
410 | Cardiometry | Issue 24. November 2022

ORIGINAL RESEARCH Submitted: 11.08.2022; Accepted: 8.09.2022; Published online: 20.11.2022

Effective DevSecOps 
Implementation:  A Systematic 
Literature Review
1Dhaval Anjaria, 2*Mugdha Kulkarni
1,2 Symbiosis Center for Information Technology, Symbiosis In-
ternational (Deemed University), Pune, Maharashtra, India

*Corresponding author:
mugdha@scit.edu

Abstract
Adopting DevOps means increased collaboration between 
development and operations teams and faster release cycles 
through a shift to automation. Using Dev Ops brings with it 
several advantages in the development of software. Security, 
however, is often neglected in DevOps due to the fast release 
cycle. Therefore Dev Sec Ops has emerged as an extension 
to DevOps that attempts to integrate security with Dev Ops 
practices, which is not without its challenges. DevOps, and by 
extension Dev Sec Ops, represents a significant change in the 
culture, tooling, and processes used in software development. 
Therefore, when implementing DevSecOps, teams and their 
organizations need to be aware of the challenges it brings 
and how to address those challenges for a DevSecOps imple-
mentation to be effective. Literature on DevSecOps exists that 
outlines practices and principles to do this. This paper uses a 
grounded theory approach to do a systematic literature review 
of academic literature to find the factors that contribute to an 
effective DevSecOps implementation. It attempts to reconcile 
the challenges of DevSecOps with ways of mitigating them and 
the advantages that a DevSecOps implementation can bring. 
The paper thus outlines methods of effectively implementing 
DevSecOps as described in academic literature.

Keywords
DevOps; DevSecOps; Security; SecDevOps; Continuous Inte-
gration; Continuous Delivery

Imprint
Dhaval Anjaria, Mugdha Kulkarni. Effective DevSecOps Im-
plementation: A Systematic Literature Review. Cardiometry; 
Issue 24; November 2022; p. 410-417; DOI: 10.18137/cardiom-
etry.2022.24.410417; Available from: http://www.cardiometry.
net/issues/no24-november-2022/effective-devsecops-imple-
mentation

1. Introduction
DevOps and its extension DevSecOps are port-

manteaus of Development, Operations, and Securi-
ty. DevOps and DevSecOps do not have strict aca-
demic definitions common practices that are part of 
DevOps are agreed upon. However, literature does 
refer to DevSecOps as collaboration between De-
velopment, Operations, and security. It represents a 
significant shift in an organization’s processes. How-
ever, with such a shift, there can be challenges and 
impediments to an organization if it wishes to adopt 
DevOps [1].

DevSecOps focuses on the integration of security 
along with the existing aspects of DevOps. Imple-
menting DevSecOps that uses automation very heavi-
ly and for which CI/CD is the core can be challenging 
for organizations. DevOps’ cost to benefit relation-
ship is not very well understood, and this is a cause 
for concern for management and those implementing 
DevOps alike. Thus, an attempt has to be made to un-
derstand the practices and principles that make for 
a DevSecOps implementation that is effective in the 
long run [2].

The contributions made with this paper are as fol-
lows: This paper uses an approach based on Grounded 
Theory to study existing literature about the elements 
of DevSecOps and how they should be implemented. 
A theory was developed to guide an effective DevSec-
Ops implementation using an iterative and incremen-
tal practice of coding literature. This theory exists in 
the form of findings from the grounded theory-based 
literature review. It covers the benefits, pitfalls, chal-
lenges, and mitigations of those challenges necessary 
to be addressed for an effective DevSecOps imple-
mentation [3].

2. Methodology

2.1. Preliminary Research
A search string containing the keywords “DevOps,” 

“DevSecOps,” and “implementation” was conducted 
on IEEE Xplore and Scopus databases. Once a rele-
vant subset was found, research notes were made for 
a small set of works. At first, the first author read sem-
inal DevOps works, namely, “The Phoenix Project” 
(Kim 2014) and Google’s SRE guidelines to create an 
understanding of DevOps. Once that study was com-



Issue 24. November 2022 | Cardiometry | 411

pleted, papers based on the search string were contin-
ued for preliminary research [4].

It was then discovered that through that study that 
Grounded theory would be the appropriate approach 
and could be suitably used for conducting the litera-
ture review. Therefore, research began on grounded 
theory practices and implementations [5].

