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RICHARDSON EXTRAPOLATION OF KANTOROVICH AND
DEGENERATE KERNEL METHODS FOR FREDHOLM

INTEGRAL EQUATIONS OF THE SECOND KIND
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Communicated by A. Jiménez-Vargas

Abstract. We propose two methods based on projections for approximating
the solution of Fredholm integral equations of the second kind. The projection
is either the orthogonal projection or an interpolatory projection onto a space
of piecewise polynomials of any degree ≤ r−1. We show that the two methods
have asymptotic series expansions and that the orders of convergence can be
further improved by multi-step Richardson extrapolation, where the calculation
is repeated with each subinterval halved. These orders of convergence are
preserved in the corresponding discrete methods obtained by calculating the
integrals with a numerical quadrature formula. Numerical examples are given
to validate the theoretical estimates.

1. Introduction

Let us consider the Fredholm integral equation defined on X = L∞[0, 1] by

u(s)−
∫ 1

0

κ(s, t)u(t)dt = f(s), 0 ≤ s ≤ 1, (1.1)

where κ denotes a smooth kernel, f is a real continuous function, and u is an
unknown function. Classical methods for the numerical solution of (1.1) include
the Galerkin method based on the orthogonal projection onto a finite-dimensional
subspace of X and the collocation method based on an interpolatory projection
(see [4]). The iterated Galerkin solution is obtained by one step of iteration
and was proposed by Sloan [13]. The authors in [2] developed a new type of
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superconvergent Nyström and degenerate kernel methods for eigenvalue problems.
The Kantorovich method, based on “Kantorovich regularization” (Kantorovich,
1948) was discussed by Schock [11]. It is shown that if the right-hand side f of the
operator equation is less smooth than the kernel of the integral operator, then the
Kantorovich solution has a higher order of convergence than the Galerkin solution.
Sloan [14] also introduced the iterated Kantorovich method and established that
it has a faster convergence than the Galerkin, iterated Galerkin, and Kantorovich
methods. Recently, this method was investigated in [1] in the nonlinear case.

One is often interested in improving the orders of convergence of the
approximate solutions. Asymptotic error analysis of approximate solutions is
a classical numerical analysis topic. If the error expansions for numerical
solutions are established, then the Richardson extrapolation can then be used
to obtain approximate solutions of higher order. Asymptotic series expansions
for the iterated Galerkin and iterated collocation solutions were proved by
Mclean [10]. Then for the degenerate and Nyström methods, they were proved
in [3]. Asymptotic series expansions for the iterated collocation method were also
obtained in [9]. This method was already used for iterated modified projection
solutions in [7] and for the corresponding eigenvalue problems in [8].

The main aim of this paper is to give an asymptotic error expansion of
the iterated Kantorovich method. Thus the Richardson extrapolation can be
performed on the solution, and this will increase the accuracy of the numerical
solution greatly. We also give an asymptotic expansion for a degenerate kernel
solution, and we show that the extrapolated solution converges as rapidly as the
corresponding one in the Kantorovich method. We show that the obtained orders
of convergence are still valid after taking into account the errors introduced by
the numerical quadrature formula.

Now, we give a summary of the paper. In Section 2, notation is set,
the numerical methods are described, and some relevant results are recalled.
Asymptotic series expansion for the iterated Kantorovich method with both the
orthogonal projection and the interpolatory projection at Gauss points is obtained
in Section 3. The degenerate kernel method using an interpolatory projection is
analyzed in Section 4. Section 5 is devoted to the discrete version of the proposed
methods. Numerical results are given in Section 6.

2. Preliminaries and notations

For any positive integer n, let
∆n : 0 = s0 < s1 < s2 < · · · < sn−1 < sn = 1 (2.1)

be the uniform partition of [0, 1], with knots {si = i
n
, i = 0, . . . , n} and

meshlength h = 1
n
. For a fixed r ≥ 1, we denote by Πr the space of polynomials

of degree ≤ r − 1. Let
Xn :=

{
v : [0, 1] −→ R : v|[si−1,si] ∈ Πr, 1 ≤ i ≤ n

}
be the set of functions that are polynomials of degree ≤ r−1 on each subinterval
[si−1, si]. The functions in Xn need not be continuous at the node points si.
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We consider two types of projections from X to Xn.

