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Abstract: To prolong limited natural resources and persuade green production not only manufacturers and government
but consumer is also concerned about the effects of manufacturing on the environment. As a result, consumers have
shown their curiosity to buy used or refurbished product. This paper presents a methodology to provide optimal
pricing and ordering strategy for new product and buy back strategy for used product for retailer. The rate of demand
is assumed to be nonlinear function of price and time for new product, and linear function of price and time for buy
back used product. The objective is to maximize total profit per time unit for retailer with respect to optimal price
and ordering quantity for new product and optimal buy back quantity for used product. The model is illustrated with
numerical examples and sensitivity analysis is performed for key parameters.
Keyword — Inventory, Price dependent demand, Replenishment quantity, used buyback Product, deterioration.

1. INTRODUCTION

Broad utilization of innovation helps all the monetary segments to prevail with regards to getting the purchasers from
any edge of the world. Consequently, the manufacturing sectors are fabricating more to fulfil the needs and enterprises
are contending with one another to catch the market. And so, industries are using more natural resources for excess
production which generates more trash. Now, the key issue is to improve strategies for ecological support to preserve
our limited natural resources and reduce the generation of trash as specified government regulations. Customers are
worried about ecological issues and they like to buy items from producers having a green image. That is why many
manufacturers have started collecting used products which are discarded by the customers. After refurbishing or re-
cycling those products, manufacturer sells the product to a new customer at lower price. The process of recycling or
refurbishing product is not a novel idea. It has been a common practice for the products like, aeronautics, metal, glass,
ornaments, paper etc. in the last two three decades. Recently, it has been observed for many other products like plastic
bags, water bottles, mobile phones, marker pens, etc. Reuse in deterministic model is introduced by Schrady (1967)
with a constant rate of demand. Two cost components fixed cost and holding cost were considered in Schrady’s model
(1967). Mabini, Pintelon, and Gelders (1992) extended Schrady’s model for multi-items having same repair facility.
Koh, Hwang, Sohn, and Ko (2002), Richter and Dobos (2004), Kannan, Sasikumar, and Devika (2010), Govindan,
Soleimani, and Kannan (2015), Chen, Weng, and Lo (2016) etc. provided an enriched literature review of the recent
past papers and also identified research gap too, and its cited references for more about recycling or reusable item.
Other motivating work in this area are batteries recycling, Daniel, Pappis, and Voutsinas (2003), electronic waste recy-
cling, Nagurney and Toyasaki (2005), glass recycling, González-Torre and Adenso-Díaz (2006), paper recycling, Pati,
Vrat, and Kumar (2008), etc.

In recent time, consumers are price sensitive and purchase the product after looking to the price only. Selling price
of an item is prime factor to influence demand; studies on optimal pricing policies have received considerable attention
these days. Most commonly, it is observed that the demand of an item is inversely proportionate to its retail selling
price. Therefore, price varying demand pattern needs to be highlighted and considered. Whitin (1955) was the first to
discuss inventory system with price dependent demand. Thereafter, many inventory models are formulated with price
dependent demand like, Mondal, Bhunia, and Maiti (2003), Mukhopadhyay, Mukherjee, and Chaudhuri (2004), Jaggi,
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Tiwari, and Goel (2017), N. Shah and Vaghela (2017), N. H. Shah and Vaghela (2018), Sundararajan, Palanivel, and
Uthayakumar (2019), Dey, Sarkar, Sarkar, and Pareek (2019), Suthar and Shukla (2019), Shaikh and Cárdenas-Barrón
(2020), Giri and Masanta (2020) and many more.