2.2. Selection of works for grounded theory
After the preliminary review was concluded, works 

were ready to be coded, shown in Figure 1. 
The inclusion criteria were limited to the follow-

ing keywords: “DevOps”, “DevSecOps”, “Challenges”, 
“Implementation”, and “Security”. If a paper did not 
immediately relate to DevOps, Security, or an aspect 
of DevOps such as continuous integration, it was not 
considered for review [6].

The collection of works for review also included 
literature such as Bird, 2016, which was used as the 
first work for coding. Subsequent works were coded 
and integrated into the theory incrementally. Thus, 
this paper uses 15 works that deal with DevSecOps 
and Security with DevOps from peer-reviewed jour-
nals in the application of grounded theory [7].

2.3. Implementation of Grounded Theory
Recommendations from Wolfswinkel et al., Stol, 

Ralph, & Fitzgerald, and Tie, Briks & Francis, were 
adopted into a customized, CAQDAS assisted coding 
process to form the literature review findings; hereby, 
referred to as “The Theory.” It was found upon review-
ing those works that the first step was to use “memo-
ing” with heavy frequency throughout the process. 
Therefore to do this, memos were maintained in a 
single text file and were marked by timestamps. These 
memos contained observations made while reviewing 
individual works and notes on the methodology and 
how it was to be implemented.

The coding process for each work was conducted 
incrementally and iteratively. Each work was coded 
in three subsequent phases: Initial or Open Coding, 
Refined Coding, and Cohesive theory formation. The 
“constant comparison,” which is an essential part of 
Grounded Theory approaches, was achieved by com-
paring codes with each other and the evolving cohe-
sive theory that was being formed, which is explained 
in Figure 1. This process was repeated until “theoret-
ical saturation” was achieved, whereby new works se-
lected did not add to the existing theory.

Figure 1: The coding process



412 | Cardiometry | Issue 24. November 2022

2.3.1. Initial Coding
For the initial or open coding process, each para-

graph or logical grouping of sentences and paragraphs 
containing one cohesive idea was summarized into 
one sentence. These sentences were referred to as “raw 
codes” or “sub-codes” during the process. They were 
maintained in an Excel sheet with the reference text, 
i.e., the text that the code summarized and the work 
from which it was taken [8].

If an existing raw code was applied to more than 
one piece of text, then the text was added to that raw 
code rather than a new code. However, if there was 
even a small semantic difference between the code 
created and an existing one, a new raw code was as-
signed. For example, “Developers must understand se-
curity practices” and “Developers must appreciate se-
curity concerns” were treated as separate codes at this 
stage. The sections only referred to the methodology 
used in the paper, and those re-appearing in the con-
clusions were not coded. An example of this process is 
shown in Figure 2.

Codes for all works were maintained in a single ex-
cel sheet to achieve constant comparison. Once the en-
tire work had been coded, a folder was created, and the 
codes were moved to the second phase of coding. In 
Figure 2, the first column represents a summary of the 
text in column 2. This text is raw text copied and past-
ed from a PDF file of the work. Column 3 represents 
a short name for the work, and subsequent columns 
house other paragraphs from other works, which can 
also be summarized in the same way or relate to the 
text in column 2 [9].

Usually, in grounded theory, this phase is referred 
to as either Selective coding or Axial coding (de-
pending on the approach). For this paper, this phase 
is referred to as “Refined coding” since it draws from 
both approaches to reduce the number of codes used 
to form the theory ultimately. If works did not have 
enough raw codes, the raw codes were immediately 
used to compare with existing theory, thereby skip-
ping subsequent phases.

2.3.2. Refined Coding
For refined coding, codes with more than one ref-

erence or are considered important (due to similarities 
with other codes in other works) were promoted to 
so-called “super-codes.” They were referred to as su-
per-codes because the remaining raw codes (referred 
to in this phase as sub-codes) with only one reference 
were to be consolidated into these super-codes.

For each sub-code, a comparison was made to each 
super-code in order to find a relationship. This rela-
tionship was codified with words such as “because,” 
“therefore,” “given if,” etc., that expressed some rela-
tionship between the two codes, which were essential-
ly English language, sentences [10].

For example, if there was a super-code which said, 
“There is a trade-off between cost and added testing,” 
where the sub-code and the relationship between 
them were expressed as, “because,” “More complex CI/
CD pipelines are harder to troubleshoot”

Relationships such as “and” and “however” were 
not considered since it was considered more suitable 
to form a new super-code because it was believed that 

Figure 2: Raw codes



Issue 24. November 2022 | Cardiometry | 413

within those relationships, the ideas expressed by sub-
codes were not sufficiently explained or expressed in 
the existing super-codes [11].