• The map πn is the restriction to X of the orthogonal projection from L2[0, 1]
to Xn. Then

(πnu)(s) :=
nr∑
i=0

⟨u, φi⟩φi(s), (2.2)

where {φ1, φ2, . . . , φnr} is an orthogonal basis for Xn and ⟨·, ·⟩ is the inner product
in L2[0, 1].
• For u ∈ C[0, 1], let πnu denote the unique piecewise polynomial of degree r− 1
that satisfies

(πnu)(tij) = u(tij), (2.3)
where the collocation points are

tij := (i− 1 + τj)h, 1 ≤ i ≤ n, 1 ≤ j ≤ r,

and {τ1, . . . , τr} are the r Gauss points in [0, 1]. This map, if necessary, is extended
to X as in [5], and then πn is a projection. In both cases, πn converges pointwise
to the identity operator. Moreover, the projection πn is uniformly bounded with
respect to n, that is,

p = sup
n

∥πn∥X→X < ∞.

Let u, v ∈ Cr[0, 1]. If πn is the restriction of the orthogonal projection to L∞[0, 1],
then it follows that∣∣∣∣∫ 1

0

u(t)(I− πn)v(t)dt

∣∣∣∣ = |⟨u− πnu, v − πnv⟩|

≤ (c1)
2∥u(r)∥∞∥v(r)∥∞h2r.

(2.4)

Let α be a positive integer. For u ∈ Cα[0, 1], we set

∥u∥α,∞ :=
α∑

i=0

∥u(i)∥∞.

If πn is the interpolatory projection at r Gauss points, then for u ∈ Cr[0, 1] and
v ∈ C2r[0, 1] (see [6]) it holds∣∣∣∣∫ 1

0

u(t)(I− πn)v(t)dt

∣∣∣∣ ≤ c2∥u∥r,∞∥v∥2r,∞h2r, (2.5)

where c2 is a constant independent of n.
Let K be the integral operator defined by

(Ku)(s) :=

∫ 1

0

κ(s, t)u(t)dt, s ∈ [0, 1]. (2.6)

Then (1.1) can be written in the operator form as
(I−K)u = f. (2.7)

For our convenience, we let
z := Ku. (2.8)
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Then writing the solution to (2.7) as u = z + f, we have
z = Kz +Kf. (2.9)

The Kantorovich method is obtained by applying the classical projection method
to the “regularized” equation (2.9). Thus the approximate solution is

un = zn + f, (2.10)
where zn satisfies

(I− πnK)zn = πnKf. (2.11)
Note that the above equations are equivalent to a single equation for un

(I− πnK)un = f. (2.12)
Throughout this paper, this method will be, respectively, called a Kantorovich-
Galerkin or Kantorovich-collocation method when the orthogonal projection or
the interpolatory projection is used.

Finally, the iterated Kantorovich approximation is defined by
ũn = Kun + f = z̃n + f, (2.13)

where
z̃n = Kzn +Kf. (2.14)

From (2.11) and (2.13), we observe that zn = πnz̃n, and hence
(I−Kπn)z̃n = Kf. (2.15)

Let πn be the interpolatory projection given by (2.3). Interpolation is a simple way
to obtain degenerate kernel approximations. In fact, we consider the degenerate
kernel

hn(s, t) := πnκ(s, t), s, t ∈ [0, 1],

obtained by interpolating the kernel with respect to the variable t. Then the
associated degenerate kernel operator is defined by

(Knu)(s) :=

∫ 1

0

hn(s, t)u(t)dt. (2.16)

The corresponding approximation of (1.1) is
(I−Kn)u

D
n = f. (2.17)

Using the expression of πn, equations (2.15) and (2.17) can be reduced to linear
systems of equations of size nr.