Again, in profit-making business environment, the effect of deterioration on items is required to be taken in to
account while formulating inventory system mathematically. The phenomenon which reduces the present value or
usefulness of an item and hinders it from being used from its actual use is termed as deterioration. This may because
of continual spoilage, degradation or evaporation etc. It may be observed for items like fruits, vegetables or any other
food stuffs, medicine, electronic goods, batteries, volatile liquids and others. Ghare (1963) were first to incorporate
effect of deterioration in inventory system. They proposed exponentially decaying inventory system. Covert and Philip
(1973), Philip (1974) and Tadikamalla (1978) extended the model of Ghare (1963) by using Weibull distribution and
Gamma distribution. An up to date review on inventory systems for deteriorating items is presented by N. H. Shah,
Chaudhari, and Cárdenas-Barrón (2020), Goyal and Giri (2001), Bakker, Riezebos, and Teunter (2012) and Janssen,
Claus, and Sauer (2016) cited. Thereafter many researchers have formulated inventory systems for deteriorating items
by assuming constant, linear and non-linear rate of deterioration like N. H. Shah and Shukla (2009), Shukla and Suthar
(2016), N. H. Shah et al. (2020),etc. Cárdenas-Barrón and Sana (2015) developed a concavity by Eigen values of Hassian
matrix.

In this article, with assumption that retailer sells the new product to the customers as well as collects the used
product to resell it, product have a deteriorating nature, the optimal pricing and ordering policy for new product and
optimal policy for used buyback product is formulated in order to maximize retailer’s total profit per time unit. The
demand of a product is considered to be price and time responsive. All the assumptions and notations required to
formulate problem mathematically are given in section 2. Mathematical formulation is discussed in section 3. To
demonstrate the methodology numerical example is given in section 4 and 5 and sensitivity analysis is carried out to
discuss strategic implications in section 6. We summarize the article in section 7.

2. ASSUMPTIONS AND NOTATIONS

2.1 Assumptions

1. The inventory system deals with single product.

2. The replenishment is instantaneous and planning horizon is infinite.

3. The holding cost is considered to be constant for new product as well as used buyback product with h > hu.

4. The rate of demand for new product is taken as a
Rn(p, t) = ap−be−ϵt, 0 ≤ t ≤ T ,
where a > 0 denotes the scale demand, 0 < b < 1 denotes the price elasticity and 0 < ϵ < 1.

5. The rate of demand for used buyback product is taken as a
Ru(p, t) = α(1− βt)− p(1− p0), τ ≤ t ≤ T ,
where α > 0 denotes the scale demand and 0 < β < 1.

6. The Lead time is negligible or zero and shortages are not allowed.

7. A retailer sells the new product to customers as well as collects and sells the used products again. Rework or
repairing of used buyback product is not considered.

8. A retailer sell the new product during 0 ≤ t ≤ T and collects the used product at time τ and
Sell the used buyback product during τ ≤ t ≤ T .

9. The product is deteriorating nature with constant rate of deterioration for both type of new and used buyback
product. Rate of deterioration is θ for new product and γ is the rate of deterioration for used buyback product
with γ ≥ θ.

10. There is no replacement or repair of deteriorating items during the period under consideration.
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2.2 Notations

Table 1: Notations used in model

A Retailer ordering cost (in |/order).
C Purchase cost (Constant) (in |/unit).
p Selling Price (in |/unit) (a decision variable).p > C

h Inventory holding cost (in |/unit) for new product.
hu Inventory holding cost (in |/unit) for used buy back product.
Q The replenishment quantity for new product.
Qu The quantity of used buy back product.
T The length of ordering cycle (a decision variable) (years).
τ The point of time when collection and sell of used buy back products starts (years).

Rn(p, t) Demand rate for new product at 0 ≤ t ≤ T (units).
Ru(p, t) Demand rate for new product at t ≥ τ (units).
I(t) Inventory level at time 0 ≤ t ≤ T for new product (units).
Iu(t) Inventory level at time t ≥ τ for used buy back product (units).
P0 Rate of discount on selling price for used buy back product.
d Rate of depreciation on purchase cost for used buy back product.
θ Constant rate of deterioration for new product.
γ Constant rate of deterioration for used buyback product.

