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Abstract. It has been known that the transition probability of the single species ASEP
with N particles is expressed as a sum of N! N-fold contour integrals which are related to
permutations in the symmetric group Sy. On other hand, the transition probabilities of the
multi-species ASEP, in general, may be expressed as a sum of much more terms than N!. In
this paper, we show that if the initial order of species is given by 2---21,12---2, 1---12 or
21---1, then the transition probabilities can be expressed as a sum of at most N! contour
integrals, and provide their formulas explicitly.
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1 Introduction

1.1 Definition of the model and previous results

In the multi-species asymmetric simple exclusion process (ASEP) on Z, particles belong to
a species labelled by one of positive integers. Each particle chooses a direction to move one
step to the right or to the left after waiting time exponentially distributed with rate 1. The
probability to choose the right direction is p and the probability to choose the left direction is
qg = 1 — p. If the target site is empty, the particle moves to the site, but if the site is already
occupied, the following rule is applied: if a particle belonging to species [ tries moving to the
target site occupied by a particle belonging to species I’ > [, then the move is prohibited,
but if I’ < [, the particle belonging to [ can move to the target site by interchanging sites
with the particle belonging to I’. If we assume that there are N particles, a state is denoted by

a pair (X, ) where X = (x1,...,2y) € ZN with 21 < --- < zy for the positions of particles and
m=mn(1)7(2)---m(N) is a permutation of a multi-set M = [i1,...,iy] with elements taken from
{1,..., N} to represent the species of particles. Here, 7 (i) represents the i*" leftmost particle’s

species. Since particles can interchange their positions, the order of species may change over
time. The transition probability from the initial state (Y, v) to state (X, ) at time ¢ is denoted
by Py, (X, m;t). Earlier works on the transition probabilities and some distributions in the
multi-species ASEP are found in [3, 6, 7, 10, 11, 12, 17, 18]. Also, the multi-species ASEP can
be considered as a special case of the coloured stochastic vertex model (see [1, 2]). According
o [12], the transition probability of the multi-species ASEP with N particles from the initial
state (Y,v) to the state (X, ) is a matrix element of an N x NV matrix Py (X;t) whose
columns v and rows 7 are labelled by 11---1,..., NN --- N. In [12], the formula of Py (X;t) is
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written

N
y(X;t) ][ ][Z A, TT (e e dgy - - dew, (1.1)

¢oeSn =1

where A, is a NV x N¥ matrix. Note that the form of (1.1) resembles (2.3) in [16]. Here, f,
implies (1/27i) [, where the contour ¢ is a positively oriented circle centered at the origin with
sufficiently small radius so that no poles except the one at the origin are included in ¢, and

(&) 224'61&'— 1

and the sum in (1.1) is over all permutations ¢ in the symmetric group Sy. The integral on the
right-hand side of (1.1) implies the matrix element-wise integral, so the (m, )™ term of Py (X ;)
is
[Py (X; t)],r,,, = P(Y,u) (X, m;t)
N

o S A TT 0 e e (12)

CoeSy i=1

The procedure introduced in [12] to find the matrix A, is as follows. Let T; be the simple
transposition which interchanges the number at the i*® slot and the number at the (i + 1)
slot. It is well known that simple transpositions 771, ...,Tn_1 generate the symmetric group Sy .
Hence, any permutation o € Sy can be written as a product of simple transpositions, that is,

o=T; --

]

-T5, (1.3)

for some i1,...,i; € {1,...,N — 1}. (Here, the expression (1.3) is not unique.) If 7; is acted on
a permutation with « at the i*® slot and 3 at the (i + 1) slot, then

Ti(---aB-)= (- Ba--),

and we denote this T; by T;(5, ) when we need to show explicitly which numbers are inter-
changed. For example, for N = 3,

T\ToTy = TVToTi(123) = T1T5(213) = T1(231) = 321,
and we write 321 = T7(3,2)7%(3,1)71(2,1). Hence, we will write (1.3) as

U:Ej(ﬁjvaj)”'ﬂ1(/817a1) (1'4)
when necessary. Corresponding to T;(3, a), we define NV x N matrix T;(8,a) b

Ti(8,0) =In® - QINORg @ IN® - ® Iy,
—_——— —_——
(i—1) times (N—i—1) times
where Iy is the N x N identity matrix and Rg, is an N 2 x N2 matrix whose columns and rows
are labelled by 11,12,...,1N,21,..., NN. The matrix elements of Rg, are given by

¢

Sga itij =kl with 7 = j,
Pg, itij =kl with 7 < j,
Qpa if ij =kl with 7 > j,
pTgo if ij = lk with 7 < j,
qTgo ifij =k with i > j,

[Rgalijr =

0 for all other cases,
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where
_ PHa&als—& (P —d€a)(Es 1)
T Dt ghads — & Tt glals —Ca
=& (p—q€p)(&a—1)
Tga = ————F Qpa = :
D+ qgaéﬂ —&a p+ qgoaéﬂ —&a
With this setting, it was obtained that A, is given by
AU :Tij(BJ'?aj)"'Til(ﬂlaal)a (16)

when o is written as in (1.4). Although the expression (1.4) is not unique, (1.6) is well-defined in
the sense that (1.6) represents the same matrix for any expression (1.4) (see [12, Remark 2.2]).

1.2 Motivation and main results
1.2.1 Motivation

It can be shown that [A,]r, = 0 in (1.2) unless both 7 and v are from the same multi-set
(see Section 2.1), and in this case, it is obvious that Py,,y(X,7;t) = 0, which physically also
makes sense. However, in general, the matrix element of A, is written as a sum because A, is
a product of matrices as seen in (1.6). If we want to know the explicit formula of Py (X, m;t),
we should know the corresponding matrix elements, [A,| ., explicitly, for all . It is interesting
that some elements of A, that are expressed as sums can be further factorized. For example,
for o =321 = T1»(2,1)T1(3,1)T%(3,2),

[Asa1]121,211 = [T2(2,1)T1(3,1)T2(3,2)]121,201 = pP32Q31T21 + pQ21531132

but we can further observe that

PP32Q31T1 + pQ21531T32 = Q21p131.532.

Actually, if we use a different expression o = 321 = T1(3,2)7>(3,1)T1(2,1), then we directly
obtain

[Asa1]121,211 = [T1(3,2)T2(3,1)T1(2,1)]121,221 = Q219731532

through matrix multiplication. However, unfortunately, not all [A,];, can be simplified to
a factorized form. In this paper, we are interested in the factorized forms of [A,];, because
single-species models for which the Bethe ansatz can be applicable have factorized forms in the
transition probabilities and some interesting probability distributions were obtained from these
transition probabilities [5, 8, 9, 12, 13, 14, 15, 16, 19]. In this paper, we show that if the initial
permutation v of speciesisoneof v =2---21,1---12,21---1and 12---2, and ¢’s expression by
simple transpositions is obtained in a special way, then [As], . is zero or written as a factorized
form

[Aslry = H Rg., (1.7)
(B,2)

where Rg, is one of Sgn, Qga, Psas P13a or q13,, which is similar to

[Aslia11= ][ Sea
(B,0)

in the (single species) ASEP [16]. The notation 4, implies that the product is taken over
all inversions (3, ) of 0. An inversion of a permutation o = o(1)---0o(N) is a pair of elements
(0(i),0(j)) with i < j and o (i) > o(j). It will remain for future works to see if some interesting
probability distributions can be obtained in neat forms from the transition probabilities with
the formulas of [A;];, given in this paper.
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1.2.2 Main results

Each permutation in Sy may be written as a product of simple transpositions in many ways via

LTy =T;T; if |i — j| = 2,
TTT =T 0T ifli—jl =1, (1.8)
T2 = 1.

