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Abstract. It has been known that the transition probability of the single species ASEP
with N particles is expressed as a sum of N ! N -fold contour integrals which are related to
permutations in the symmetric group SN . On other hand, the transition probabilities of the
multi-species ASEP, in general, may be expressed as a sum of much more terms than N !. In
this paper, we show that if the initial order of species is given by 2 · · · 21, 12 · · · 2, 1 · · · 12 or
21 · · · 1, then the transition probabilities can be expressed as a sum of at most N ! contour
integrals, and provide their formulas explicitly.
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1 Introduction

1.1 Definition of the model and previous results

In the multi-species asymmetric simple exclusion process (ASEP) on Z, particles belong to
a species labelled by one of positive integers. Each particle chooses a direction to move one
step to the right or to the left after waiting time exponentially distributed with rate 1. The
probability to choose the right direction is p and the probability to choose the left direction is
q = 1 − p. If the target site is empty, the particle moves to the site, but if the site is already
occupied, the following rule is applied: if a particle belonging to species l tries moving to the
target site occupied by a particle belonging to species l′ ≥ l, then the move is prohibited,
but if l′ < l, the particle belonging to l can move to the target site by interchanging sites
with the particle belonging to l′. If we assume that there are N particles, a state is denoted by
a pair (X,π) where X = (x1, . . . , xN ) ∈ ZN with x1 < · · · < xN for the positions of particles and
π = π(1)π(2) · · ·π(N) is a permutation of a multi-set M = [i1, . . . , iN ] with elements taken from
{1, . . . , N} to represent the species of particles. Here, π(i) represents the ith leftmost particle’s
species. Since particles can interchange their positions, the order of species may change over
time. The transition probability from the initial state (Y, ν) to state (X,π) at time t is denoted
by P(Y,ν)(X,π; t). Earlier works on the transition probabilities and some distributions in the
multi-species ASEP are found in [3, 6, 7, 10, 11, 12, 17, 18]. Also, the multi-species ASEP can
be considered as a special case of the coloured stochastic vertex model (see [1, 2]). According
to [12], the transition probability of the multi-species ASEP with N particles from the initial
state (Y, ν) to the state (X,π) is a matrix element of an NN × NN matrix PY (X; t) whose
columns ν and rows π are labelled by 11 · · · 1, . . . , NN · · ·N . In [12], the formula of PY (X; t) is
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written

PY (X; t) = −
∫
c
· · · −
∫
c

∑
σ∈SN

Aσ

N∏
i=1

(
ξ
xi−yσ(i)−1

σ(i) eε(ξi)t
)
dξ1 · · · dξN , (1.1)

where Aσ is a NN × NN matrix. Note that the form of (1.1) resembles (2.3) in [16]. Here, −
∫
c

implies (1/2πi)
∫
c where the contour c is a positively oriented circle centered at the origin with

sufficiently small radius so that no poles except the one at the origin are included in c, and

ε(ξi) =
p

ξi
+ qξi − 1

and the sum in (1.1) is over all permutations σ in the symmetric group SN . The integral on the
right-hand side of (1.1) implies the matrix element-wise integral, so the (π, ν)th term of PY (X; t)
is

[PY (X; t)]π,ν = P(Y,ν)(X,π; t)

= −
∫
c
· · · −
∫
c

∑
σ∈SN

[Aσ]π,ν

N∏
i=1

(
ξ
xi−yσ(i)−1

σ(i) eε(ξi)t
)
dξ1 · · · dξN . (1.2)

The procedure introduced in [12] to find the matrix Aσ is as follows. Let Ti be the simple
transposition which interchanges the number at the ith slot and the number at the (i + 1)st

slot. It is well known that simple transpositions T1, . . . , TN−1 generate the symmetric group SN .
Hence, any permutation σ ∈ SN can be written as a product of simple transpositions, that is,

σ = Tij · · ·Ti1 (1.3)

for some i1, . . . , ij ∈ {1, . . . , N − 1}. (Here, the expression (1.3) is not unique.) If Ti is acted on
a permutation with α at the ith slot and β at the (i+ 1)st slot, then

Ti(· · ·αβ · · · ) = (· · ·βα · · · ),

and we denote this Ti by Ti(β, α) when we need to show explicitly which numbers are inter-
changed. For example, for N = 3,

T1T2T1 = T1T2T1(123) = T1T2(213) = T1(231) = 321,

and we write 321 = T1(3, 2)T2(3, 1)T1(2, 1). Hence, we will write (1.3) as

σ = Tij (βj , αj) · · ·Ti1(β1, α1) (1.4)

when necessary. Corresponding to Ti(β, α), we define NN ×NN matrix Ti(β, α) by

Ti(β, α) = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
(i−1) times

⊗Rβα ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
(N−i−1) times

,

where IN is the N ×N identity matrix and Rβα is an N2×N2 matrix whose columns and rows
are labelled by 11, 12, . . . , 1N, 21, . . . , NN . The matrix elements of Rβα are given by

[Rβα]ij,kl =



Sβα if ij = kl with i = j,

Pβα if ij = kl with i < j,

Qβα if ij = kl with i > j,

pTβα if ij = lk with i < j,

qTβα if ij = lk with i > j,

0 for all other cases,

(1.5)
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where

Sβα = −
p+ qξαξβ − ξβ
p+ qξαξβ − ξα

, Pβα =
(p− qξα)(ξβ − 1)

p+ qξαξβ − ξα
,

Tβα =
ξβ − ξα

p+ qξαξβ − ξα
, Qβα =

(p− qξβ)(ξα − 1)

p+ qξαξβ − ξα
.