Let B0(t) = 1 and for j ≥ 1, let Bj(τ) denote the Bernoulli polynomial of
degree j. Let Bj be the periodic Bernoulli function defined by

Bj(t) = Bj(t), 0 ≤ t < 1, Bj(t+ 1) = Bj(t), t ∈ R.
We give the following analysis of Euler–Maclaurin series expansion (Steffensen
[9]). Let f : [0, 1] → R be ℓ times differentiable on [0, 1] and let 0 ≤ τ ≤ 1. Then

h
n∑

i=1

f [(i− 1 + τ)h] =

∫ 1

0

f(t)dt+
ℓ∑

j=1

Bj(τ)

j!

[
f (j−1)(t)

]1
t=0

hj + Eℓ, (2.18)
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where
Eℓ := − hℓ

∫ 1

0

Bℓ(τ − nt)

ℓ!
f (ℓ)(t)dt.

Henceforth, we shall always assume that the kernel function κ belongs to
C2m+2[0, 1]2 for some integer m ≥ 0. This implies that K : Cℓ[0, 1] → C2m+2[0, 1]
is compact for 0 ≤ ℓ ≤ 2m + 2. Furthermore, it is assumed that −1 is not an
eigenvalue of K. These assumptions ensure that (I−K)−1 : Cℓ[0, 1] → C2m+2[0, 1]
exists and is uniformly bounded.
In the next section, we establish an asymptotic error expansions for the iterated
kantorovich method.

3. Kantorovich method

Throughout this paper, we assume that the sum
∑n2

n1
equals zero when n1 > n2.

Let η1, η2, . . . , be the sequence of orthonormal polynomials in with respect to the
inner product considered above, that is, ηp is a polynomial of degree p− 1, and

⟨ηp, ηq⟩ = δpq for all p, q ≥ 1.

Define
Λr(σ, τ) :=

r∑
p=1

ηp(σ)ηq(τ).

The following result was proved by Mclean [10].
Theorem 3.1. Let πn be the projection operator defined by (2.2) or (2.3). Assume
that u ∈ C2m+2[0, 1]. Then

(Kπnu)(s) = (Ku)(s) +
m∑
p=r

h2p(R2pu)(s) + O(h2m+2), (3.1)

where, for the orthogonal projection, we have

(Rpu)(s) = cpp(Ku(p))(s) +

p−1∑
q=1

cpq

[(
∂

∂t

)p−q−1

κ(s, t)u(q)(t)

]1
t=0

,

and
cpq :=

∫ 1

0

∫ 1

0

Λr(σ, τ)
Bp−q(τ)

(p− q)!

(σ − τ)q

q!
dσdτ,

while, for the interpolatory projection, it holds that

(Rpu)(s) = c̄pp(Ku(p))(s) +

p−1∑
q=r

c̄pq

[(
∂

∂t

)p−q−1

κ(s, t)u(q)(t)

]1
t=0

, (3.2)

c̄pq := −
∫ 1

0

Φq(τ)
Bp−q(τ)

(p− q)!
ωr(τ)dτ, (3.3)

Φq(τ) :=

∫ 1

0

(σ − τ)q−r

(q − r)!

[τ1, . . . , τr, τ ](• − σ)r−1
+

(r − 1)!
dσ, (3.4)

and ωr(τ) :=
∏r

i=1(τ − τi).
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The proof of the proposition below is similar to the proof of [10, Theorem 2.1].
Proposition 3.2. For n large enough, when restricted to C2m+2[0, 1], we have

(Kπn − I)−1 = (K− I)−1 +
m∑
p=r

h2pSp + O(h2m+2), (3.5)

where
Sp = −(K− I)−1R2p(K− I)−1, (r ≤ p ≤ 2r − 1),

Sp = −(K− I)−1

(
R2p(K− I)−1 +

p−r∑
i=r

R2p−2iSi

)
(2r ≤ p ≤ m).