One of the findings in this paper is that if ¢ is expressed as in Theorem 1.1, which is a known fact,
then [A,]r 2...21 is zero or written as (1.7). If o is expressed in a different way from Theorem 1.1,
then the form of [A;]x2..21 may not be in a factorized form.

Theorem 1.1 ([4]). Consider the following subsets of the symmetric group Sy .

21 == {1)T1}7
Yo ={1,Ts, ToTh },
Y3 = {1,T3, 13T, T3T>T' },

Svo1={L,TNn-1,TN-1TN-2,..., Tn—1---ToT1}.

For any permutation o € Sy, there is a unique element
(wi,...,wN—1) € X1 X X X -+ X Ly_1

such that o0 = wiwsg -+ - WN_1.

Theorem 1.2. Let 0 = wy ---wyn_1 be an expression as in Theorem 1.1 and let
A, =T (Bj,a5) - Tiy(Ba, a2) Ty, (Br, 1)

be the matrix corresponding to o. Then, for all N > 2,

(a) [A12...N] 2...21,2...21 =1 and [AlQ“'N]ﬂ,Q...Ql =0 ifﬂ' 7é 2---21.

(b) If 0 #12--- N, then [AU]W 5.1 18 2€TO OT written as
[As] 50 = ] R (1.9)
(8,)

where Rgqo is one of Sga, Pgas @sas PT8a:s ¢T5a. The product in (1.9) is taken over all
inversions (8, a) in o.

Remark 1.3. Theorem 1.2(b) asserts the existence of the factorized form but does not provide
information on how to choose the form of Rg,. The choice for Rg, in (1.9) depends on ¢ and .
The explicit form of (1.9) will be provided in Theorems 1.4 and 1.7.

The method to express o in Theorem 1.1 does not work for other initial orders v = 12--- 2,
1---12, 21---1. In other words, [As|r, may not be in a factorized form if v # 2.--21. For
v=12---2,1---12, 21---1, we need different methods to express ¢ by simple transpositions
for factorized forms of [A,]r .. These methods will be provided in Sections 2.3 and 2.4.

Now, we state the formulas for [A,];,. First, we find the formula of the diagonal terms.
That is, this is the case that initial order of species and the order at time t are the same.
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Theorem 1.4. Let v =2---21 and

o=wi-wy-1 =T (B, a5) - T; (b1, )

be given as in Theorem 1.1. Let

Ay =T (Bj, ) T (b1, 1)
be the matriz corresponding to o. Then,

[AU]V,Z/ = [Tij]u,y T [Tim]u,y T [Til]l/,y

{Sﬁjaj T Sﬁm+lam+lQ5mamSBmflamfl o 'Sﬂlal if im = N — 1,

. . (1.10)
Sgia;* Spra if 15,...,1; # N — 1.

Recall that Tv_; appears at most once in 0 = wy ---wy—1 in Theorem 1.1. In (1.10), the
appearance of ()g, depends on the existence of Ty_; in 0.

Remark 1.5. We will provide the formula for [A,],, with v = 12--.2, 1---12, 21---1 in
Section 3.1. Their formulas are similar to (1.10). The formulas of [A,],, for some v in the two-
species TASEP are found in [10, Lemma 2.2] and [11, Lemma 3.3]. Moreover, it was shown that
the transition probabilities of the multi-species TASEP are expressed as a determinant when
the initial order and the order at time ¢ are the same (see [12, Theorem 3.1]). In case of the
totally asymmetric model, the matrices T in (1.6) are upper-triangular, so [A,], . is expressed
as a product of some factors over all inversions in ¢ for any v.

If 7 # v, it is possible that [As]r, = 0. Let 7 be the permutation on the multi-set
[1,2,...,2] with 7(i) = 1, for example, 7 =12...2 and 7™ =2...21 = .

Theorem 1.6. Let 0 = wq---wy_1 be expressed as in Theorem 1.1. If | is the largest integer
such that w; = 1, then [Aq] ), =0 foralli=1,....l and [A;], ), #0 for alli =1+1,...,N.
Moreover, if w; # 1 for all i in o = w; ---wn-1, then [As] @) , # 0 for all i.

According to Theorem 1.6, if wy_1 = 1, then [A,];2..01 = 0 for all 7 # 2---21. Now, we
give the most general formula of [Ag]ﬂ@)ﬂj with v = 2---21. First, we introduce some notations.
In the expression 0 = wy---wy_1 given by Theorem 1.1, each w; € ¥; is 1 or a product of
simple transpositions, that is,

w; = Ti(Bs, i) Ti—1(Bio1, ci—1) - - - Ty (B, v)

for some [. We write

w; = Ti(8s, ) Ti—1(Bi—1, i—1) - - - Ty (B, )

for the matrix corresponding to w;. We define

ﬁAizl it I > m.

i=l
Theorem 1.7. Let 0 = wy---wyn_1 be expressed as in Theorem 1.1. Then,

i—1 N-1

[Acl o, = [TWrleo z0 [ Whlaw zoen. (1.11)
k=1 k=i
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Theorem 1.7 includes the results in Theorems 1.4 and 1.6. This will be shown in Section 3.3.
The following results implement the formula (1.11).

Proposition 1.8. Let 0 = wy ---wyn_1 be expressed as in Theorem 1.1 and let wy, be the matrix
corresponding to wy, = Tg, (Bry, k) -+ Ty, Bk, k). (Hence, k1 = k, ko = k — 1 and so on.)
Then,

(Wil @) r) = Qi 00, Sty S Zfl =kl (1.12)
’ Sﬁklakl '”Sﬁklakl ifi>k+1
and
[Wk]w(k),w(k“) = pTBklakl SﬁkQOékQ T Sﬁklakl’ (1.13)

Remark 1.9. The formulas for v =12---2,21---1 and 1---12 corresponding to (1.11), (1.12)
and (1.13) can be obtained in a very similar way by using the techniques used for the case
v =2---21, so we omit them in this paper.

Remark 1.10. The technique in [12] provided a method to find the explicit formulas of the
transition probabilities but [As]x,, could be a sum of multiple terms in general, and it was not
sure that it could be simplified further or not. One advantage of using the method of expressing
permutations in this paper is that we can directly obtain the simplified forms of [A,];, without
performing factorization. This will improve the computational efficiency to find the transition
probabilities.