With this setting, it was obtained that Aσ is given by

Aσ = Tij (βj , αj) · · ·Ti1(β1, α1), (1.6)

when σ is written as in (1.4). Although the expression (1.4) is not unique, (1.6) is well-defined in
the sense that (1.6) represents the same matrix for any expression (1.4) (see [12, Remark 2.2]).

1.2 Motivation and main results

1.2.1 Motivation

It can be shown that [Aσ]π,ν = 0 in (1.2) unless both π and ν are from the same multi-set
(see Section 2.1), and in this case, it is obvious that P(Y,ν)(X,π; t) = 0, which physically also
makes sense. However, in general, the matrix element of Aσ is written as a sum because Aσ is
a product of matrices as seen in (1.6). If we want to know the explicit formula of P(Y,ν)(X,π; t),
we should know the corresponding matrix elements, [Aσ]π,ν , explicitly, for all σ. It is interesting
that some elements of Aσ that are expressed as sums can be further factorized. For example,
for σ = 321 = T2(2, 1)T1(3, 1)T2(3, 2),

[A321]121,211 = [T2(2, 1)T1(3, 1)T2(3, 2)]121,221 = pP32Q31T21 + pQ21S31T32

but we can further observe that

pP32Q31T21 + pQ21S31T32 = Q21pT31S32.

Actually, if we use a different expression σ = 321 = T1(3, 2)T2(3, 1)T1(2, 1), then we directly
obtain

[A321]121,211 = [T1(3, 2)T2(3, 1)T1(2, 1)]121,221 = Q21pT31S32

through matrix multiplication. However, unfortunately, not all [Aσ]π,ν can be simplified to
a factorized form. In this paper, we are interested in the factorized forms of [Aσ]π,ν because
single-species models for which the Bethe ansatz can be applicable have factorized forms in the
transition probabilities and some interesting probability distributions were obtained from these
transition probabilities [5, 8, 9, 12, 13, 14, 15, 16, 19]. In this paper, we show that if the initial
permutation ν of species is one of ν = 2 · · · 21, 1 · · · 12, 21 · · · 1 and 12 · · · 2, and σ’s expression by
simple transpositions is obtained in a special way, then [Aσ]π,ν is zero or written as a factorized
form

[Aσ]π,ν =
∏
(β,α)

Rβα, (1.7)

where Rβα is one of Sβα, Qβα, Pβα, pTβα or qTβα, which is similar to

[Aσ]1···1,1···1 =
∏
(β,α)

Sβα

in the (single species) ASEP [16]. The notation
∏

(β,α) implies that the product is taken over
all inversions (β, α) of σ. An inversion of a permutation σ = σ(1) · · ·σ(N) is a pair of elements
(σ(i), σ(j)) with i < j and σ(i) > σ(j). It will remain for future works to see if some interesting
probability distributions can be obtained in neat forms from the transition probabilities with
the formulas of [Aσ]π,ν given in this paper.
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1.2.2 Main results

Each permutation in SN may be written as a product of simple transpositions in many ways via

TiTj = TjTi if |i− j| ≥ 2,

TiTjTi = TjTiTj if |i− j| = 1,

T 2
i = 1.

(1.8)

One of the findings in this paper is that if σ is expressed as in Theorem 1.1, which is a known fact,
then [Aσ]π,2···21 is zero or written as (1.7). If σ is expressed in a different way from Theorem 1.1,
then the form of [Aσ]π,2···21 may not be in a factorized form.

Theorem 1.1 ([4]). Consider the following subsets of the symmetric group SN .

Σ1 = {1, T1},
Σ2 = {1, T2, T2T1},
Σ3 = {1, T3, T3T2, T3T2T1},
...

ΣN−1 = {1, TN−1, TN−1TN−2, . . . , TN−1 · · ·T2T1}.

For any permutation σ ∈ SN , there is a unique element

(w1, . . . , wN−1) ∈ Σ1 × Σ2 × · · · × ΣN−1

such that σ = w1w2 · · ·wN−1.

Theorem 1.2. Let σ = w1 · · ·wN−1 be an expression as in Theorem 1.1 and let

Aσ = Tij (βj , αj) · · ·Ti2(β2, α2)Ti1(β1, α1)

be the matrix corresponding to σ. Then, for all N ≥ 2,

(a)
[
A12···N

]
2···21,2···21 = 1 and

[
A12···N

]
π,2···21 = 0 if π ̸= 2 · · · 21.