Proof. Note first that R2p maps C2m+2[0, 1] on itself. On the other hand,

(Kπn − I) = (K− I) +
m∑
p=r

h2pR2p +R2m+2, (3.6)

where R2m+2 maps C2m+2[0, 1] on itself and ∥R2m+2∥ = O(h2m+2). Using (3.6) for
the integers m and m− p, we obtain successively

(Kπn − I)(K− I)−1 = I+
m∑
p=r

h2pR2p(K− I)−1 +R2m+2(K− I)−1,

m∑
p=r

h2p(Kπn − I)Sp =
m∑
p=r

h2p

(
(K− I)Sp +

m−p∑
i=r

h2iR2iSp +R2m−2p+2Sp

)

=
m∑
p=r

h2p

(
(K− I)Sp +

p−r∑
i=r

R2p−2iSi

)
+ h2p

m∑
p=r

R2m−2p+2Sp.

Set Bn := I − (Kπn − I)(K − I)−1 −
m∑
p=r

h2p(Kπn − I)Sp. It follows from the

definition of Sp that

Bn = −
m∑
p=r

h2p

(
R2p(K− I)−1 + (K− I)Sp +

p−r∑
i=r

R2p−2iSi

)

=−

(
R2m+2(K− I)−1 + h2p

m∑
p=r

R2m−2p+2Sp

)

= −

(
R2m+2(K− I)−1 + h2p

m∑
p=r

R2m−2p+2Sp

)
= O(h2m+2).

Since the operators πn converge to identity operator pointwise and K is compact,
then for n large enough, the operators (Kπn − I)−1 exist and are uniformly
bounded. Therefore, it suffices to multiply Bn by (Kπn − I)−1 to obtain the
desired result. □



210 C. ALLOUCH, M. ARRAI, H. BOUDA

For ũn satisfying (2.13), define
un,0 := ũn

and
un,ℓ :=

4ℓ+r−1u2n,ℓ−1 − un,ℓ−1

4ℓ+r−1 − 1
, ℓ = 1, 2, . . . ,m− r. (3.7)

Now, we are ready to state and prove the main result of this section.
Theorem 3.3. Let the right-hand side f of (1.1) be in C[0, 1]. Then

un,ℓ = u+
m∑
p=ℓ

h2r+2pAℓ,p + O(h2m+2), ℓ = 0, 1, . . . ,m− r, (3.8)

where the functions Aℓ,p are independent of h.
Proof. From (2.7) and (2.13), we have ũn − u = z̃n − z, and by using (2.9) and
(2.15), we can write

z̃n − z = (K− I)−1Kf − (Kπn − I)−1Kf. (3.9)
Thus since Kf ∈ C2m+2[0, 1], (3.5) gives

ũn − u = −
m∑
p=r

h2pSp(Kf) + O(h2m+2). (3.10)

From the above asymptotic error expansion, it follows that the function un,0

approximates u with accuracy of order O(h2r). For a general integer ℓ ≥ 1, the
ℓth step Richardson extrapolation un,ℓ approximates u with accuracy of order
O(h2r+2ℓ). □

4. Degenerate kernel method

Let πn be the interpolatory projection defined by (2.3) and let [ti1, . . . , tir, t]u
denote the divided difference of u based on {ti1, . . . , tir, t}. Then we have the
following result.
Proposition 4.1. Let Φq be the function defined by (3.4) and assume that u ∈
C2m+2[0, 1]. Then for any t = (i − 1 + τ)h ∈ [si−1, si], where 0 ≤ τ ≤ 1 and
1 ≤ i ≤ n, we have

(u− πnu)(t) =
2m+1∑
q=r

hqu(q)(t)Φq(τ)ωr(τ) + O(h2m+2). (4.1)

Proof. For i = 1, . . . , n, the Newton remainder for polynomial interpolation is

(u− πnu)(t) = [ti1, . . . , tir, t]u
r∏

j=1

(t− tij), t ∈ [si−1, si], (4.2)
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and the Peano representation of divided differences (see [15]) gives

[ti1, . . . , tir, t]u =

∫ si

si−1

[ti1, . . . , tir, t](• − v)r−1
+

(r − 1)!
u(r)(v)dv,

=

∫ 1

0

[τ1, . . . , τr, τ ](• − σ)r−1
+

(r − 1)!
u(r)[(i− 1 + σ)h]dσ. (4.3)