1.3 Organization of the paper

This paper is organized as follows. In Section 2, we provide special ways of expressing o as a prod-
uct of simple transpositions for simplified forms of [A;];, for v = 2..-21,12---2,21---1,1---12.
The proof of Theorem 1.2 is given in Section 2.2. In Section 3.1, we prove Theorem 1.4 and
provide the formulas of [A,],, for v =12---2,21---1,1---12 in Propositions 3.2, 3.3, and 3.4.
The proof of Theorem 1.6 is given in Section 3.2, the proofs of Theorem 1.7 and Proposition 1.8
are given in Section 3.3. In Appendix A, we introduce an alternate approach to find [A,];,. In
particular, the method introduced in Example A.2 is expected to be useful to write a computer
code to find [A,];,. In Appendices B and C, we provide all transition probabilities for N = 4
when initial orders are 2221 and 1112 so that one can see what probability distribution can be
obtained in closed forms.

2 How to express o for simplified [As]r,.

2.1 Rearrangement of the columns and the rows

In [12], the columns and the rows of the NV x N~ matrices are labelled by 1---1,...,N--- N
in the lexicographical order. But, if we rearrange the columns and the rows by grouping their
labels from the same multi-set M, then Py (X;t), A, and T;(8,a) become block-diagonal.
In each group, we list the columns and the rows in the lexicographical order. If we follow
this procedure of rearranging the columns and the rows, then, for example, the form of the
matrices Py (X;t), A, and T;(3,a) with N = 3 looks as in Figure 1. We denote the block
corresponding to a multi-set M in the NV x NV matrix A by AM. In other words, AM is a sub-
matrix of A obtained by taking the columns and the rows whose labels are the permutations of
the multi-set M. Although the columns and the rows of A™ are labelled by permutations , v
of M so that [AM]W’V is the (7, 7)™ element of AM, we will sometimes write [AM]M where

i,j=1,...,L for the (i, )" element in the usual notation for matrix elements when necessary
if there is not confusion. Here, L is the total number of permutations of M.
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111 222 333 --- 122 212 221 ... 321

111

222

333

122

212

221

321

Figure 1. The form of the matrix after rearranging the columns and the rows.

2.2 Proof of Theorem 1.2

An expression of ¢ obtained by Theorem 1.1 is a reduced expression of o, that is, no other
expression of ¢ is shorter than that. Rewriting each w; in ¢ = wijwsy---wy_1 explicitly by
simple transpositions, we obtain an expression of ¢ in terms of simple transpositions

o =wiws---wn-1 = Ti,(Bj,a;) - Tiy (B2, a2) Ti, (B, 1) (2.1)

and

{(617 al)a (627 052), R (/ij aj)}

is the set of all inversions of o. Using the notation introduced in Section 2.1, we note that

P, pT,
TMN(B,0) = (SgaI— @[ Ba 5a]@5 In_i—1), Il=1,...,N—1, 2.2
(B @) = (Spali-1) Mo Qe (Spaln-i-1) (2.2)
when My = [1,2,...,2]. The form of T{MN (B, ) is as in Figure 2. Since we are interested in
N-1
the last column of AMN = (wy---wx_1)MV, we investigate the last column of (wy_1)M~.

Lemma 2.1. For N>2andl=1,...,N —1,

[Txt_Nl(ﬁN—l, an-1)- T (3, Oél)]i,N
0 ifi=1,...,N =2,
PI8y 1an 198y san_o " Spey i=N—-1,
@8y 1an 198x_san_o " S8, if i =N.
Proof. If N =2, then

P pTp
TM2 Blyal _ |: B1raa 1041:| )
! ( ) qTﬂlotl QB1CM1
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1 1 T N
1] * 1
*
l % *
I+1 * *
*
N *

Figure 2. The form of the matrix TIMN.

Suppose that N > 2. First, we observe that

TMY(8,0) = T (8,0) ® Sgo forl=1,...,N -2 (2.3)
and
P T,
TMN (B, a) = (SgaIn_ @[5“ ﬁa}
N1 (B a) = (Spaln-2) Ton Qoo
Hence,

TfVAfl(BN_l, an-_1)- - TZMN(ﬁl, )

PB « pTB (64
_ (S i i IN_Q)EB |: N—1QN-—1 N—1ON-—1
< BN-1aN-1 T8y yany1 @By 1an
M

_ Mpy_
(Tn25  (BN—2,an—2) @ Spy_san_o) -+ (T (B, ) ® S

X
P P13y 1a
— ( (S50 an In_2 @[ Ovran— Yo
<( BN-1aN-1 ) Ty _ran_1 QBy_1an_1
X

(T?v/tivzfl(ﬂNﬂ, an—2)--- TlMNfl(ﬁl, 1)) @ (S8y_san_s - SBar)s
whose the last column is clearly
N—2 N-2 T
z i= i=

Proof of Theorem 1.2. For all N > 2, if ¢ is the identity permutation, then it is obvious that
[As]2.21,221 = 1 and [Ag]r2..21 = 0 for m # 2---21 because Ajs.. is the identity matrix.
Suppose that ¢ is not the identity permutation. We prove by induction on N. If N = 2, then
A21 = R21. Hence,

[A21]21,21 = Q21, [Aoi]12,21 = pTo1.
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Suppose that the statement holds for N — 1. Recall (2.3). If wy_1 =1 in (2.1), then
AYN =T (B, 05) -+ T (Ba, a2) T (Br, o)
My — My
= (Tij " l(ﬁjvaj) @ Sﬁjay’) (Til N 1@1’@1) @ Sﬁlal)
J
My — M
= (T, (Bjyay) - T (B, 1)) @ [ | Spua-
i=1
Hence, the last column of AMN is
J T
[0 - 0 Hsﬂiai] :
i=1
If
WN-1 = Tlim (Bma Oém) e T'il (ﬁla al)
n (2.1) so that T;, (Bm, m) = Tn—1(Bm, @), then
M
[A N]7r2 21

= Z TMN ij a]) Zm+1 (Bm—i-l, am+1)] [ ;:;lN (Brm am) T T'@'/;/IN (61) 041)] v,2:-21"

We have
M My
Tij N(ﬂj’aj) sz+1 (ﬁm+laam+1)
M Mu—
— (T N— 1(5]7 O[]) @ Sﬁjaj) e (szfl 1<ﬁm+17 am+1) @ Sﬁm+1am+1)
M- M
= (Tz] N 1(6j,04j) .. Z i’l 1(5m+1,am+1 ) H Sﬁzaw
i=m-+1
whose the i row (i = 1,..., N = 3) is in the form of

[*...*0 0]
N—2

and the (N — 1)%* and the (N — 2)" rows are in the form of
J
[\* X H Rg,a, 0]
NZ2  i=mtl
by the induction hypothesis for N — 1. The N** row is

J
[0 - 0[] Ssial|-
N-1

i=m-+1

By Lemma 2.1, the last column of T{:N (B ) « - -Tf\l/lN(ﬁl, aq) is

m—1 m—1 r
[0 - 0 T3, am H Sgiai Qﬁmam H S/Biai
N-2 =1 =1

Hence, [AéMN} is zero or in the form of H{:l Rg,q;-

7,221
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2.3 Expressions of o for [A;|x 12...2

If o € Sy is expressed as in Theorem 1.1, then [A,] 12..2 may not be in a simplified form.
In this section, we will find another way to express o as a product of simple transpositions for
which [As]r 122 is directly written as a factorized form. According to [4, Lemma 4.2], every
element o € Sy can be written as a product of 17, ...,Txy_1 with T)_1 appearing at most once.
Similarly, we have the following result.