An example is given in Figure 3.
In Figure 3, column 1 represents a code with multi-

ple references or could be considered important by the 
reviewer (super-codes). Column 3 contains the other 
codes that could relate to the super-code (column 1) 
somehow. Column 2 represents an expression of the 
“relationship” between the super-codes in column 1 
and sub-codes in column 2.

These relationships did not have to be exact; that is, 
the words used to express the relationship did not have 
to form a grammatical sentence using the super-code 
and sub-code but was enough to express that some re-
lationship exists. If the relationship was too ambigu-
ous, remarks were added in.

If a sub-code did not apply to any super-code, it 
was promoted to a super-code. Sub-codes that also 
expressed a significant relationship with a super-code 
were highlighted. For example, for a super-code which 
said, “Access needs to be limited, one of the sub-codes 
and the relationship that was highlighted was, “be-
cause,” and “Lack of upfront design makes security 
reviews challenging’ [12].

2.3.3. Phase III Coding
The text that these codes referenced was referred to 

understand the nature and importance of the relation-
ship. Once all the sub-codes were either promoted to 
or consolidated into super-codes, python was used to 
transform the data to be ingested into Power BI. Power 
BI was used to see various trends in the relationships, 

for example, which sub-codes applied to a large num-
ber of codes, and which super code absorbed the most 
sub-codes.

Python was also used to understand the common-
ality between super-codes: super-codes shared the 
most sub-codes and which super-codes were most re-
lated to other super-codes. For example, this process 
was not used for all works, for example works that did 
not have enough super-codes [13].

2.3.4. Theory Formation
Once these major super-codes were identified, the 

process of forming the theory was started. This theory 
was a prosaic amalgam of the final super-codes creat-
ed thus far. Super-codes that remained after the above 
phases were completed were integrated into the exist-
ing prose in a way that could be cohesive and readable, 
which was also how ultimately constant comparison 
was conducted. Once the theory had been modified, 
other works were selected, and search strings were 
modified to include keywords, such as “security,” “con-
tinuous integration,” and “continuous delivery” [14].

3. Results and Discussion
This section contains the final cohesive theory that 

was formed. It follows thus:

3.1. Why DevOps?
The aim of implementing DevOps is to have more 

collaboration and create empathy. It is also to reduce 
times between releases to improve customer satisfac-
tion. Therefore to do this, there has to be a culture of 
openness. DevOps’ implementation can vary great-

Figure 3: Super-codes and sub-codes



414 | Cardiometry | Issue 24. November 2022

ly; for example, a “DevOps team” can be a separate 
team altogether, responsible for some code entirely 
(from development to production. DevOps attempts 
to solve problems by improving sharing and collabo-
ration between teams because collaboration can help 
fix problems faster since sharing means teams have 
to know about the problems other teams have and 
fix them. 

DevOps provides agility, flexibility, and cost-effec-
tiveness. DevOps does not require specialized tooling, 
and teams can be doing DevOps without explicitly 
saying so. Challenges arise in DevOps because the pri-
orities of Dev and Ops do not always align [15].

3.2. Security and DevOps
The more unrestricted collaboration is, the more 

lapses in access control can occur. Security is often 
neglected in DevOps due to the fast nature of the re-
lease cycle. DevSecOps can be defined as integrating 
security protocols into DevOps. DevSecOps is about 
introducing security earlier in the software develop-
ment lifecycle so that vulnerabilities in the product 
and the cost to fix them are reduced. Not doing so will 
cause delays arising from a need to fix vulnerabilities 
discover when security testing is ultimately done on a 
project, which is usually towards the end? 

Adding security to DevOps can be challenging, 
and this process can be enabled using security mon-
itoring [16].

3.3. Security Risks in DevOps
Using DevOps increases security risk because of 

the increased collaboration that takes place between 
teams. All the communication and tool they use can-
not be audited every time they use them. In fact, be-
cause of increased collaboration and faster release cy-
cles, security can be overlooked.

Access needs to be limited because certain security 
practices like manual audits, separation of duties, up-
front reviews are difficult. These processes need to be 
done iteratively. Whichever processes can be automat-
ed must be added earlier in the coding cycle, like SAST 
practices, automated audits, etc. Whatever processes 
that cannot be automated must be done in parallel at 
various times parallel to the build process; not only 
does this help improve the security of the application, 
but at the same time, security issues can be communi-
cated sooner in the lifecycle of an application, which 
means they can be fixed faster [17].