(b) If σ ̸= 12 · · ·N , then
[
Aσ

]
π,2···21 is zero or written as

[
Aσ

]
π,2···21 =

∏
(β,α)

Rβα (1.9)

where Rβα is one of Sβα, Pβα, Qβα, pTβα, qTβα. The product in (1.9) is taken over all
inversions (β, α) in σ.

Remark 1.3. Theorem 1.2(b) asserts the existence of the factorized form but does not provide
information on how to choose the form of Rβα. The choice for Rβα in (1.9) depends on σ and π.
The explicit form of (1.9) will be provided in Theorems 1.4 and 1.7.

The method to express σ in Theorem 1.1 does not work for other initial orders ν = 12 · · · 2,
1 · · · 12, 21 · · · 1. In other words, [Aσ]π,ν may not be in a factorized form if ν ̸= 2 · · · 21. For
ν = 12 · · · 2, 1 · · · 12, 21 · · · 1, we need different methods to express σ by simple transpositions
for factorized forms of [Aσ]π,ν . These methods will be provided in Sections 2.3 and 2.4.

Now, we state the formulas for [Aσ]π,ν . First, we find the formula of the diagonal terms.
That is, this is the case that initial order of species and the order at time t are the same.
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Theorem 1.4. Let ν = 2 · · · 21 and

σ = w1 · · ·wN−1 = Tij (βj , αj) · · ·Ti1(β1, α1)

be given as in Theorem 1.1. Let

Aσ = Tij (βj , αj) · · ·Ti1(β1, α1)

be the matrix corresponding to σ. Then,

[Aσ]ν,ν = [Tij ]ν,ν · · · [Tim ]ν,ν · · · [Ti1 ]ν,ν

=

{
Sβjαj

· · ·Sβm+1αm+1QβmαmSβm−1αm−1 · · ·Sβ1α1 if im = N − 1,

Sβjαj
· · ·Sβ1α1 if ii, . . . , ij ̸= N − 1.

(1.10)

Recall that TN−1 appears at most once in σ = w1 · · ·wN−1 in Theorem 1.1. In (1.10), the
appearance of Qβα depends on the existence of TN−1 in σ.

Remark 1.5. We will provide the formula for [Aσ]ν,ν with ν = 12 · · · 2, 1 · · · 12, 21 · · · 1 in
Section 3.1. Their formulas are similar to (1.10). The formulas of [Aσ]ν,ν for some ν in the two-
species TASEP are found in [10, Lemma 2.2] and [11, Lemma 3.3]. Moreover, it was shown that
the transition probabilities of the multi-species TASEP are expressed as a determinant when
the initial order and the order at time t are the same (see [12, Theorem 3.1]). In case of the
totally asymmetric model, the matrices T in (1.6) are upper-triangular, so [Aσ]ν,ν is expressed
as a product of some factors over all inversions in σ for any ν.

If π ̸= ν, it is possible that [Aσ]π,ν = 0. Let π(i) be the permutation on the multi-set
[1, 2, . . . , 2] with π(i) = 1, for example, π(1) = 12 · · · 2 and π(N) = 2 · · · 21 = ν.

Theorem 1.6. Let σ = w1 · · ·wN−1 be expressed as in Theorem 1.1. If l is the largest integer
such that wl = 1, then [Aσ]π(i),ν = 0 for all i = 1, . . . , l and [Aσ]π(i),ν ̸= 0 for all i = l+1, . . . , N .
Moreover, if wi ̸= 1 for all i in σ = w1 · · ·wN−1, then [Aσ]π(i),ν ̸= 0 for all i.

According to Theorem 1.6, if wN−1 = 1, then [Aσ]π,2···21 = 0 for all π ̸= 2 · · · 21. Now, we
give the most general formula of [Aσ]π(i),ν with ν = 2 · · · 21. First, we introduce some notations.
In the expression σ = w1 · · ·wN−1 given by Theorem 1.1, each wi ∈ Σi is 1 or a product of
simple transpositions, that is,

wi = Ti(βi, αi)Ti−1(βi−1, αi−1) · · ·Tl(βl, αl)

for some l. We write

wi = Ti(βi, αi)Ti−1(βi−1, αi−1) · · ·Tl(βl, αl)

for the matrix corresponding to wi. We define

m∏
i=l

Ai = 1 if l > m.

Theorem 1.7. Let σ = w1 · · ·wN−1 be expressed as in Theorem 1.1. Then,

[Aσ]π(i),ν =
i−1∏
k=1

[wk]π(i),π(i)

N−1∏
k=i

[wk]π(k),π(k+1) . (1.11)
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Theorem 1.7 includes the results in Theorems 1.4 and 1.6. This will be shown in Section 3.3.
The following results implement the formula (1.11).