Lemma 2.2. FEvery element o € Sy can be written as a product of Ti,...,Tn_1 with T}
appearing at most once.

Lemma 2.2 can be proved by the mathematical induction in a similar way to the proof of
Lemma 4.2 in [4] by using the fact that the set of all bijections on {2,..., N} is isomorphic to
the set of all bijections on {1,...,N — 1}. Proposition 2.3, similar to Theorem 1.1, provides
a method to express o as a product of simple transpositions with 77 appearing at most once,
and we use this method for simplified forms of [As]r 12..2.

Proposition 2.3. Consider the following subsets of the symmetric group Sn:

QNfl = {1,T1,T2T1, o ,TN,1 .. 'TQTl},
On_o ={1,T5,T3T5, ..., Tn_1--- T2},

Qo ={1,TNy—2, TN-1TN-2},
Q1 = {17TN—1}'

For any permutation o € Sy, there is a unique element
(wN—ly--~7w1) S QN_l X QN—Z X -0 X Ql
such that 0 = wy_1wWN_9 - W].

Proof. We prove this by induction on N. The statement is obvious for N = 2. Suppose that
the statement holds for N — 1. It suffices to prove for ¢ € Sy represented by T1,...,Ty_1 in
which T appears exactly once by Lemma 2.2. (If 77 does not appear in the representation of o,
then o(1) = 1 and there exist w; € Q;, i = 1,..., N — 2 such that ¢ is uniquely written as o =
wyn_g -+ wy by the induction hypothesis for N —1.) Let ¢ = ¢'T10” where ¢’ and ¢” are words
consisting of Tb,...,Ty_1. By the induction hypothesis, there exist w} € Q;, i =1,...,N —2
such that ¢ is uniquely written as ¢/ = wly_,---w] so that ¢ = wiy_,---wjTio”. By (1.8),
Ty commutes with w], ..., wh_s, so

o =wy_oTiwy_5- - wio”.

Since wiy_5---wio” is a word consisting of Tp,...,Tn—_1, it may be written uniquely as

wiy_q - - - wy for some w!’ € Q; by the induction hypothesis. It is clear that w)y_,T7 € Qn—;. W

[As]x12.-2 implies the first column of AéMN = (Wn_1-" -Wl)MN. Let us find the form of the
first column of (wx_1)™~ (The reason why we consider this will be clearer soon). Note that
non-identity wy_1 € Qx_1 is in the form of T;T;_; - - - T for some I.

Lemma 2.4. For N>2andl=1,...,N —1,
[T (By, ) - TV (B, 041)]2-71

is in the form of Hizl Rp, o, where Rg, is one of Sga, Paa, Qpas PTga 07 (I if 1 < i <141,
and is zero if [ +1 <i < N.
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Proof. We prove by induction on N. If N = 2,

P, pT;
TM:2 Bi, 1) = [ Bron 51041:| )
i ) 0Ty Qpron

Suppose that the statement is true for N — 1. If [ = 1,..., N — 2, the induction hypothesis
and (2.3) imply that

[T (B, 00) - T (Br, )]
is intheformofnélegkak ifl<i<l+1,andiszeroif [+1<i< N. Let =N — 1. Then,

[T (Bn—2, an—2) - TV (81, a1)] i1

is in the form of H{cv:_f Rg, o, for i = 1,...,N — 1 and is zero for ¢ = N by the induction

hypothesis. Noting that

Pse T34
T%ﬁ(xf,a):(sﬁarzv_z)@[ sa P B}

qT,Ba Q,Ba

and computing
[Tﬁ‘ﬂ(ﬂth an_1) Ty (Bn—2, an—a) - TV (B, o) il (2.4)

directly, we can show that (2.4) is in the form of Hé\;_ll Rg, «, for all i. [

Rewriting each w; in ¢ = wy_1 -+ -w; in Proposition 2.3 explicitly by simple transpositions,
we obtain an expression of o in terms of simple transpositions

o=wN_1---wawr = Ty, (Bj,a;) - Tip (B2, a2) T3 (1, 1)

and

{(/317 al)a (/327 042)7 B (Bja Ctj)}

is the set of all inversions in o.

Theorem 2.5. Let 0 = wn_1---wy be an expression as in Proposition 2.3 and let A, be the
matriz corresponding o. Then, for all N > 2,

(a) [A12..N] 19.9.12..0 = 1 and [AH...N]MZM2 =0ifm#12---2.

(b) If o #12--- N, then [AU]TI' 19..0 18 zero or written as

[Ag]mm...z = H Rga (2.5)
(Ba)

where Rgq is one of Sga, Paa, Qsa;s PT8a, q1sa and the product in (2.5) is taken over all
inversions (3,«a) in o.

Proof. Let

Ay =wy_1-w1 =Ty (Bj,aj) T, (Bnr1, @mr1) Tip, (Bmsam) -+ Ty (B1, 1) -
E—— =WN W1
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For all N > 2, if o is the identity permutation, then it is obvious that [A,]12..2,12..20 = 1 and
[As]r12..2 =0 for m # 12-- -2 because Ajs... is the identity matrix. Suppose that o is not the
identity permutation. Since there is no T3 in wy_o---wq,

m
=1

for some (N — 1) x (N — 1) matrix Gy_1 by (2.2). By Lemma 2.4, [(WN_I)MN]Z | 1s zero if
ij+1 <! <N, and is in the form of Hi:mﬂ Rg, o, if 1 <1 <1i; + 1. Hence,

m J
(W)Y (wy_g- - WI)MN]l,l = H SBia H Rg, oy
i1 k—m41

for some Rg, q, if 1 <1 <i;+1, and is zero ¢; +1 <1 < N. [ |

2.4 Expressions of o for [A;]r21..1 and [Ag]x 112

In order to find [As]x21.-1 in factorized forms, o should be expressed as follows.

Proposition 2.6. Consider the following subsets of the symmetric group Sn:

Iyo1={1,Tn-1},
Pnoo={1,Tn_2,Tn_2TNn_1},
Pnos={1,Tn_3,Tn-3TNn_2,TN-3TN-2TN-1},

L ={11T,T1T,....,Th- - Tn_oTn-1}.

For any permutation o € Sy, there is a unique element
(WN—1,...,wo,wy) € Ty_1 X -+ x Ty xTy

such that o0 = wy_1 - - wWawq.