π(p, T ) Total profit of the retailer during cycle time (in|).

3. MATHEMATICAL FORMULATION

The inventory level of the new product at time t over the period [0, T ] can be represented by the following differential
equation,

dI(t)

dt
+ θI(t) = −Rn(p, t), 0 ≤ t ≤ T. (1)

At time t = T , the inventory level reaches zero i.e. I(T ) = 0.
The solution of the differential Eq. (1) is given by

I(t) =
ap−be−θt

ϵ− θ

(
e−t(ϵ−θ) − e−T (ϵ−θ)

)
. (2)

But I(0) = Q gives the ordering quantity of new product is,

Q =
ap−b

ϵ− θ

(
1− e−T (ϵ−θ)

)
. (3)

Now for the used product during the period [τ, T ], the inventory level is affected by the return rate of the used product,
so the governing differential equation for inventory level Iu(t) at time t,

dIu(t)

dt
+ γIu(t) = −Ru(p, t), τ ≤ t ≤ T. (4)

But used buy back product inventory level also reached zero at time t = T i.e. Iu(T ) = 0.
The solution of the differential Eq. (4) is given by

Iu(t) =
αβt

γ
− αβ

γ2
− α

γ
+
p

γ
(1− p0)− eγ(T−t)

(
αβt

γ
− αβ

γ2
− α

γ
+
p

γ
(1− p0)

)
. (5)

1813­713X Copyright © 2021 ORSTW



48 Katariya, Shukla: Retailer’s Ordering and Pricing Strategy and Buyback Strategy

IJOR Vol. 18, No. 2, 45-56 (2021)

Thus, the quantity of used buyback product given by

Qu(t) = eγ(T−τ)

(
αβT

γ
− αβ

γ2
− α

γ
+
p

γ
(1− p0)

)
−
(
αβτ

γ
− αβ

γ2
− α

γ
+
p

γ
(1− p0)

)
. (6)

Now to calculate total profit for new product, we calculate all the components as below,
Sales revenue from new product is

SRn =
p

T

 T∫
0

ap−be−ϵtdt

 . (7)

Purchase cost for new product is

PCn =
CQ

T
. (8)

Holding cost for new product

HCn =
1

T

T∫
0

[h · I(t)]dt. (9)

Ordering cost

OCn =
A

T
. (10)

Total profit for new product during the cycle is from Eq. (7) to Eq. (10),

πn(p, t) = SRn −OCn −HCn − PCn. (11)

Now, to calculate total profit from used buy back product, we calculate all the components as below
Sales revenue from used buyback product

SRu =
p(1− p0)

T

 T∫
τ

(α(1− βt)− p(1− p0))dt

 . (12)

Purchase cost for used buyback product

PCu =
C(1− d)Qu

T − τ
. (13)

Holding cost for used buyback product

HCu =
1

T

T∫
τ

[hu · Iu(t)]dt. (14)

Total profit from used buyback product during the cycle is

πu(p, t) = SRu −HCu − PCu. (15)
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Therefore, the total profit from the both type of product is given by Eq. (11) and Eq. (15),

π(p, T ) =

 p

T

T∫
0

[ap−be−ϵt]dt− CQ

T
− 1

T

T∫
0

[h · I(t)]dt− A

T


+

p(1− p0)

T

T∫
τ

[(α(1− βt)− p(1− p0))]dt−
C(1− d)Qu

T − τ
− 1

T

T∫
τ

[hu · Iu(t)]dt

 .

(16)

The total profit function is a function of selling price p and the replenishment cycle time T . The objective is to find
the optimal selling price and the replenishment cycle time such that the retailer’s total profit is maximized.