Proposition 1.8. Let σ = w1 · · ·wN−1 be expressed as in Theorem 1.1 and let wk be the matrix
corresponding to wk = Tk1(βk1 , αk1) · · ·Tkl(βkl , αkl). (Hence, k1 = k, k2 = k − 1 and so on.)
Then,

[wk]π(i),π(i) =

{
Qβk1

αk1
Sβk2

αk2
· · ·Sβkl

αkl
if i = k + 1,

Sβk1
αk1

· · ·Sβkl
αkl

if i > k + 1
(1.12)

and

[wk]π(k),π(k+1) = pTβk1
αk1

Sβk2
αk2

· · ·Sβkl
αkl

. (1.13)

Remark 1.9. The formulas for ν = 12 · · · 2, 21 · · · 1 and 1 · · · 12 corresponding to (1.11), (1.12)
and (1.13) can be obtained in a very similar way by using the techniques used for the case
ν = 2 · · · 21, so we omit them in this paper.

Remark 1.10. The technique in [12] provided a method to find the explicit formulas of the
transition probabilities but [Aσ]π,ν could be a sum of multiple terms in general, and it was not
sure that it could be simplified further or not. One advantage of using the method of expressing
permutations in this paper is that we can directly obtain the simplified forms of [Aσ]π,ν without
performing factorization. This will improve the computational efficiency to find the transition
probabilities.

1.3 Organization of the paper

This paper is organized as follows. In Section 2, we provide special ways of expressing σ as a prod-
uct of simple transpositions for simplified forms of [Aσ]π,ν for ν = 2· · ·21, 12· · ·2, 21· · ·1, 1· · ·12.
The proof of Theorem 1.2 is given in Section 2.2. In Section 3.1, we prove Theorem 1.4 and
provide the formulas of [Aσ]ν,ν for ν = 12 · · · 2, 21 · · · 1, 1 · · · 12 in Propositions 3.2, 3.3, and 3.4.
The proof of Theorem 1.6 is given in Section 3.2, the proofs of Theorem 1.7 and Proposition 1.8
are given in Section 3.3. In Appendix A, we introduce an alternate approach to find [Aσ]π,ν . In
particular, the method introduced in Example A.2 is expected to be useful to write a computer
code to find [Aσ]π,ν . In Appendices B and C, we provide all transition probabilities for N = 4
when initial orders are 2221 and 1112 so that one can see what probability distribution can be
obtained in closed forms.

2 How to express σ for simplified [Aσ]π,ν

2.1 Rearrangement of the columns and the rows

In [12], the columns and the rows of the NN ×NN matrices are labelled by 1 · · · 1, . . . , N · · ·N
in the lexicographical order. But, if we rearrange the columns and the rows by grouping their
labels from the same multi-set M, then PY (X; t), Aσ and Ti(β, α) become block-diagonal.
In each group, we list the columns and the rows in the lexicographical order. If we follow
this procedure of rearranging the columns and the rows, then, for example, the form of the
matrices PY (X; t), Aσ and Ti(β, α) with N = 3 looks as in Figure 1. We denote the block
corresponding to a multi-set M in the NN×NN matrix A by AM. In other words, AM is a sub-
matrix of A obtained by taking the columns and the rows whose labels are the permutations of
the multi-set M. Although the columns and the rows of AM are labelled by permutations π, ν
of M so that

[
AM]

π,ν
is the (π, ν)th element of AM, we will sometimes write

[
AM]

i,j
where

i, j = 1, . . . , L for the (i, j)th element in the usual notation for matrix elements when necessary
if there is not confusion. Here, L is the total number of permutations of M.
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



111 222 333 · · · 122 212 221 · · · 321

111

222

333

...
. . .

122

212

221

...
. . .

321

Figure 1. The form of the matrix after rearranging the columns and the rows.

2.2 Proof of Theorem 1.2

An expression of σ obtained by Theorem 1.1 is a reduced expression of σ, that is, no other
expression of σ is shorter than that. Rewriting each wi in σ = w1w2 · · ·wN−1 explicitly by
simple transpositions, we obtain an expression of σ in terms of simple transpositions

σ = w1w2 · · ·wN−1 = Tij (βj , αj) · · ·Ti2(β2, α2)Ti1(β1, α1) (2.1)

and

{(β1, α1), (β2, α2), . . . , (βj , αj)}

is the set of all inversions of σ. Using the notation introduced in Section 2.1, we note that

TMN
l (β, α) = (SβαIl−1)⊕

[
Pβα pTβα

qTβα Qβα

]
⊕ (SβαIN−l−1), l = 1, . . . , N − 1, (2.2)

when MN = [1, 2, . . . , 2︸ ︷︷ ︸
N−1

]. The form of TMN
l (β, α) is as in Figure 2. Since we are interested in

the last column of AMN
σ = (w1 · · ·wN−1)

MN , we investigate the last column of (wN−1)
MN .