Proof. We prove this by induction on N. The statement is obvious for N = 2. Suppose that
the statement holds for N — 1. It suffices to prove for ¢ € Sy represented by Ti,...,Tn_1 in
which 77 appears exactly once by Lemma 2.2. If T does not appear in the representation of o,
then o(1) = 1 and o is uniquely written 0 = wy_1 - - - wy by the induction hypothesis for N — 1
because the set of all permutations on {1,..., N —1} is isomorphic to the set of all permutations
on {2,...,N}. Let 0 = ¢/T10” where ¢’ and ¢” are words consisting of Ts,...,Ty_1. By the
induction hypothesis, there exist w} € I';, i =2,..., N — 1 such that ¢” is uniquely written as
o’ =wl_;---wh so that o = o'Thwy,_, ---wy. By (1.8), T commutes with wj, ..., w}_4, so

o=ocwh_q - whTiwy.

Since o’wi,_,---wf§ is a word consisting of T»,...,Ty_1, it may be written uniquely as
why_q - wh for some w, € Ty, i = 2,...,N — 1 by the induction hypothesis. It is clear that
leIQI el. [ |

Corollary 2.7. Let 0 = wy_1-- w1 be an expression as in Proposition 2.6 and let A, be the
matriz corresponding to o. Then, for all N > 2,

(a) [A12...N]21.A.1721..‘1 =1 and [A12-~-N]7r,21~~1 =0 ifﬂ' 75 21---1.
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(b) If 0 #12--- N, then [As]x21...1 15 zero or written as

[Aglr 211 = H Rga, (2.6)
(8,0)

where Rgq is one of Sga, Paa, Qsa;s PT8a, q1sa and the product in (2.6) is taken over all
inversions (8, a) in o.

Remark 2.8. Let Ny be the multi-set [1,...,1,2]. Then, we observe that

——
N—-1
Pio pTh
TN (8,0) = (Spaln—11) @ L,TZ : %g] ©(Spalin),  I=1..N-1 (27

and va N(B,a) = T{\V/“Vl(,é’, «). Using these properties, Corollary 2.7 can be proved essentially in

the same way as the proof Theorem 1.2.
Simplified forms of [As]x1..12 are obtained via the following method of expressing o.

Proposition 2.9. Consider the following subsets of the symmetric group Sy:

Evo1={1,Tn_1,TNn-2TN-1,....,Th - Tn-1},
Env—2={1,Tn_2,Tn-3TNn-2,...,T1 - - Tn—2},

By ={1,T5, ' 1>},
=1 ={1,T1}.

For any permutation o € Sy, there is a unique element
(WN—1,.,w1) EEN_1 X -+ X Fy
such that o = wy_1 -+ w1.

Proof. We prove this by induction on N. The statement is obvious for N = 2. Suppose that the
statement holds for N — 1. It suffices to prove for o € Sy represented by 11, ..., Tn_1 in which
Tn_1 appears exactly once by [4, Lemma 4.2]. If T_; does not appear in the representation
of o, then o(N) = N and o is uniquely written 0 = wx_g---w; by the induction hypothesis

for N — 1. Let 0 = ¢/Ty_10"” where ¢’ and ¢” are words consisting of T1,...,Tn_o. By the
induction hypothesis, there exist w; € Z;, ¢ = 1,..., N — 2 such that ¢’ is uniquely written as
o' =why_y---w) sothat 0 = wy_o- - wiTn-10". By (1.8), Tn_1 commutes with w}, ..., wh_a,
)

/ / /)
g = wN_QTN—le_g R ’lUlO' .

Since wly_5 - --wio” is a word consisting of T4, ...,Tn_2, it may be written as wi,_, - - w{ for
some w; € =; by the induction hypothesis. It is clear that wly_,Tn_1 € En_1. [ |

Corollary 2.10. Let 0 = wy_1---w1 be an expressed as in Proposition 2.9 and let A, be the
matriz corresponding to o. Then, for all N > 2,

(@) [Ar2en]yp1qp =1 and [Arzn] |, =04 m# 112,
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(b) If o #12--- N, then [AU]Tr 1.1 18 zero or written as
[AU]w,lmm = H Rga (2.8)
(8,a)

where Rgq is one of Sga, Paa, Qsa;s PT8a, q1sa and the product in (2.8) is taken over all
inversions (3,a) in o.

Remark 2.11. Corollary 2.10 can be proved essentially in the same way as the proof Theo-
rem 2.5 by using T{\[N(ﬁ,a) = Tj\v/l_Nl(ﬁ, Q).

3 Simplified forms of [As]x.

In the previous section, we discussed the existence of the factorized forms of [A,],. In this
section, we provide the explicit forms of [As]x ..

Remark 3.1. In this section, sometimes, we will simply write any N x N sub-matrix AM~ of A
as just A for notational convenience. Also, recall that we interchangeably use the notations [A]; ;
where i, = 1,..., N and [A];, where 7 and v are permutations of a multi-set. For example,

[A}I,N = [A]12-~-2,2..-21.

3.1 [As]ue

Theorem 1.4 states that [As]2...21,2...21 is nonzero for each o and expressed as a product over all
inversions in o.

Proof of Theorem 1.4. First, recall that Thy_1 appears at most once in any expression of o
given by Theorem 1.1. Suppose that i,, = N — 1 for some integer 1 < m < j so that

Ty By am) -+ Ty (B, 1) = TN-1(Bm, om) - TN—m(B1, 1) = wn—1 € n_1.

By Lemma 2.1 and recalling the form of (2.2),

[Tim (/Bmv Oém) o Til (ﬂla al)]N7N = Q/Bmamsﬁmflam—l e Sﬁlal
= [TN-1(Bm> am)]NN - [TN—m(B1, 1) N N

Since T, ..., T, ., are not from wy_1, the integers i;, ..., im11 are not equal to N —1. Hence,
each of T;,,..., Ty, is in the form of Gn_1 ® Sgo Where G _1 is an (N —1) x (N — 1) matrix
(recall the form of (2.2)). Hence,

[Ti; - Tipa vy = [Tilvy - [Tipia NN = S5 Fnirami
and
[AU]N,N — [Tij o Til]N,N — Sﬁjaj .. Sﬁm+1am+1QﬁmamSﬁm_1am_1 .. Sﬁlal-
If iy,...,i; # N — 1, then each of T;,,..., Ty is in the form of Gy_1 @ Sgo. Hence,
[Asln .y = [Ti; - Ti]nN = Spja; - Spran- [

The formulas for other cases of v that are considered in this paper can be similarly obtained
by using the same techniques, so we provide their formulas without proofs.
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Proposition 3.2. Let v =12---2 and
o=wn-1-w = T;;(Bj,05) Ty, (B1,01)
be given as in Proposition 2.3. Let
Ay =T (Bj, ) - T4, (b1, 1)

be the matriz corresponding to o. Then,

[Aclvy = [Tilvw - [Tinlvw - [Tilvw
_ Sﬁjaj e Sﬁm+1am+1pﬁmamsﬁm—1am—1 T 5/31041 if im =1,
Sﬁjaj"'sﬁwq if i, ...,15 # 1.