4. SOLUTION PROCEDURE

To obtain the optimal selling price that corresponds to maximising the total profit, for given , we first check necessary
and sufficient conditions. (Sundararajan et al. (2019))
The necessary condition for finding the optimal selling price p∗ for fix value of T is given as follows:

∂π(p, T )

∂p
=
ap−b(e−Tϵ − 1)

Tϵ
[b− 1]− Cap−bb

Tp(ϵ− θ)
[1− e−T (ϵ−θ)] + h

abp−be−Tϵ(eTϵθ − eTθϵ+ ϵ− θ)

(ϵ− θ)Tpθϵ

+
(1− p0)

T

(
−1

2
αβ(T 2 − τ2) + α(T − τ)− p(1− p0)(T − τ)

)
− p(1− p0)

2(T − τ)

T

+
C(1− d)

T − τ

(
p0
γ

− 1

γ
+ eγ(T−τ)(−p0

γ
+

1

γ
)

)
− hu(1− p0)

2Tγ3
[2γ2(T − τ)− 2eγ(T−τ)γ + 2γ] = 0.

(17)

Theorem 4.1: For a given value of T , we have

(i) The Eq. (17) has a unique solution.

(ii) The solution in (i) satisfies the second-order conditions for the maximum.

Proof: To check the sufficient condition for optimal value of selling price, it is enough to show second order derivative
of π(p, T ) with respect to p, is less than zero.

∂2π(p, T )

∂p2
=
abp−b−1(e−Tϵ − 1)

Tϵ
[1− b]− Cap−b−2

T (ϵ− θ)
(b2 + b)[1− e−T (ϵ−θ)]

− h
ap−b−2e−Tϵ(eTϵθ − eTθϵ+ ϵ− θ)

(ϵ− θ)Tθϵ
(b2 + b)− 2(1− p0)

2(T − τ)

T
.

In above expression, e−Tϵ − 1 < 0, 0 < b < 1, T ≥ 0, T ≥ τ , p > C and ϵ ̸= θ

Clearly, ∂2π(p,T )
∂p2 < 0.

Hence, the Eq. (17) has a unique solution and satisfies the sufficient condition for the maximum.
Now, to obtain the optimal cycle time that correspond to maximising the total profit, for given fix selling price, we first
check necessary and sufficient conditions. (Sundararajan et al. (2019)).
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The necessary condition for finding the optimal cycle time T∗ for fix value of p is given as follows:

∂π(p, T )

∂T
=
ap−b+1

T
[(
e−Tϵ − 1

Tϵ
+ e−Tϵ] +

A

T 2

+
Cap−b

T (ϵ− θ)
[(−ϵ+ θ)e−T (ϵ−θ) +

1

T
− e−T (ϵ−θ)]

+
hap−be−Tϵ

Tθ(ϵ− θ)

[
(eTϵ−1)θ−(eθT−1)ϵ

Tϵ − θ(eTϵ − eθT )
+(eTϵ − 1)θ − (eθT − 1)ϵ

]

+
p(1− p0)

T 2

[
− 1

2αβ(T
2 − τ2) + α(T − τ)

−p(1− p0)(T − τ) + T (−αβT + α− p(1− p0))

]

+
C(1− d)

T − τ

 1
T−τ

(
−αβτ

γ + pp0

γ + αβ
γ2 + α

γ − p
γ

)
−αβ

γ e
γ(T−τ) + eγ(T−τ)

(
αβT
γ − pp0

γ − αβ
γ2 − α

γ + p
γ

)
( 1
T−τ − γ)


− hu

2T 2γ3

 −αβγ2(T 2 − τ2) + 2pp0(T − τ) + 2αβγTeγ(T−τ)

+2Tαγ2 − 2pγ2(T − τ)− 2αβτγ − 2ατγ2

+2pp0γ(1− e−γτ )− 2αe−γτ (γ + β) + 2e−γτpγ + 2α(β − γ)− 2pγ


+

hu
2Tγ2

[
γ3αβ(T 2 − τ2)− 2αβγ2(T − τ)− 2γ3pp0(T − τ)
+2αβγ(e(T−τ) − 1) + 2γ3T (p− α)− 2γ3τ(p− α)

]

+
hu

2Tγ2

 −γ2αβ(T 2 − τ2) + 2γ2pp0(T − τ) + 2αβγ(Te(T−τ) − τ)
+2Tγ2(p− α) + 2τγ2(p− α) + 2pp0γ(1− e−γτ )
+2αβ(1− e−γτ ) + 2αγ(1− e−γτ )− pγ(1− e−γτ )

 = 0.