All routine changes should be automated. CI tools 
with more granular security options should be used to 
mitigate the amount of security exposure that collab-
oration brings. However, it is important to note that 
troubleshooting building without sufficient access can 
be harder if these granular options are not properly.

3.4. Reducing Risk through Automation
DevSecOps is about using security knowledge 

and tools to improve the development pipeline. Au-
tomating security and testing can contribute posi-
tively to a system’s security. For example, automating 
security practices reduces mistakes, leading to vul-
nerabilities and reducing the amount of effort secu-
rity engineers need to put in to add controls after the 
fact. Automating security also makes it fast and scal-
able, so security being overlooked to ensure rapid 
development can be addressed. Shifting security left 
in such a way makes it more cost-effective because it 
helps find bugs sooner helps at an earlier stage, mak-
ing it easier to fix them.

Automating security should also be done so that 
the agility of DevOps is not sacrificed for security as-
surance. Automation ensures that at least some tests 
will be performed, which can solve security being ne-
glected [18].

DAST and IAST can be used to look at components 
and their software while running. However, this is not 
being automated, and organizations are not aware of 
how much they lack automating security.

3.5. Accounting for Manual Processes
Manual security practices can be performed out-

side of deployment, and manual security checks 
should be minimized, as observed by Bird. Some se-
curity practices can be integrated before deployment, 
like manual code reviews, which can be done before 
deployments. Others like risk assessments and threat 
modeling, and red team exercises can be done itera-
tively. Manual checks can take time, but standardiza-
tion reduces manual security work.

3.6. CI/CD
CI/CD is the core of DevOps, and it relies on auto-

mation. CI/CD also makes safer deployments through 
feature toggles, canary releases, and automated secu-
rity practices. If something does slip the checks, fixes 
can be integrated a lot faster. DevOps is often imple-
mented to reduce lead time to change [19].



Issue 24. November 2022 | Cardiometry | 415

However, it should be noted that as CI/CD pipe-
lines get more and more complex, they can be harder 
to manage. The added testing, both in terms of security 
and otherwise, can significantly add to the complexity 
of the CI/CD pipeline and not increase build times. 
Security tests can increase build times even further.

Security tests still have to be integrated into the CI/
CD pipeline. Otherwise, it can lead to more vulnerable 
software.

The security practices that have to be either auto-
mated or conducted in parallel and ops responsibili-
ties that come with DevSecOps make developers feel 
that it creates more work for them.

3.7. Using CI/CD to Improve Collaboration
CI/CD necessitates automation. Automation can 

be monitored. This monitoring data is made visible to 
all, aligns the incentives of various teams, as observed 
by Mansfield-Devine, enabling collaboration.

3.8. The Advantages of More  Frequent 
Releases

Fast integration also allows for faster feedback, 
which can improve productivity and lead to faster im-
provement. Finding errors faster can also make risk 
management easier and more cost-effective because 
fixing those errors can be cheaper if done early.

3.9. Addressing Security Concerns  in the 
Fast Release Cycle

All of this automation means that risk assessments, 
compliance, etc., need to be done differently in DevSec-
Ops. There is no large upfront design that can be as-
sessed for security. Therefore, risk assessment and threat 
modeling should be done iteratively and incrementally.

Therefore, you need to keep track of the attack sur-
face and risks with every new build; therefore, a dy-
namic tool pipeline is necessary because the code and 
its environment are constantly changing.

Security needs to be part of the coding cycle, and 
teams, especially developers, need to understand secu-
rity needs. There has to be a continuous feedback sys-
tem in terms of security to other teams and work with 
them to perform security tests and implement security 
policies. Security policies can be codified as codes.

3.10. Micro Services
DevOps and Micro services are well suited for each 

other. However, Micro services mean more security 

needs because a running system is more complex than 
a static list of Micro services. However, different Micro 
services teams still have to greatly communicate with 
each other and decide how their services will interface 
with each other.

3.11. Security Training
To implement DevSecOps, however, security needs 

to work with other teams. A lot of there has to be 
cross-training; developers and ops teams need secu-
rity training. Not only is cross-training required, but 
personnel with “DevSecOps skills” that is an under-
standing of development, security, and operations are 
often required, and they can be hard to find. DevOps 
is a constant cultural process that an organization 
must practice. Training developers to code securely is 
easier than training security people to code.