Then using Taylor’s theorem,

u(r)[(i− 1 + σ)h] =
2m+1∑
q=r

u(q)[(i− 1 + τ)h]

(q − r)!
(σ − τ)q−rhq−r + O(h2m+2−r). (4.4)

Noting that t− tij = (τ − τj)h, we have
r∏

j=1

(t− tij) = ωr(τ)h
r. (4.5)

Now the result follows immediately by combining (4.2)–(4.5). □
In the next theorem, we provide the asymptotic expansion for the error (Kn −

K)u.

Theorem 4.2. Assume that f ∈ C2m+2[0, 1]. Then

(Knu)(s) = (Ku)(s) +
m∑
p=r

h2p(T2pu)(s) + O(h2m+2), (4.6)

where

(Tpu)(s) := c̄pp(Ku)(p)(s) +

p−1∑
q=r

c̄pq

[(
∂

∂t

)p−q−1
∂qκ

∂tq
(s, t)u(t)

]1
t=0

,

and the constants c̄pq are defined by (3.3).
Proof. For fixed s ∈ [0, 1], we denote κs(t) := κ(s, t). Then (4.1) implies

[(K−Kn)u](s) =
n∑

i=1

∫ si

si−1

[(I− πn)κs(t)]u(t)dt,

=
2m+1∑
q=r

hq

n∑
i=1

∫ si

si−1

Φq(τ)κ
(q)
s (t)u(t)dt+ O(h2m+2),

=
2m+1∑
q=r

hq

∫ 1

0

Φq(τ)

{
h

n∑
i=1

(κ(q)
s u)[(i− 1 + τ)h]

}
ωr(τ)dτ

+ O(h2m+2).

(4.7)
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According to the summation formula (2.18) for the function f = κ
(j)
s ∗u, we have

h
n∑

i=1

(κ(q)
s u)[(i− 1 + τ)h] =

∫ 1

0

∂qκ

∂tq
(s, t)u(t)dt

+

2m+1−q∑
p=1

Bp(τ)

p!

[(
∂

∂t

)p−1
∂qκ

∂tq
(s, t)u(t)

]1
t=0

hp

+ O(h2m+2−p).

Substituting the above equality into (4.7), and noting B0(τ) = 1, one finds, after
rearranging,

[(Kn −K)u](s) =
2m+1∑
p=r

(Tpu)(s)h
p + O(h2m+2).

Thus to complete the proof, we need only verify that Tpu = 0 if p is odd or if
p ≤ 2r − 1. Note first that Φq is a polynomial of degree q − r (see [12, p. 128]).
Since the polynomial ωr is orthogonal in L2[0, 1] to every polynomial of degree
≤ r − 1, we conclude that Tpu = 0 for all p ≤ 2r − 1.
On the other hand, for all 1 ≤ p ≤ r, we have τr−p+1 = 1 − τp. Then using the
fact that

[τ1, . . . , τr, 1− τ ](• − σ)r−1
+ = [τ1, . . . , τr, τ ][• − (1− σ)]r−1

+

and ωr(1− τ) = (−1)rωr(τ), it holds
Φq(1− τ) = (−1)q−rΦq(τ).

Furthermore, the Bernoulli polynomials satisfy
Bj(1− τ) = (−1)jBj(τ) j ≥ 0,

which means∫ 1

0

Φq(τ)Bp−q(τ)ωr(τ)dτ = (−1)j
∫ 1

0

Φq(τ)Bp−q(τ)ωr(τ)dτ.