(18)

Theorem4.2: For a given value of p, we have

(i) The Eq. (18) has unique solution.

(ii) The solution in (i) satisfies the second-order conditions for the maximum.

Proof: See Appendix A.

5. NUMERICAL EXAMPLE

The proposed models are illustrated below by considering the following example.
The numerical values of the parameter in proper unit were considered as input for numerical, graphical and sensitivity
analysis of the model, the scale demand of new product a = 255 units, price elasticity of new product b = 0.4,
ϵ = 0.9, scale demand of used buyback product α = 100 units, β = 0.3, purchasing cost C = 55|/unit, ordering
cost A = 100|/order, holding cost of new product h = 0.5|/unit/year, holding cost of used buyback product
hu = 0.2|/unit/year, rate of depreciation of buyback product d = 0.15, τ = 30

365 year, price discount on selling price
of used buyback product p0 = 0.5, rate of deterioration of new product and used buyback product θ = 0.01 and
γ = 0.02 respectively.

Using mathematical software like, MATLAB or Mathematica or Maple 18 software, the optimal values of decision
variables are obtained as p∗ = 103.7220| and T ∗ = 0.37085 Year.

The optimum ordering quantity of new product is Q∗ = 12.58 units and and used optimal buyback product
quantity is Q∗

u = 11.97 units. The maximum profit of retailer is 4980.21|.
The concavity of the profit function is developed by the well-known Hessian matrix, Consider Hessian Matrix as

following,

H(p, T ) =

 ∂2π(p,T )
∂p2

∂2π(p,T )
∂p∂T

∂2π(p,T )
∂T∂p

∂2π(p,T )
∂T 2

 (19)

H(p∗, T ∗) =

(
−0.5648122516 −20.48479785

−20.48479785 −11351.81445

)
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As per Cárdenas-Barrón and Sana (2015), If the Eigen values of the Hessian matrix at the solution (p∗, T ∗) are
all negative then the profit function π(p∗, T ∗) is maximum at the solution. Here, eigenvalues of the above Hessian
matrix are λ1 = −11351.85 and λ2 = −0.53.Therefore, the profit function π(p∗, T ∗) is maximum.

From above Hessian Matrix, define that ∆11 = ∂2π(p,T )
∂p2 , ∆22 = ∂2π(p,T )

∂T 2 and ∆12 = ∂2π(p,T )
∂p∂T for optimal

value of p∗ and T ∗, it is clear that ∆11 = −0.56 < 0, ∆22 = −11351.81 < 0 and ∆11∆22 − (∆12)
2 > 0 then the

optimal value of p∗ and T ∗ satisfies the Eqs. (17) and (18) and value of p∗ and T ∗ is unique and maximize π(p, T ).
The concavity of profit function is also shown in Figure.1, Figure.2 and Figure.3 as below:

Figure 1: Concavity behaviour of the Total profit function

Figure 2: Total Profit Vs Cycle time Figure 3: Total Profit Vs Selling Price

6. SENSITIVITY ANALYSIS

Table 2 shown sensitivity analysis is performed by changing each parameter values in relative steps of −20%, −10%,
10%, 20%, taking one parameter at a time and the remaining values of the parameters are unchanged.
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Table 2: Sensitivity with respect to key parameter

Inventory
Parameter Change % Value T ∗ p∗ Q∗ Q∗

u
Profit
(in |)