3.12. Securing and Standardizing  
the Underlying Infrastructure

Security should very much be part of the entire de-
velopment process. It begins with securing the under-
lying tools and infrastructure first. To better secure the 
underlying infrastructure and streamline the CI/CD 
process, the tools used have to be standardized across 
different servers.

Standardization has to be done for tools and pro-
cesses, which CI/CD helps achieve. This process 
standardization ensures that at least some test cov-
erage will be there, and fewer builds will be broken. 
Standardization will also help reduce manual security 
work. 

Adding security tools in the process can be chal-
lenging but beneficial in the long run. Security tools 
and standards, such as SAST, OWASP, must be appro-
priate for the organization that uses them and the ap-
plications these organizations build, which can some-
times be a sizeable task.

3.13. Special Skills Are Required
Managers and other departments also need train-

ing in handling DevOps teams that deploy fast and 
house a wider variety of skills. Since risk assessment, 
threat modeling, and security policies are implement-
ed differently and earlier in the development cycle, 
some specialized skills, such as good monitoring and 
logging practices, security automation, etc., are re-
quired. A lack of experience with these tools and prac-
tices can be challenging.



416 | Cardiometry | Issue 24. November 2022

3.14. Shifting Security Left
Security needs to “shift-left.” Security needs to be 

part of the coding cycle, and teams, especially devel-
opers, need to understand security needs. There has to 
be a continuous feedback system in terms of security 
to other teams and work with them to perform securi-
ty tests and implement security policies.

Shifting security left makes it easier to plan and 
execute security practices. SAST can assist in this pro-
cess. Security assessments and issues will only be fixed 
if they are conveyed to the development teams. Shift-
ing security left means starting from the non-func-
tional requirements. It means discovering issues and 
bugs at an earlier stage which is more cost-effective.

3.15. Monitoring
Monitoring in organizations can be complex sys-

tem data, although being granular and scalable can 
still have gaps. For example, cultural changes, configu-
ration drift can often not be captured through system 
data alone. Data gathered from surveys help under-
stand the real-world impact of the system and fill the 
gaps in system data. Therefore, monitoring requires 
a complementary approach using both system and 
survey data. Good monitoring, however, is necessary 
but insufficient. There needs to be cross-talk between 
teams in an organization. That said, in terms of mon-
itoring, less useful data must be minimized because it 
could be that much harder to learn.

3.16. Teams Need to Work Together
For there to be buy-in in security among develop-

ers, operations, and management, security informa-
tion should be conveyed to everyone. However, there 
needs to be a mapping between the security risks iden-
tified and the business risks they pose.

Teams, of course, need to work together to achieve 
common goals and to do this, data and information 
should be as visible as possible. Teams should not hide 
information from one another or even the customer. 
Conversely, customer satisfaction data should also be 
shared back to dev and ops teams.

Getting teams to work together with new tools and 
techniques can be challenging; so does integrate the 
tools and the accustomed processes of each team. For 
DevOps to be successful, the priorities and goals of 
various teams involved have to be aligned. A common 
security mindset can be created using metrics that are 
visible to everyone.

3.17. DevSecOps and Culture
A DevOps or DevSecOps team responsible for 

maintaining a system needs to have both the authori-
ty and responsibility for their system. The culture re-
quired for DevOps must promote shared ownership. 
The team has to be responsible for the application; 
teams need to be responsible, but they also have the 
authority to manage their service. There must be a cul-
ture that promotes learning from failure, which means 
that logs and monitoring data need to be visible and 
traceability of code needs to be put in, which improves 
compliance.

4. Threats to Validity
Some of the information may be lost in the process 

and not captured by the resultant theory. For example, 
one code, “State of DevOps report states that high per-
formers deploy several times faster,” appears in several 
works. However, since it is only referenced once per 
work and is usually absorbed by a super-code, it is not 
included in the theory. Secondly, the works chosen 
for coding were limited to the Scopus index and IEEE 
Xplore. Internet artifacts and Google Scholar were not 
used to source works for coding.

5. Conclusion
A grounded theory-based approach was used to 

build. The findings represent that DevSecOps involve 
changes that are both cultural and technical. The way 
organization builds software has to change, making 
significant use of automation. Any task related to 
security, compliance, and assurance can be automat-
ed and integrated into the CI/CD pipeline. Once the 
CI/CD pipeline is standardized, other organizational 
changes follow; for example, it gives developers faster 
feedback, which gives better results due to the changes 
being tested in running systems. 