Therefore c̄pq = 0 for r ≤ q ≤ p when p is odd. □
Let un,0 := uD

n and let un,ℓ be the sequence defined by (3.7). The following
result shows that the solution un,ℓ has error expansions in even powers of h,
beginning with a term in h2r+2ℓ.
Theorem 4.3. Let the right-hand side f of (1.1) be in C2m+2[0, 1]. Then

un,ℓ = u+
m∑
p=ℓ

h2r+2pCℓ,p + O(h2m+2), ℓ = 0, 1, . . . ,m− r, (4.8)

where the functions Cℓ,p are independent of h.
Proof. Since ∥K−Kn∥ → 0 as n → +∞, for all large n, (I−Kn) is invertible and
uniformly bounded. Following the same steps as in Proposition 4.1, it is shown
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that there exist bounded linear operators S̄p : C
2m+2[0, 1] → C2m+2[0, 1], r ≤ p ≤

m, such that

(I−Kn)
−1 = (I−K)−1 +

m∑
p=r

h2pS̄p + O(h2m+2). (4.9)

Thus from the identity
u− uD

n = (I−K)−1f − (I−KD
n )

−1f

we obtain
u− uD

n =
m∑
p=r

h2pS̄p(f) + O(h2m+2), (4.10)

and consequently the error expansion (4.8) is proved. □

5. Discrete method

In practice, the integrals in the definitions of the orthogonal projection πn and
the operators K and Kn involved in (2.2), (2.6), and (2.16) are not computed
exactly. It is necessary to replace them with a numerical quadrature formula,
giving rise to discrete methods. In this section, we provide an asymptotic
error expansion for the discrete iterated Kantorovich-collocation method, and
the analysis can be extended to Kantorovich–Galerkin and degenerate kernel
methods. We consider a basic quadrature formula defined by

Q(f) :=

ρ∑
j=1

wjf(σj) ≃
∫ 1

0

f(t)dt, (5.1)

with nodes σ1, σ2, . . . , σρ ∈ [0, 1], and weights are such that
ρ∑

j=1

wj = 1.

For 1 ≤ i ≤ n and 1 ≤ j ≤ ρ, let sij := (i− 1 + σj)h. Then (5.1) gives rise to the
composite quadrature formula

Qn(f) := h
n∑

i=1

ρ∑
j=1

wjf(sij) ≃
∫ 1

0

f(t)dt. (5.2)

Thus the Nyström approximation of the integral operator K is defined as

(KD
n u)(s) := Qn(κ(s, .)u(.)) = h

n∑
i=1

ρ∑
j=1

wjκ(s, sij)u(sij). (5.3)

Suppose that the quadrature formula (5.1) is symmetric, that is,
σℓ−j+1 = 1− σj and wℓ−j+1 = wj, 1 ≤ j ≤ ρ,

and is exact for all polynomials of degree ≤ 2r − 1, that is

Qn =

∫ 1

0

p(t)dt, ∀p ∈
∏

2r−1
.
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The following result can be proved by using Proposition 4.1.
Theorem 5.1. Let πn be the interpolatory projection defined by (2.3). Assume
that u ∈ C2m+2[0, 1]. Then

(KD
n πnu)(s) = (KD

n u)(s) +
2m+1∑
p=r

h2p(R2pu)(s) + O(h2m+2), (5.4)

where Rp is defined by (3.2) with

c̄pq := − Q(ΦqBp−qωr)

(p− q)!
. (5.5)

Let ṽn be the iterated discrete solution satisfying ṽn = ỹn + f, where
(I−KD

n πn)ỹn = KD
n f. (5.6)

Let un,0 := vn and let un,ℓ be given by (3.7). Then we have the following result.
Theorem 5.2. Assume that f ∈ C[0, 1]. Then the solution un,ℓ has error
expansions in even powers of h, beginning with a term in h2r+2ℓ.
Proof. According to [10], we have

(KD
n u)(s) = (Ku)(s) +

2m+1∑
p=r

(T2pu)(s)h
2p + O(h2m+2), (5.7)

where

(Tpu)(s) :=
Q(Bp)

(p)!

[(
∂

∂t

)p−1

κ(s, t)u(t)

]1
t=0

provided u ∈ C2m+2[0, 1]. Therefore, writing
KD

n πn −K = KD
n πn −KD

n +KD
n −K

it follows from Theorem 5.1 and (5.7) that

KD
n πn −K =

2m+1∑
p=r

U2ph
2p + O(h2m+2).