(Note that Ty appears at most once in any expression of o in Proposition 2.3.)
Proposition 3.3. Let v =21---1 and
o=wy_1-wr =Ty (Bj, ;) Ti,(B1, 1)
be given as in Proposition 2.6. Let
Ay =T, (Bj )Ty (B1, 1)
be the matriz corresponding to o. Then,

[AO']V,V = [Tij]y,lx to [Tim]v,u co [Til]y,y

_ Sﬂjaj T Sﬂm+1am+1QIBmamSﬂmflamfl o 'S/J’loq if i =1,
Sﬂjaj"'sﬁ1a1 if 15, ...,15 # 1.

(Note that Th appears at most once in any expression of o in Proposition 2.6.)
Proposition 3.4. Letv=1---12 and

o =wn-1- w1 =T (B, a5) - Ti; (B1, o)
be given as in Proposition 2.9. Let

Ao =Ty (Bj,05) - Tiy (b1, 1)

be the matriz corresponding to o. Then,

[AU]I/,Z/ = [Tij]z/,l/ T [Tim]u,u T [Til]l/,u

== S/Bjaj T Sﬁm+lam+lpﬁmamsﬁm—lam—l e S/Bloél (Lf Zm =N - 1’
Sﬂjaj"'sﬁ1a1 if 4, ..., 05 # L.

(Note that T—1 appears at most once in any expression of o in Proposition 2.9.)
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3.2 Case [A;]lr, =0 where m #v =2-..21

If # # v =2---21, then [A,];, where m # v is either zero or a product of some factors where
the product is taken over all inversions in o. First, let us investigate when it can be zero. Let
o =wp---wn_1 be expressed as in Theorem 1.1 and let

Wm = Tm(ﬁmy O‘m>Tm—1(6m—17 am—l) T T[(,Bl, al)

if wy, = To(Bmy @m)Lm—1(Bm—1,¥m—1) - - T1(61,q), and let w,, be the identity matrix if
wy, = 1. Recalling the form of the matrix in (2.2), we see that wy, is in the form of G, 11 @
Dy _m—1 where G,41 is an (m+1) x (m+1) matrix and Dy_y,—1 isan (N—m—1)x (N—m—1)
diagonal matrix. An immediate consequence of Lemma 2.1 is as follows:

Lemma 3.5. The (m + 1) column of w,, # 1 is given by

0 ifl1<i<m-—1,
m—l1
pTﬁmam H Sﬁm—kam—k 7/f,L — m7
[wm]i,m—l—l - nszll
QBmam H S pom_y  fi=m+1,
k=1
0 ifm+2<i<N.

Since we are interested in the last column of A,, that is, [w;---wn_1]; N, We separate
W1 -+ Wx_1 into two parts (wy---)(---wxy_1) and consider the last column of the second part.
The following result tells that the last column of the second part is in the form of

0

*

Lemma 3.6. Suppose that wy_g,...,wn_1 # 1 for some 1 <k < N —2. Then,
[wak: ... WN_1]17N = 0

foralll<i< N-—-k-—1, and [WN,k--~wN_1]iN%OforN—kSi§N.

Proof. If £ = 1, the statement is the same as Lemma 2.1. Let 2 < k£ < N — 2. Noting that
w2 is in the form of Gy_1® S where Gy_1 is an (N —1) x (N —1) matrix and S is a nonzero
scalar, and applying Lemma 2.1 to G_1, we obtain [WN,Q]Z. Ny =0forallé #N-—-1,N -2,
and [WN_Q]Z‘7N = 0 for all 4 # N. Hence, computing wy_owyx_1 directly, we obtain

[Wy_oWn_1]in =0

for 1 <i< N —3and [wy_owpn_1iny #0fori=N—2,N—1,N. Repeating this procedure,
we obtain the required result. |

Now, we prove Theorem 1.6. Recall that we use the convention about sub-matrices introduced
in the beginning of this section.
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Proof of Theorem 1.6. Let [ be the largest integer such that w; = 1 and
Ay =wi W 1Wiy 1 WN_1.

By Lemma 3.6, [W41 - Wn—1];,v = 0for 1 <i <land [WZH .- ~wN_1L,N #0forl+1 <i< N.
Recalling the form of the matrix in (2.2), we see that all matrices wy, ..., w;_1 are in the form
of G;® Dy _; where Gy is a | x [ matrix and Dy _; is an (N —1) x (N — 1) diagonal matrix with
some nonzero diagonal entries. Hence, [(wq---w;_1)(Wit1 - - Wn_1)]in is zero for 1 < i <
and nonzero for [ + 1 <4 < N. Now, suppose that w; # 1 for all 4 so that A, = wy---wpy_1.
By Lemma 3.6, [wa - - - wy_1]1 v is zero and [wy - - wy_1]; v # 0 for all i # 1, and we note that

Pﬁa pTBa:|
wi; =T(8,a) = & Dy_
1 1(B, @) [ (Tsn Qoa N-2

for some (B, ). Hence, [wy -+ wy_1] N 7 0 for all 4. [

7:7

3.3 Case [A;]lr, # 0 where m v =2-..21

Lemma 3.6 stated that [wiyq---wn_1];y =0 for i =1,...,0 and [wy41---wy_1];n # O for
i=1014+1,...,N. Now, we give the formulas for these nonzero terms.

Theorem 3.7. Let 0 = wyy1---wy—_1 be expressed as in Theorem 1.1 with wyyq,...,wny_1 # 1,
and let

Ay =W W1

be the matriz corresponding to o. Then,

i—1 N-1
[Aslin =TT wrlii [T walkrsa (3.1)
k=1 k=i

fori=1+1,...,N —1.

Proof. We prove by induction on N. When N = 2, the statement obviously holds. Suppose

that the statement holds for N, that is, for the multi-set [1,2,...,2]. We will show that the
—

N

~1
statement is true for N + 1, that is, for the multi-set [1,2,...,2]. Let o/ = w; ,---wy be

~—
N

given as in Theorem 1.1 with Syyq. If 7; is a simple transposition in Sy and 77 is a simple
transposition in Sy1, then T;(8, ) ®Sg, = Ti(B8, ) fori =1,..., N —1. Hence, w; $S; = w,
fori=1,..., N —1 for some scalar S;, and so

Ay = Wiy Wy =W Wy Wy

= ((Wl+1"'WN—1)@(51+1"'SN—1))W§V, [+1<N-1

Also, note that if 1 < m,n < N, then

[Wi @ Sz]m,n = [Wz]m,n = [Wg]m,na 1=1,...,N -1,
and [w'y]; n41 =0 for all 1 <i < N —1 by Lemma 3.5. Hence, fori=1,...,N —1,