Eigen Values
of (19)
(λ1, λ2)

a

-20 204 0.4038 92.68 11.31 14.96 4684.57 (-8845.88,-0.54)
-10 229.5 0.3873 98.23 12.00 13.42 4824.05 (-10015.90,-0.54)
0 255 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 280.5 0.3546 109.19 13.05 10.61 5152.64 (-12874.72,-0.52)
20 306 0.3387 114.66 12.31 9.35 5144.76 (-14610.24,-0.52)

b

-20 0.32 0.2860 135.16 13.39 5.49 5947.61 (-22413.16,-0.41)
-10 0.36 0.3340 116.86 13.27 8.92 5359.55 (-16870.10,-0.48)
0 0.4 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.44 0.3998 93.69 11.64 14.63 4729.78 (-9233.21,-0.55)
20 0.48 0.4225 85.76 10.60 16.92 4562.41 (-7687.54,-0.58)

α

-20 80 0.3672 91.52 13.12 8.24 3399.65 (-8763.60,-0.55)
-10 90 0.3686 97.51 10.10 10.10 4178.73 (-10057.40,-0.54)
0 100 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 110 0.3737 110.16 12.36 13.86 5805.05 (12852.29,-0.54)
20 120 0.3770 116.80 12.16 15.77 6654.21 (-14012.40,-0.50)

β

-20 0.24 0.4012 103.64 13.44 7.16 5103.21 (-8918.77,-0.53)
-10 0.27 0.3851 103.69 12.99 12.71 5040.58 (-10143.23,-0.53)
0 0.3 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.33 0.3581 103.74 12.21 11.30 4921.89 (-12690.10,-0.52)
20 0.36 0.3466 103.76 11.88 10.71 4865.44 (-14110.52,-0.51)

C

-20 44 0.3574 110.33 11.90 10.55 4970.51 (-12486.98,-0.48)
-10 49.5 0.3642 106.93 12.24 11.27 4975.59 (-11918.24,-0.51)
0 55 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 60.5 0.3774 100.69 12.92 12.66 4989.97 (-10830.21,-0.55)
20 66 0.3839 97.83 13.26 13.34 5004.50 (-10347.50,-0.57)

A

-20 80 0.3569 104.24 12.15 11.37 5035.18 (-11892.53,-0.54)
-10 90 0.3639 103.98 12.37 11.67 5007.4 (-11513.12,-0.53)
0 100 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 110 0.3777 103.47 12.79 12.26 4953.50 (10998.11,-0.52)
20 120 0.3844 103.23 12.99 12.54 4927.23 (-10866.13,-0.51)

d

-20 0.12 0.3714 102.24 12.67 12.20 5049.23 (-11319.50,-0.53)
-10 0.135 0.3711 102.98 12.62 12.09 5014.55 (-11335.07,-0.53)
0 0.15 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.165 0.3705 104.47 12.54 11.85 4946.16 (-11366.19,-0.53)
20 0.18 0.3702 105.22 12.49 11.73 4912.41 (-11387.14,-0.53)

h

-20 0.4 0.3710 103.71 12.58 11.97 4980.81 (-11341.60,-0.53)
-10 0.45 0.3709 103.72 12.58 11.97 4980.49 (-11346.21,-0.53)
0 0.5 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.55 0.3708 103.73 12.58 11.96 4979.91 (-11355.92,-0.53)
20 0.6 0.3707 103.73 12.58 11.96 4979.63 (-11361.80,-0.53)

hu

-20 0.16 0.3709 103.72 12.58 11.97 4980.39 (-11345.60,-0.53)
-10 0.18 0.3709 103.72 12.58 11.97 4980.28 (-11348.23,-0.53)
0 0.2 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.22 0.3708 103.73 12.58 11.97 4980.12 (-11354.11,-0.53)
20 0.24 0.3708 103.73 12.58 11.96 4980.05 (-11357.70,-0.53)