Using the same arguments as previously, we can show that

(I−KD
n πn)

−1 − (I−K)−1 =
2m+1∑
p=r

V2ph
2p + O(h2m+2), (5.8)

for some bounded linear operators U2p, V2p, p = r, . . . , 2m+ 1. Then
ṽn − u = ỹn − z = (I−KD

n πn)
−1KD

n f − (I−K)−1Kf,

= (I−KD
n πn)

−1Kf − (I−K)−1Kf + (I−KD
n πn)

−1(KD
n f −Kf).
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Using (5.7) and (5.8), it holds
(I−KD

n πn)
−1(KD

n f −Kf) =(I−K)−1(KD
n f −Kf)

+
2m+1∑
p=r

V2p(K
D
n f −Kf)h2p + O(h2m+2),

=
2m+1∑
p=r

{
(I−K)−1T2p + V2p

2m+1∑
q=r

U2qh
2q

}
h2p

+ O(h2m+2).

Therefore

ṽn − u =
2m+1∑
p=r

{
V2pKf + (I−K)−1T2p + V2p

(
2m+1∑
q=r

U2qh
2q

)}
h2p + O(h2m+2).

(5.9)
□

Remark 5.3. Note that when ρ = r and the quadrature points used in the
quadrature formula (5.1) are the r Gauss points in [0, 1], that is, σi = τi, the
operator KD

n πn coincides with the operator KD
n . In such a case, the discrete

iterated Kantorovich-collocation method is reduced to the Nyström method
applied to the regularized equation (2.9).

6. Numerical results

In this section, numerical examples are given to illustrate the theory established
in the previous sections. Note that all required integrals were calculated by using
the 2-points Gauss quadrature formula.
Example 6.1. We consider the following Fredholm integral equation with a
degenerate kernel

u(s)−
∫ 1

0

es+tu(t)dt = f(s), s ∈ [0, 1],

where f(s) is selected so that u(s) = s.

Let Xn be the space of piecewise constant functions (r = 1) with respect to the
uniform partition of [0, 1]

0 =
1

n
<

2

n
< · · · < n

n
= 1.

The projection πn is chosen to be either the interpolatory projection at the nr = n
midpoints

t
(n)
i :=

2i− 1

2n
, i = 1, . . . , n,

or the restriction to L∞[0, 1] of the orthogonal projection from L2[0, 1] to Xn. Let
En

ℓ := ∥u− un,ℓ∥∞, l = 0, 1, 2, 3,
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Table 1. Kantorovich–Galerkin method.

n En
0 α0 En

1 α1 En
2 α2 En

3 α3

2 8.29× 10−2 – 1.11× 10−4 – 4.65× 10−8 – 4.26× 10−12 –
4 2.06× 10−2 2.01 6.88× 10−6 4.01 7.22× 10−10 6.01 1.65× 10−14 8.03
8 5.15× 10−3 2.00 4.29× 10−7 4.00 1.13× 10−11 6.00 6.44× 10−17 8.01
16 1.29× 10−3 2.00 2.68× 10−8 4.00 1.76× 10−13 6.00
32 3.22× 10−4 2.00 1.68× 10−9 4.00
64 8.05× 10−5 2.00

Table 2. Kantorovich-collocation method.

n En
0 α0 En

1 α1 En
2 α2 En

3 α3

2 1.26× 10−1 – 6.15× 10−4 – 7.17× 10−7 – 2.09× 10−10 –
4 3.11× 10−2 2.02 3.78× 10−5 4.03 1.10× 10−8 6.03 8.03× 10−13 8.03
8 7.74× 10−3 2.01 2.35× 10−6 4.01 1.71× 10−10 6.01 3.12× 10−15 8.01
16 1.93× 10−3 2.00 1.47× 10−7 4.00 2.66× 10−12 6.01
32 4.83× 10−4 2.00 9.17× 10−9 4.00
64 1.21× 10−4 2.00

Table 3. Degenerate kernel method.