Lemma 2.1. For N ≥ 2 and l = 1, . . . , N − 1,[
TMN

N−1(βN−1, αN−1) · · ·TMN
l (βl, αl)

]
i,N

=


0 if i = 1, . . . , N − 2,

pTβN−1αN−1
SβN−2αN−2

· · ·Sβlαl
if i = N − 1,

QβN−1αN−1
SβN−2αN−2

· · ·Sβlαl
if i = N.

Proof. If N = 2, then

TM2
1 (β1, α1) =

[
Pβ1α1 pTβ1α1

qTβ1α1 Qβ1α1

]
.
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



1 · · · · · · l l+1 · · · · · · N

1 *

...
. . .

... *

l * *

l+1 * *

... *

...
. . .

N *

Figure 2. The form of the matrix TMN

l .

Suppose that N > 2. First, we observe that

TMN
l (β, α) = T

MN−1

l (β, α)⊕ Sβα for l = 1, . . . , N − 2 (2.3)

and

TMN
N−1(β, α) = (SβαIN−2)⊕

[
Pβα pTβα

qTβα Qβα

]
.

Hence,

TMN
N−1(βN−1, αN−1) · · ·TMN

l (βl, αl)

=

(
(SβN−1αN−1

IN−2)⊕
[
PβN−1αN−1

pTβN−1αN−1

qTβN−1αN−1
QβN−1αN−1

])
×
(
T

MN−1

N−2 (βN−2, αN−2)⊕ SβN−2αN−2

)
· · ·
(
T

MN−1

l (βl, αl)⊕ Sβlαl

)
=

((
SβN−1αN−1

IN−2

)
⊕
[
PβN−1αN−1

pTβN−1αN−1

qTβN−1αN−1
QβN−1αN−1

])
×
(
T

MN−1

N−2 (βN−2, αN−2) · · ·T
MN−1

l (βl, αl)
)
⊕
(
SβN−2αN−2

· · ·Sβlαl

)
,

whose the last column is clearly[
0 · · · 0︸ ︷︷ ︸

N−2

pTβN−1αN−1

N−2∏
i=l

Sβiαi
QβN−1αN−1

N−2∏
i=l

Sβiαi

]T
. ■

Proof of Theorem 1.2. For all N ≥ 2, if σ is the identity permutation, then it is obvious that
[Aσ]2···21,2···21 = 1 and [Aσ]π,2···21 = 0 for π ̸= 2 · · · 21 because A12···N is the identity matrix.
Suppose that σ is not the identity permutation. We prove by induction on N . If N = 2, then
A21 = R21. Hence,

[A21]21,21 = Q21, [A21]12,21 = pT21.
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Suppose that the statement holds for N − 1. Recall (2.3). If wN−1 = 1 in (2.1), then

AMN
σ = TMN

ij
(βj , αj) · · ·TMN

i2
(β2, α2)T

MN
i1

(β1, α1)

=
(
T

MN−1

ij
(βj , αj)⊕ Sβjαj

)
· · ·
(
T

MN−1

i1
(β1, α1)⊕ Sβ1α1

)
=
(
T

MN−1

ij
(βj , αj) · · ·T

MN−1

i1
(β1, α1)

)
⊕

j∏
i=1

Sβiαi
.

Hence, the last column of AMN
σ is[

0 · · · f0

j∏
i=1

Sβiαi

]T
.

If

wN−1 = Tim(βm, αm) · · ·Ti1(β1, α1)

in (2.1) so that Tim(βm, αm) = TN−1(βm, αm), then[
AMN

σ

]
π,2···21

=
∑
ν

[
TMN

ij
(βj , αj) · · ·TMN

im+1
(βm+1, αm+1)

]
π,ν

[
TMN

im
(βm, αm) · · ·TMN

i1
(β1, α1)

]
ν,2···21.

We have

TMN
ij

(βj , αj) · · ·TMN
im+1

(βm+1, αm+1)

=
(
T

MN−1

ij
(βj , αj)⊕ Sβjαj

)
· · ·
(
T

MN−1

im+1
(βm+1, αm+1)⊕ Sβm+1αm+1

)
=
(
T

MN−1

ij
(βj , αj) · · ·T

MN−1

im+1
(βm+1, αm+1)

)
⊕

j∏
i=m+1

Sβiαi
,

whose the ith row (i = 1, . . . , N − 3) is in the form of[
∗ · · · ∗︸ ︷︷ ︸

N−2

0 0
]

and the (N − 1)st and the (N − 2)nd rows are in the form of[
∗ · · · ∗︸ ︷︷ ︸

N−2

j∏
i=m+1

Rβiαi
0

]

by the induction hypothesis for N − 1. The N th row is[
0 · · · 0︸ ︷︷ ︸

N−1

j∏
i=m+1

Sβiαi

]
.