Monitoring of these systems also represents a chal-
lenge. It demands a complementary approach using 
both log data and survey data to get real-world feed-
back. The information generated through monitoring 
needs to be visible to all parties involved; doing so will 
provide visibility to all parties involved and might help 
align the incentives for the various teams in DevSec-
Ops, which in turn helps collaboration.

However, these practices increase the security ex-
posure of the system, which can be mitigated by secur-
ing the underlying tooling, standardizing the tooling, 
and doing manual checks parallel to the build pipe-



Issue 24. November 2022 | Cardiometry | 417

lines. Access control must also be managed through 
the use of granular configuration in CI/CD security 
tools.

DevSecOps will require cross-training to be im-
plemented properly since security needs to shift left, 
which means security has to be integrated into the 
coding cycle using SAST tools and into the CI/CD 
pipelines using DAST and IAST tools.

References
1. Ahmed, Z., & Francis, S. C. (2019, November). 

Integrating Security with DevSecOps: Techniques and 
Challenges. In 2019 International Conference on Dig-
itization (ICD; pp. 178-182). IEEE.

2. Bass, L. (2017). The software architect and 
DevOps. IEEE Software, 35(1), 8-10.

3. Bird, J. (2016). DevOpsSec: Securing software 
through continuous delivery.

4. Chun Tie, Y., Birks, M., & Francis, K. (2019). 
Grounded theory research: A design framework 
for novice researchers. SAGE open medicine, 7, 
2050312118822927.

5. Díaz, J., Pérez, J. E., Lopez-Peña, M. A., Mena, 
G. A., &Yagüe, A. (2019). Self-service cybersecurity 
monitoring as enabler for DevSecOps. IEEE Access, 7, 
100283-100295.

6. Erich, F. M. A., Amrit, C., & Daneva, M. 
(2017). A qualitative study of DevOps usage in prac-
tice. Journal of Software: Evolution and Process, 29(6), 
e1885.

7. Forsgren, N., & Kersten, M. (2018). DevOps 
metrics. Communications of the ACM, 61(4), 44-48.

8. Hilton, M., Nelson, N., Tunnell, T., Marinov, 
D., & Dig, D. (2017, August). Trade-offs in continuous 
integration: assurance, security, and flexibility. In Pro-
ceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering (pp. 197-207).

9. Kim, G., Behr, K., & Spafford, K. (2014). The 
phoenix project: A novel about IT, DevOps, and help-
ing your business win. IT Revolution.

10. Kromhout, B. (2018). Containers will not fix 
your broken culture (and other hard truths). Commu-
nications of the ACM, 61(4), 40-43.

11. Lee, J. S. (2018, October). The DevSecOps and 
agency theory. In 2018 IEEE International Symposium 
on Software Reliability Engineering Workshops (ISS-
REW; pp. 243-244). IEEE.

12. Mansfield-Devine, S. (2018). DevOps: finding 
room for security. Network Security, 2018(7), 15-20.

13. Mohan, V., & Othmane, L. B. (2016, August). 
SecDevOps: Is it a marketing buzzword?-mapping 
research on security in DevOps. In 2016 11th Inter-
national Conference on Availability, Reliability, and 
Security (ARES; pp. 542-547). IEEE.

14. Myrbakken, H., & Colomo-Palacios, R. (2017, 
October). DevSecOps: a multivocal literature review. 
In International Conference on Software Process Im-
provement and Capability Determination (pp. 17-29). 
Springer, Cham.

15. Prates, L., Faustino, J., Silva, M., & Pereira, R. 
(2019, September). DevSecOps Metrics. In Euro Sym-
posium on Systems Analysis and Design (pp. 77-90). 
Springer, Cham.

16. Smeds, J., Nybom, K., & Porres, I. (2015, May). 
DevOps: a definition and perceived adoption impedi-
ments. In International Conference on Agile Software 
Development (pp. 166-177). Springer, Cham.

17. Rahman, A. A., & Williams, L. (2016). Software 
security in DevOps. Proceedings of the International 
Workshop on Continuous Software Evolution and De-
livery - CSED ‘16. doi:10.1145/2896941.2896946

18. Stol, K. J., Ralph, P., & Fitzgerald, B. (2016, 
May). Grounded theory in software engineering re-
search: a critical review and guidelines. In Proceedings 
of the 38th International Conference on Software En-
gineering (pp. 120-131).

19. Wolfswinkel, J. F., Furtmueller, E., & Wil-
derom, C.P. (2013). Using grounded theory as a meth-
od for rigorously reviewing the literature. European 
journal of information systems, 22(1), 45-55.