N+1

[Aslinet =Y (Wigr-Wy_1) ® (Spy1 - -SNn-1)); Wik N+
k=1

= ((Wig1--wWn-1) ® (Sp41 - 'SN—I))LN[W&]N,N-H

= (Wl+1 . 'WN—l)i,N[WGV]N,NJrl‘
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By the induction hypothesis,

i—1 N-1
(Wis1 - Wr_1]i N [W]N N1 = Welii | | Wlkgs1 | [Wh]n, N+
k=l+1 k=1
i—1 N-1
/ /
< ki [Wk]k,k+1> [WilNN+1
k=l+1 k=i
-1 N
/
= [wJii H[Wk]k k+1
I+1 k=i
fori=10141,...,N — 1. Hence, we obtained
i1 N
/ /
Aslivir = [ Wil [T Whlknia
k=l-+1 k=i
fori=1+1,...,N—1. If i = N, then using that w/;,1---w/y_1 = w1 --wy_1 DS for some

scalar &, Theorem 1.4, Lemmas 3.5 and 3.6, we obtain

N+1

[As v = > Wi wn v a[wilk v
k=1

= [Wll+1 o 'W/N—I]N,N[WRT]N,N—H = [Wl+1 T WN—I]N,N[W;V]N,N—H

N-1 N-1
( 11 [Wk]N,N) [WhINN+1 = ( 11 [WZ;]N,N) [WhINN+1- u

k=l+1 k=I+1

Theorem 1.4, Theorem 3.7 and the convention on the product introduced in Section 1.2.2
imply that (3.1) actually holds for i = N.

Corollary 3.8. Let 0 = wyy1 - - - wn—1 be expressed as in Theorem 1.1 with wyyq,...,wy—1 # 1,
and let

A =wp1-wWN

be the matriz corresponding to o. Then,

i—1 N-1
[Aoliv = T alis [T Walkwn
k=l+1 k=i

fori=1+1,...,N.
The proof of Theorem 1.7 is based on Corollary 3.8.
Proof of Theorem 1.7. Let [ be the largest integer such that w; = 1 and
Ay = (wiwisg) (Wigr - wy—1).

Then,

[Wit1 - "WN_l}N,N = [WH‘l]N,N T [WN—l]N,N



Simplified Forms of the Transition Probabilities of the Two-Species ASEP 19

by Theorem 1.4, and

i—1 N-1

[(Wit1 - WN_1)iN = H (Wi H (Wilk k+1

k=l+1 k=i
fori=1+1,...,N by Corollary 3.8, and
[(Wit1--wn_1]in =0

for i =1,...,1 by Theorem 1.6. Note that each w; for i =1,...,] — 1 is written as G; ® Dy _;
for some [ x [ matrix G; and (N — 1) x (N —[) diagonal matrix Dy_;. Hence, (wy---w;_1) is
also in the same form as G; @ Dy_; and

fori=10+41,...,N. Therefore, for i =1+ 1,..., N, noting that [w;];; = 1,

N
[Aglin =Y (w1 wilin[Wirr - Waoalen = Wi wialig[Wig - wyo1liy
k=1
i—1 N-1 i—1 N-1
= wilig- wielig [] Walio [T walkwrr = [T wadis TT 9alinrr.
k=I+1 k=i k=1 k—i

If i < I, then [A,]; v must be zero by Theorem 1.6. If ¢ < [, then there exists a factor
[Wi]i41 in (1.11) but [wy]; ;41 = 0 because w; is the identity matrix. Hence, (1.11) holds for all
i =1,...,N. Finally, if there is no integer [ with w; = 1, we just set [ = 0 in Theorem 3.7 to
complete the proof. [ ]

The explicit formulas of [wg];; and [wWg]x k41 in (1.11) and in (3.1) are provided in Proposi-
tion 1.8.

Proof of Proposition 1.8. Recalling the form of the matrix in (2.2), we can easily obtain
(1.12) and (1.13) by directly performing matrix multiplication in

Wi = Ti(Brys ok ) Tho1(Bhys Ok ) - - Th—ir1 (Bry» 0y )- |

A Alternate approach

A.1 Physical interpretation

We give a physical interpretation for the formulas given in this paper and provide an alternate
approach to find [As|r,. The cardinality of the set of all permutations of the multi-set My =
[1,2,...,2] or Ny =[1,...,1,2] is N. Let F be the function field of all rational functions of N
variables &1, ...,&n € C over C. Let us consider the vector space F'N over the field F on which
a bilinear form (-| A |-): FN x FN — F is defined by

(frr- o SN LA (g1, 98)) = (f1s- -, IN)A(g1, - - gn)'

for any N x N matrix A of rational functions of N variables £1,...,&y € C. We identify each
permutation v of M as a vector in the standard basis of FV. (Here, M is either My or Ny.)
In case of M = [1,2,...,2], we identify the permutation 12---2 as (1,0,...,0), 212---2 as
(0,1,0,...,0) and so on. In case of M = [1,...,1,2], we identify the permutation 1---12 as
(1,0,...,0),1---121 as (0,1,0,...,0) and so on. Using the bra and the ket notations in physics,
we write | 1) = (1,0,...,0),|2) =(0,1,...,0) and so on. The matrix Rg, in (1.5) is interpreted
as so called the S-matriz (scattering matriz) in physics.
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A.1.1 Revisit to Theorem 1.4, Propositions 3.2, 3.3, and 3.4
Recall (2.2) and (2.7). We will omit the superscripts My and Ny in AM~N and AMY for

convenience as in Section 3. By using the bra-ket notation, the matrix elements of T;(3, ) are
given by
Sge (i) =v(i+1),
| Ti(B,a)|v) = Pso if v(i) <v(i+1), (A1)
Qpa ifv(i) >v(i+1),

and

1)=2and v(i) =2,v(i +1) =1,
I)=1land v(i) =1L,v(i+1) =2, (A.2)

pTpe V(i) =1,0(i
(V| Ti(B,a) vy = T V(i) =2,0(
0 otherwise.

_|_
+

The formula

[AO']V v = [Tij]u,u to [Tim]y,y te [Til]u,ua

)

in Theorem 1.4, Propositions 3.2, 3.3, and 3.4 is written
(WAqlv) = WITilv) - - (V| Ty, [v) - - (V| Ty |v). (A.3)

(A.1) and (A.3) motivate us to define the following operator which does not change a permutation
of species. Let P be the set of all permutations of a given multi-set [1,2,...,2] or [1,...,1,2],
and let us denote an element of Sy x P by

_ (o) _ (0(1)o(2)---0o(N)
(o,v) = (1/) - (V(l)y(Q) --v(N) )~
For given simple transposition 7, define a mapping T* on the set of all objects written

o (7(Do(2) - o(N)
v(v(2)---v(N) )’
where R is 1 or a product of factors in the form of Sgn, Psa, Qgas P18a, 418 by
g (o) o) ot o(N)
E v(l) - wv(i) 1/(2-1-1) -+ v(N)

;

a(1) o(i+1) o) - o(N) e
Ratirno(i <y(1) v(i)  v(i+1) - V(N)) ifv() =v(i+1),
_ o(l) -+ o(i+1) o(1) a(N) £ s
I B <y(1) () w(i ) V(N)> ) > v+ 1),
o) -+ o(i+1) o(i) - o(N) e .
\RPU(’H-I o (i) <V(1) (i) w(i+1) - U(N)) if v(i) <v(i+1).