By Lemma 2.1, the last column of TMN
im

(βm, αm) · · ·TMN
i1

(β1, α1) is[
0 · · · 0︸ ︷︷ ︸

N−2

pTβmαm

m−1∏
i=1

Sβiαi
Qβmαm

m−1∏
i=1

Sβiαi

]T
.

Hence,
[
AMN

σ

]
π,2···21 is zero or in the form of

∏j
i=1Rβiαi

. ■
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2.3 Expressions of σ for [Aσ]π,12···2

If σ ∈ SN is expressed as in Theorem 1.1, then [Aσ]π,12···2 may not be in a simplified form.
In this section, we will find another way to express σ as a product of simple transpositions for
which [Aσ]π,12···2 is directly written as a factorized form. According to [4, Lemma 4.2], every
element σ ∈ SN can be written as a product of T1, . . . , TN−1 with TN−1 appearing at most once.
Similarly, we have the following result.

Lemma 2.2. Every element σ ∈ SN can be written as a product of T1, . . . , TN−1 with T1

appearing at most once.

Lemma 2.2 can be proved by the mathematical induction in a similar way to the proof of
Lemma 4.2 in [4] by using the fact that the set of all bijections on {2, . . . , N} is isomorphic to
the set of all bijections on {1, . . . , N − 1}. Proposition 2.3, similar to Theorem 1.1, provides
a method to express σ as a product of simple transpositions with T1 appearing at most once,
and we use this method for simplified forms of [Aσ]π,12···2.

Proposition 2.3. Consider the following subsets of the symmetric group SN :

ΩN−1 = {1, T1, T2T1, . . . , TN−1 · · ·T2T1},
ΩN−2 = {1, T2, T3T2, . . . , TN−1 · · ·T2},
...

Ω2 = {1, TN−2, TN−1TN−2},
Ω1 = {1, TN−1}.

For any permutation σ ∈ SN , there is a unique element

(wN−1, . . . , w1) ∈ ΩN−1 × ΩN−2 × · · · × Ω1

such that σ = wN−1wN−2 · · ·w1.

Proof. We prove this by induction on N . The statement is obvious for N = 2. Suppose that
the statement holds for N − 1. It suffices to prove for σ ∈ SN represented by T1, . . . , TN−1 in
which T1 appears exactly once by Lemma 2.2. (If T1 does not appear in the representation of σ,
then σ(1) = 1 and there exist wi ∈ Ωi, i = 1, . . . , N − 2 such that σ is uniquely written as σ =
wN−2 · · ·w1 by the induction hypothesis for N − 1.) Let σ = σ′T1σ

′′ where σ′ and σ′′ are words
consisting of T2, . . . , TN−1. By the induction hypothesis, there exist w′

i ∈ Ωi, i = 1, . . . , N − 2
such that σ′ is uniquely written as σ′ = w′

N−2 · · ·w′
1 so that σ = w′

N−2 · · ·w′
1T1σ

′′. By (1.8),
T1 commutes with w′

1, . . . , w
′
N−3, so

σ = w′
N−2T1w

′
N−3 · · ·w′

1σ
′′.

Since w′
N−3 · · ·w′

1σ
′′ is a word consisting of T2, . . . , TN−1, it may be written uniquely as

w′′
N−2 · · ·w′′

1 for some w′′
i ∈ Ωi by the induction hypothesis. It is clear that w′

N−2T1 ∈ ΩN−1. ■

[Aσ]π,12···2 implies the first column of AMN
σ = (wN−1 · · ·w1)

MN . Let us find the form of the
first column of (wN−1)

MN (The reason why we consider this will be clearer soon). Note that
non-identity wN−1 ∈ ΩN−1 is in the form of TlTl−1 · · ·T1 for some l.

Lemma 2.4. For N ≥ 2 and l = 1, . . . , N − 1,[
TMN

l (βl, αl) · · ·TMN
1 (β1, α1)

]
i,1

is in the form of
∏l

k=1Rβkαk
where Rβα is one of Sβα, Pβα, Qβα, pTβα or qTβα if 1 ≤ i ≤ l+1,

and is zero if l + 1 < i ≤ N .
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Proof. We prove by induction on N . If N = 2,

TM2
1 (β1, α1) =

[
Pβ1α1 pTβ1α1

qTβ1α1 Qβ1α1

]
.

