilized this data set in the goodness-of-fit

Table 8: Average wind speed observations, see Best et al. (2010)

2.7 3.2 2.1 4.8 7.6 4.7 4.2 4.0 2.9 2.9
4.6 4.8 4.3 4.6 3.7 2.4 4.9 4.0 7.7 10.0
5.2 2.6 4.2 3.6 2.5 3.3 3.1 3.7 2.8 4.0

setting for the Rayleigh distribution, see for instance Alizadeh Noughabi et al. (2012); Jahan-
shahi et al. (2016); Liebenberg et al. (2020). We calculated the test statistics using the data
after the known location parameter (µ = 1.5) was subtracted which is standard practice for
this data set. Thereafter the p-values were calculated with the use of Monte Carlo simulation
(calculated based on 10 000 samples of size 30 simulated from a Ral(1) distribution) and are
given in Table 9. The choice was made to use the tuning parameter or window-width that
showed a satisfactory power performance in the power study. The hypothesis to be tested is
that the data originated from a Rayleigh distribution. It is clear that all of the tests were

Table 9: Calculated p-values for the average wind speed data

Test statistic Dn Vn Wn An KLn,3 KLn,4 KLn,6 DHn,3 DHn,4 DHn,6 MIn,.5 MIn,2 MIn,5

p-value 0.086 0.151 0.100 0.093 0.263 0.344 0.557 0.006 0.004 0.002 0.667 0.386 0.120

Test statistic M1n,1 M1n,2 M1n,5 M2n,1 M2n,2 M2n,5 C1n C2n CKn PKLn PHn PJn PTVn

p-value 0.972 0.989 0.998 0.076 0.053 0.045 0.104 0.111 0.005 0.074 0.157 0.118 0.901

Test statistic PCn CMn,1 CMn,2 CMn,5 KSn LAn,1 LAn,2 LAn,5

p-value 0.618 0.141 0.271 0.477 0.015 0.011 0.060 0.293

not significant at a 5% level except for DHn,m, CKn and KSn tests who were significant. It
could therefore be concluded that the tests with the exception of DHn,m, CKn and KSn do
not reject the null hypothesis in (4) and that the data originated from a Rayleigh distribution.
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6. Conclusion

The purpose of the study was to review the existing goodness-of-fit tests for the Rayleigh
distribution and compare these test with a Monte Carlo study. From the Monte Carlo study
it is clear that no test can outright be declared the best as no test outperforms all other tests
uniformly. This is in accordance with the findings of Janssen (2000). However in the study
we found that the better performing tests are LAn,ϕ, CMn,ϕ, DHn,m and MIn,ϕ. These tests
performed more favourable in terms of power estimates against general alternatives and local
power estimates. The LAn,ϕ tests often attained or matched the highest power estimates,
while the CMn,ϕ test proved to be the most stable across tuning parameter values. That is,
the CMn,ϕ test achieved competitive power estimates for any ϕ ≥ 1. For implementation
of the aforementioned tests, we advise choosing the tuning parameter as ϕ = 2 or ϕ = 5 as
these choices exhibited good performance in most cases. For implementation of the DHn,m

test a choice of m = 6 proved to perform well. Alternatively, one can use the methods
described in Allison and Santana (2015) or Tenreiro (2019) to choose the tuning parameter
data dependently.
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