n En
0 α0 En

1 α1 En
2 α2 En

3 α3

2 5.91× 10−2 – 4.73× 10−4 – 3.86× 10−7 – 1.37× 10−10 –
4 1.44× 10−2 2.03 2.92× 10−5 4.02 5.89× 10−9 6.03 5.25× 10−13 8.02
8 3.58× 10−3 2.01 1.82× 10−6 4.00 9.16× 10−11 6.01 2.04× 10−15 8.01
16 8.95× 10−4 2.00 1.14× 10−7 4.00 1.43× 10−12 6.00
32 2.23× 10−4 2.00 7.11× 10−9 4.00
64 5.59× 10−5 2.00

where un,ℓ is defined by (3.7) and un,0 is the iterated Kantorovich solution ũn

or the degenerate kernel solution uD
n . The numerical orders of convergence are

computed as

αℓ =
log
(

En
ℓ

E2n
ℓ

)
log(2)

.

The expected orders of convergence are
α0 = 2, α1 = 4, α2 = 6, α3 = 8.

The results are given in Tables 1–3.
It can be seen from the above tables that the computed orders of convergence

match well with the theoretical ones.
Example 6.2. Consider

u(s)−
∫ 1

0

sinh(
√
2s− 1) cosh(t− 2)u(t)dt = f(s), s ∈ [0, 1], (6.1)

where f ∈ C[0, 1] is so chosen that u(s) =
√
s is the solution to (6.1). The results

are given in Tables 4–6.
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Table 4. Kantorovich–Galerkin method.

n En
0 α0 En

1 α1 En
2 α2 En

3 α3

2 1.16× 10−2 – 4.26× 10−5 – 9.59× 10−8 – 3.59× 10−11 –
4 2.92× 10−3 1.98 2.75× 10−6 3.95 1.53× 10−9 5.97 1.44× 10−13 8.01
8 7.33× 10−4 1.99 1.73× 10−7 3.99 2.41× 10−11 5.99 5.66× 10−16 8.00
16 1.84× 10−4 2.00 1.09× 10−8 4.00 3.77× 10−13 6.00
32 4.59× 10−5 2.00 6.79× 10−10 4.00
64 1.15× 10−5 2.00

Table 5. Kantorovich-collocation method.

n En
0 α0 En

1 α1 En
2 α2 En

3 α3

2 1.71× 10−2 – 7.76× 10−5 – 8.28× 10−8 – 1.92× 10−11 –
4 4.33× 10−3 1.98 4.93× 10−6 3.98 1.31× 10−9 5.98 7.59× 10−14 7.98
8 1.09× 10−3 1.99 3.09× 10−7 3.99 2.06× 10−11 5.99 2.98× 10−16 8.00
16 2.72× 10−4 2.00 1.94× 10−8 4.00 3.22× 10−13 6.00
32 6.80× 10−5 2.00 1.21× 10−9 4.00
64 1.70× 10−5 2.00

Table 6. Degenerate kernel method.

n En
0 α0 En

1 α1 En
2 α2 En

3 α3

2 2.96× 10−3 – 1.04× 10−4 – 1.47× 10−7 – 6.48× 10−11 –
4 6.63× 10−4 2.16 6.67× 10−6 3.96 2.36× 10−9 5.96 2.81× 10−13 7.84
8 1.60× 10−4 2.04 4.19× 10−7 4.00 3.72× 10−11 5.98 4.15× 10−16 9.40
16 4.00× 10−5 2.01 2.62× 10−8 4.00 5.82× 10−13 6.00
32 9.95× 10−6 2.00 1.64× 10−9 4.00
64 2.48× 10−6 2.00

Tables 4 and 5 illustrate that high accuracy is obtained by the extrapolated
Kantorovich method even when the solution and the right-hand side are only
continuous. However, the Richardson extrapolation in the degenerate kernel
method improves the order of convergence slightly from 2 to 2.5. The full
superconvergence order 2r+2ℓ in the case when the right-hand side is not smooth
can be obtained by applying the degenerate kernel method to the regularized
equation (2.13) instead of (1.1).
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