Suppose that the statement is true for N − 1. If l = 1, . . . , N − 2, the induction hypothesis
and (2.3) imply that[

TMN
l (βl, αl) · · ·TMN

1 (β1, α1)
]
i,1

is in the form of
∏l

k=1Rβkαk
if 1 ≤ i ≤ l+1, and is zero if l+1 < i ≤ N . Let l = N − 1. Then,[

TMN
N−2(βN−2, αN−2) · · ·TMN

1 (β1, α1)
]
i,1

is in the form of
∏N−2

k=1 Rβkαk
for i = 1, . . . , N − 1 and is zero for i = N by the induction

hypothesis. Noting that

TMN
N−1(β, α) =

(
SβαIN−2

)
⊕
[
Pβα pTβα

qTβα Qβα

]
and computing[

TMN
N−1(βN−1, αN−1)T

MN
N−2(βN−2, αN−2) · · ·TMN

1 (β1, α1)
]
i,1

(2.4)

directly, we can show that (2.4) is in the form of
∏N−1

k=1 Rβkαk
for all i. ■

Rewriting each wi in σ = wN−1 · · ·w1 in Proposition 2.3 explicitly by simple transpositions,
we obtain an expression of σ in terms of simple transpositions

σ = wN−1 · · ·w2w1 = Tij (βj , αj) · · ·Ti2(β2, α2)Ti1(β1, α1)

and

{(β1, α1), (β2, α2), . . . , (βj , αj)}

is the set of all inversions in σ.

Theorem 2.5. Let σ = wN−1 · · ·w1 be an expression as in Proposition 2.3 and let Aσ be the
matrix corresponding σ. Then, for all N ≥ 2,

(a)
[
A12···N

]
12···2,12···2 = 1 and

[
A12···N

]
π,12···2 = 0 if π ̸= 12 · · · 2.

(b) If σ ̸= 12 · · ·N , then
[
Aσ

]
π,12···2 is zero or written as

[
Aσ

]
π,12···2 =

∏
(β,α)

Rβα (2.5)

where Rβα is one of Sβα, Pβα, Qβα, pTβα, qTβα and the product in (2.5) is taken over all
inversions (β, α) in σ.

Proof. Let

Aσ = wN−1 · · ·w1 = Tij (βj , αj) · · ·Tim+1(βm+1, αm+1)︸ ︷︷ ︸
=wN−1

Tim(βm, αm) · · ·Ti1(β1, α1)︸ ︷︷ ︸
=wN−2···w1

.
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For all N ≥ 2, if σ is the identity permutation, then it is obvious that [Aσ]12···2,12···2 = 1 and
[Aσ]π,12···2 = 0 for π ̸= 12 · · · 2 because A12···N is the identity matrix. Suppose that σ is not the
identity permutation. Since there is no T1 in wN−2 · · ·w1,

(wN−2 · · ·w1)
MN =

m∏
i=1

Sβiαi
⊕GN−1

for some (N − 1) × (N − 1) matrix GN−1 by (2.2). By Lemma 2.4,
[
(wN−1)

MN
]
l,1

is zero if

ij + 1 < l ≤ N , and is in the form of
∏j

k=m+1Rβkαk
if 1 ≤ l ≤ ij + 1. Hence,

[
(wN−1)

MN (wN−2 · · ·w1)
MN

]
l,1

=
m∏
i=1

Sβiαi

j∏
k=m+1

Rβkαk

for some Rβkαk
if 1 ≤ l ≤ ij + 1, and is zero ij + 1 < l ≤ N . ■

2.4 Expressions of σ for [Aσ]π,21···1 and [Aσ]π,1···12

In order to find [Aσ]π,21···1 in factorized forms, σ should be expressed as follows.

Proposition 2.6. Consider the following subsets of the symmetric group SN :

ΓN−1 = {1, TN−1},
ΓN−2 = {1, TN−2, TN−2TN−1},
ΓN−3 = {1, TN−3, TN−3TN−2, TN−3TN−2TN−1},
...

Γ1 = {1, T1, T1T2, . . . , T1 · · ·TN−2TN−1}.

For any permutation σ ∈ SN , there is a unique element

(wN−1, . . . , w2, w1) ∈ ΓN−1 × · · · × Γ2 × Γ1

such that σ = wN−1 · · ·w2w1.

Proof. We prove this by induction on N . The statement is obvious for N = 2. Suppose that
the statement holds for N − 1. It suffices to prove for σ ∈ SN represented by T1, . . . , TN−1 in
which T1 appears exactly once by Lemma 2.2. If T1 does not appear in the representation of σ,
then σ(1) = 1 and σ is uniquely written σ = wN−1 · · ·w2 by the induction hypothesis for N − 1
because the set of all permutations on {1, . . . , N−1} is isomorphic to the set of all permutations
on {2, . . . , N}. Let σ = σ′T1σ

′′ where σ′ and σ′′ are words consisting of T2, . . . , TN−1. By the
induction hypothesis, there exist w′′

i ∈ Γi, i = 2, . . . , N − 1 such that σ′′ is uniquely written as
σ′′ = w′′

N−1 · · ·w′′
2 so that σ = σ′T1w

′′
N−1 · · ·w′′

2 . By (1.8), T1 commutes with w′′
3 , . . . , w

′′
N−1, so

σ = σ′w′′
N−1 · · ·w′′

3T1w
′′
2 .