τ

-20 0.0658 0.3437 104.46 11.76 11.60 5101.48 (-12416.54,-0.54)
-10 0.0740 0.3575 104.09 12.18 11.79 5039.67 (-11883.50,-0.53)
0 0.0822 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.0904 0.3838 103.36 12.97 12.12 4922.86 (-10932.02,-0.52)
20 0.0986 0.3964 103.01 13.34 12.26 4867.43 (-10485.44,-0.52)

p0

-20 0.4 0.3986 83.38 14.58 13.57 4480.58 (-9232.77,-0.78)
-10 0.45 0.3851 92.48 13.59 12.80 4714.00 (-10189.88,-0.65)
0 0.5 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
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10 0.55 0.3557 117.94 11.54 11.07 5288.79 (12988.38,-0.50)
20 0.6 0.3393 136.43 10.45 10.08 5653.79 (-14638.19,-0.47)

ϵ

-20 0.72 0.3789 105.01 13.17 12.07 5034.12 (-10737.55,-0.53)
-10 0.81 0.3747 104.36 12.86 12.02 5006.61 (-11058.12,-0.53)
0 0.9 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.99 0.3674 103.09 12.32 11.93 4954.86 (-11618.79,-0.53)
20 1.08 0.3643 102.47 12.07 11.90 4930.46 (-11860.58,-0.53)

θ

-20 0.008 0.3710 103.71 12.58 11.97 4980.88 (-11340.13,-0.53)
-10 0.009 0.3709 103.72 12.58 11.97 4980.53 (-11345.75,-0.53)
0 0.01 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.011 0.3708 103.73 12.58 11.96 4979.90 (-11357.29,-0.53)
20 0.012 0.3707 103.73 12.58 11.96 4979.54 (-11364.12,-0.53)

γ

-20 0.016 0.3705 103.76 12.57 11.94 4979.12 (-11380.87,-0.53)
-10 0.018 0.3707 103.74 12.57 11.95 4979.66 (-11366.13,-0.53)
0 0.02 0.3708 103.72 12.58 11.97 4980.21 (-11351.85,-0.53)
10 0.022 0.3710 103.70 12.59 11.98 4980.76 (-11337.29,-0.53)
20 0.024 0.3712 103.69 12.59 11.99 4981.30 (-11322.77,-0.53)

Observations with managerial insights
To observe the sensitivity of the inventory parameters on the optimal solution, the data provided in the numerical
example are considered.

1. Here observed that Eigen values of Hessian Matrix at corresponding value of p∗ and T ∗ all are negative, means
that profit is maximize at (p∗, T ∗).

2. The scale demand a and α have positive impact on selling price and total profit of retailer. This finding implies
that a higher scale demand inspires a retailer to set a high selling price and gain more profit.

3. An increasing the ordering cost A lead to gradually decrease the selling price and increase the cycle time, while
the total profit will be decreases. This finding implies that the high ordering cost may negative impact on retailer
total profit.

4. Higher value of holding cost for new product and buyback used product which negative impacts on retailer’s
total profit. So, retailer should try to reduce holding cost for new product and buyback used product for reduces
the loss.

5. Higher rate of depreciation on purchase cost (d) for used buy back product which negative impact on retailer’s
total profit. So, for obtaining more profit, retailer should be reduced value of d.

6. Selling price discount (p0) facility on used buyback product is more effective to gain the retailer’s total profit. This
finding implies that retailer’s gives to more price discount on used buyback product during resell to customers,
increases total profit with increases selling price and ordering quantity.

7. Optimal selling price increase when system parameters a, α, d, h, hu and p0 increases but if parameters b, C, ϵ, β,A, τ
increase then selling price decrease. Admittedly, p is highly positive sensitive to a, α, d, p0 and strongly negative
sensitive to b, C, ϵ.

8. When the value of the parameters a, α, p0 increase, the optimal total profit will increase, However, for increasing
in parameter b, β, C,A, d, ϵ, h, τ, θ then total profit will decrease.