In other words, T;" acts as the usual simple transposition on permutations in Sy but it acts as
the identity on permutations of a multi-set. Then, [A,],, in Theorem 1.4, Propositions 3.2, 3.3
and 3.4 are read off as a by-product obtained after acting TZ’;, ..., T} consecutively on (12---N,v),
that is, [[ 5 ) 8o in

T i i) = (D) ) o 700 )
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A.2 Revisit to Theorem 1.7

The formula

i1 N-1
[Aslin = [ [Wlis T[] Wkleps
k=1 =i

in Theorem 1.7 is written by using the bra-ket notation

(i|Ag|N) = (ilwild) - - (ilwi1]i)(i[wili + 1) - - (N = Hwn 1 |N).
We observe that each wy with k¥ = ¢,...,N — 1 changes |k + 1) to |k) but each wy with
k=1,...,1— 1 does not change |i). Also, we observe that

(Wilkk+1 = (k|wg|k 4+ 1) = (k| Tk + 1)(k + 1| Ty_1|k+ 1) - - - (k + 1| Tj_131 |k + 1)

by (1.13), (A.1) and (A.2). Motivated by these observations, let us define the following operator
which changes a permutation of species represented by |k + 1) to a permutation of species
represented by |k) and vice versa to consider all four casesof v =2---21,12---2,21---1,1---12.
For given simple transposition T}, define a mapping T}, on the set of all objects written

o(1o(2) -+ a(N)
R (St o))

where R is 1 or a product of factors in the form of Sgn, Psa, Qgas P18a, 418 by

Tl-R(‘;(l) o) (1) - a(N))

(1) - w(i) w(i+1) - v(N)
BT+ )09 (jﬁ; ZEZE; ZE? Z%) if v(i) > (i + 1)
it () 1) 1 T) Eo e
RS;(i+1)0(i) (28; O'(z(";l) V(j(j)l) ‘;EJA\;;) if v(i) = v(i+1).

With the argument in the above, we reformulate Theorem 1.7 in terms of the operators T* and T'
as follows:

Corollary A.1. Let

o=wi wy-1="T Thp_y T -+ Th

-~

1

W1 Wi—1 Wi WN -1
be expressed as in Theorem 1.1. If w;,...,wny_1 # 1, then
« - - 12--- N\ o(l)---o(N)
Ty Ty T+ T (,,(1) ) --y(N)) = [Aclzo, (w(i)(l) (V) )

and if i <1 with w; = 1, then [A,] =0.

7y

Example A.2. Suppose that we want to find [A4321] By Theorem 1.1, we have

2212,2221°

4321 = (TY) (ToTY) (T5TLTY) -
NN ——

w1 w2 w3

Figure 3 shows how Corollary A.1 is used to find
[A4321] 531 9991 = S13Qa25320T41.S31521.
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312334 T1 231334 Tg 231141 T?) 123141
100000000 RNO000RENOOI00

4 3 2 1 T1* 134121 TQ* 3%24%1 Tl*
EROe) * [Eaae) ** |@e0e)

Figure 3. [A4321]2212,2221 = 543Q42532PT41S31521~

B Matrix elements [As]r 2221

o [As 2221 2221 [As]2212,2221 [As]2122 2221 [As]1222 2221
1234 1 0 0 0
1243 Ous PTys 0 0
1324 S3o 0 0 0
1342 S32Q42 S32pTy2 0 0
1423 (43542 pTu3Q42 PTa3pTas 0
1432 S32Q42543 S32pT42Qu3 pTLuzpTy2Ss2 0
2134 So1 0 0 0
2143 S21Qu3 Sa1pT 13 0 0
2314 591531 0 0 0
2341 S21531Q41 S21531pTa1 0 0
2413 S21Q43511 S21pT3Q a1 So1pTa3pT 0
2431 821531041513 5218319111 Qa3 So1pTy3pTs1 S5 0
3124 S32.531 0 0 0
3142 S32531Qu2 S52931pTh2 0 0
3214 532531591 0 0 0
32411 532531521Qa S32531.521pT11 0 0
34121 5325310Q4251 S32531pTa2Qa1 S32531pTa2pTun 0
3421|  S32.5315210Q41542 5325315210141 Qa2 S32531pT42pTs1.521 0
4123 Q43512511 pT43Q42511 PTuzpTy2Qu pTy3pTa2pTy
4132 53204254351 S30pT42Q43541 S30pT4opTs3Q a1 S30pTyopTa3pTa
4213 891043541542 So1pTu3()41 542 So1pTu3pTh1 Qa2 So1pTazpTa1pTas
4231 S91531Q41543542 | S215931pTu1Qu3S42 | S21531pTpTu3Quz | S21531pTaapTazpThe
4312| 532531Q42541513 | S325310T42Qu1543 | S32531pTuopTu1 Qa3 | S325310Ta2pTa1pTys
4321552531521 Q41542543 | 32531 521 pT11 Q42543 | S32. 531521 pT01pTh2Q 3| S32.531 So1pTa1 pTa2pT s
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C Matrix elements [A;]x 1112

o [As]1112,1112 [As]1121,1112 [As]1211,1112 [As]2111,1112

1234 1 0 0 0

1243 Pys qT13 0 0

1324 S3a 0 0 0

1342 Py2S39 qT 42532 0 0

1423 Py3542 qT43 Pyo qTu3qTa2 0

1432 S43P12S32 S13qTa2 P32 S43qT142qT32 0

2134 S91 0 0 0

2143 Py3551 qTy3521 0 0

2314 5315991 0 0 0

2341 Py1531521 qT11531 521 0 0

2413 Py3.541 521 qTy3 P41 591 qT43qTa152 0

2431 Sy3P41531521 Py3qT41531521 qTu3qT41 531521 0

3124 532531 0 0 0

3142 Py2.532531 qT42.532 531 0 0

3214 532531591 0 0 0

3241 P11S32531521 qT41532.531 521 0 0

34121 P12541532531 qT42P11532.531 qT42qT41 532531 0

3421 SiaP115352531521 | Pa2qTu1S32531521 | qT42qT41 532531521 0

4123 Py3542511 qTu3 P12 San qTu3qTa2 P qT43qT42qTn

4132]  Sy3P42541 532 Py3qT42541 532 qTu3qTa2 P11 S32 qTu3qT12qTh1 S50

4213  P13S42541 521 qT43542 11521 qTu3 P12qTh1S91 qT43qT42qT41.591

4231| Su3S12P11531521 | PazSa2qTu1S31521 | qTu3PaaqTu1531821 | qTa3qTa2qT1S31521

4312| Sa3Pi2S41532531 | S13qTaaPa1S32531 | PazqTaaqTu1 532551 | qTa3qTa2qT1S32531

43211543542 P41532.531 521 | Sa3 P12qT11.532.531521 | PazqTa2qTa1532. 531521 | qT43qTa2qTs1 S32.531 521
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