9. It is noted that replenishment cycle time T is positively related to system parameters b, A, τ and negatively related
to a, α, β. However, not much effect in cycle time for change in holding cost parameters and remaining others.

10. The higher rate of deterioration of new product (θ) which affects gradually decreases the retailer’s total profit.
Retailer’s total profit may gradually increases due to increase the rate of deterioration (γ) of used buyback product.
This finding implies that the higher selling price and higher rate of deterioration of new product may negative
effects on total profit but lower selling price, higher ordering quantity and higher rate of deterioration of used
buyback product may positive impacts on retailer’s total profit.
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7. CONCLUSION

This study is an attempt to formulate inventory system in order to maximize the retailer’s total profit who sells the
new product as well as collets used products from the customers and resell them (a product like plastic bags, water
bottles, mobile phones, marker pens, battery, etc). It is assumed that items are deteriorating and its demand rate (of
new product as well as used products) is price sensitive. We presented mathematical formulation of the scenario and
the optimal selling price, replenishment time, ordering quantity of new product, and optimal quantity of used product
are determined using classical optimization. The numerical example has been solved to validate the proposed model.
The sensitivity analysis of various key parameters on the optimal solutions is carried out for authentication of optimal
strategies. The possible extension of this model is to be considering rework of used buyback product and again sell it,
stock dependent demand, advertisement dependent demand, trade credit policy, shortages etc., case may consider.
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APPENDIX: A

To show second order derivative of π(p, T ) with respect to T is less than zero.

∂2π(p, T )

∂T 2
=− 2Cap−b

T
ψ1 −

hap−be−Tϵ

T (ϵ− θ)θ
ψ2 −

hap−be−Tϵ

T (ϵ− θ)θϵ
ψ3 −

(
2A

T 3
− η1

)
− hu
Tγ2

ψ4 −
(
hu
2Tγ

+
hu

T 3 + γ3

)
ψ5 −

hu
2Tγ3

ψ6 +

{(
− hu
T 2γ2

ψ7 −
hu
T 2γ3

ψ8

)
+ η2

}
− ap−b+1

T
ψ9 −

C(1− d)

(T − τ)
ψ10.

(A.1)

Since Eq. (A.1) satisfied following conditions,
a > 0, 0 < b < 1, 0 < ϵ < 1, 0 < β < 1, p ≥ 0, T > τ , p > C and ϵ ̸= θ, 0 < γ < 1.

And

ψ1 =
1

T 2(ϵ− θ)
− eT (ϵ−θ)

(
(ϵ− θ)

2
+

1

T
+

1

T 2(ϵ− θ)

)
> 0,

ψ2 =
(
eTϵθ − eTθϵ+ ϵ− θ

)(
ϵ+

2

T
+

1

T 2ϵ

)
> 0,

ψ3 = θϵ2eTϵ − θ2ϵeTθ > 0,

ψ4 =

[
−γ3αβ(T 2 − τ2) + 2αβγ2(T − τ) + 2γ3pp0(T − τ)
−2γ3(p− α)(T − τ) + 2αβγ(eγ(T−τ) − 1)

]
> 0,

ψ5 =

[
γ2αβ(T 2 − τ2)− 2γ2pp0(T − τ) + 2γ2(p− α)(T − τ)
+2αβγ(τ − Teθ(T−τ)) + 2(eγ(T−τ) − 1)(γpp0 + αβ + αγ − pγ)

]
> 0,

ψ6 =

[
γ4αβ(T 2 − τ2)− 2γ4pp0(T − τ)− 2γ3αβ(2T − τ)
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]
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ψ7 =

[
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]
< 0,

ψ8 =
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It is shown that,

∂2π(p, T )
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T 3
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T
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(T − τ)
ψ10 < 0

(A.1)

Hence, the Eq. (18) has a unique solution and this satisfies the sufficient condition for the maximum. Competed the
proof.
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