Since σ′w′′
N−1 · · ·w′′

3 is a word consisting of T2, . . . , TN−1, it may be written uniquely as
w′
N−1 · · ·w′

2 for some w′
i ∈ Γi, i = 2, . . . , N − 1 by the induction hypothesis. It is clear that

T1w
′′
2 ∈ Γ1. ■

Corollary 2.7. Let σ = wN−1 · · ·w1 be an expression as in Proposition 2.6 and let Aσ be the
matrix corresponding to σ. Then, for all N ≥ 2,

(a) [A12···N ]21···1,21···1 = 1 and [A12···N ]π,21···1 = 0 if π ̸= 21 · · · 1.
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(b) If σ ̸= 12 · · ·N , then [Aσ]π,21···1 is zero or written as

[Aσ]π,21···1 =
∏
(β,α)

Rβα, (2.6)

where Rβα is one of Sβα, Pβα, Qβα, pTβα, qTβα and the product in (2.6) is taken over all
inversions (β, α) in σ.

Remark 2.8. Let NN be the multi-set [1, . . . , 1︸ ︷︷ ︸
N−1

, 2]. Then, we observe that

TNN
l (β, α) = (SβαIN−l−1)⊕

[
Pβα pTβα

qTβα Qβα

]
⊕ (SβαIl−1), l = 1, . . . , N − 1, (2.7)

and TNN
l (β, α) = TMN

N−l(β, α). Using these properties, Corollary 2.7 can be proved essentially in
the same way as the proof Theorem 1.2.

Simplified forms of [Aσ]π,1···12 are obtained via the following method of expressing σ.

Proposition 2.9. Consider the following subsets of the symmetric group SN :

ΞN−1 = {1, TN−1, TN−2TN−1, . . . , T1 · · ·TN−1},
ΞN−2 = {1, TN−2, TN−3TN−2, . . . , T1 · · ·TN−2},
...

Ξ2 = {1, T2, T1T2},
Ξ1 = {1, T1}.

For any permutation σ ∈ SN , there is a unique element

(wN−1, . . . , w1) ∈ ΞN−1 × · · · × Ξ1

such that σ = wN−1 · · ·w1.

Proof. We prove this by induction on N . The statement is obvious for N = 2. Suppose that the
statement holds for N − 1. It suffices to prove for σ ∈ SN represented by T1, . . . , TN−1 in which
TN−1 appears exactly once by [4, Lemma 4.2]. If TN−1 does not appear in the representation
of σ, then σ(N) = N and σ is uniquely written σ = wN−2 · · ·w1 by the induction hypothesis
for N − 1. Let σ = σ′TN−1σ

′′ where σ′ and σ′′ are words consisting of T1, . . . , TN−2. By the
induction hypothesis, there exist w′

i ∈ Ξi, i = 1, . . . , N − 2 such that σ′ is uniquely written as
σ′ = w′

N−2 · · ·w′
1 so that σ = w′

N−2 · · ·w′
1TN−1σ

′′. By (1.8), TN−1 commutes with w′
1, . . . , w

′
N−3,

so

σ = w′
N−2TN−1w

′
N−3 · · ·w′

1σ
′′.

Since w′
N−3 · · ·w′

1σ
′′ is a word consisting of T1, . . . , TN−2, it may be written as w′′

N−2 · · ·w′′
1 for

some w′′
i ∈ Ξi by the induction hypothesis. It is clear that w′

N−2TN−1 ∈ ΞN−1. ■

Corollary 2.10. Let σ = wN−1 · · ·w1 be an expressed as in Proposition 2.9 and let Aσ be the
matrix corresponding to σ. Then, for all N ≥ 2,

(a)
[
A12···N

]
1···12,1···12 = 1 and

[
A12···N

]
π,1···12 = 0 if π ̸= 1 · · · 12.
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(b) If σ ̸= 12 · · ·N , then
[
Aσ

]
π,1···12 is zero or written as

[
Aσ

]
π,1···12 =

∏
(β,α)

Rβα (2.8)

where Rβα is one of Sβα, Pβα, Qβα, pTβα, qTβα and the product in (2.8) is taken over all
inversions (β, α) in σ.

Remark 2.11. Corollary 2.10 can be proved essentially in the same way as the proof Theo-
rem 2.5 by using TNN

l (β, α) = TMN
N−l(β, α).

3 Simplified forms of [Aσ]π,ν

In the previous section, we discussed the existence of the factorized forms of [Aσ]π,ν . In this
section, we provide the explicit forms of [Aσ]π,ν .

Remark 3.1. In this section, sometimes, we will simply write any N×N sub-matrix AMN of A
as justA for notational convenience. Also, recall that we interchangeably use the notations [A]i,j
where i, j = 1, . . . , N and [A]π,ν where π and ν are permutations of a multi-set. For example,
[A]1,N = [A]12···2,2···21.

3.1 [Aσ]ν,ν

Theorem 1.4 states that [Aσ]2···21,2···21 is nonzero for each σ and expressed as a product over all
inversions in σ.

Proof of Theorem 1.4. First, recall that TN−1 appears at most once in any expression of σ
given by Theorem 1.1. Suppose that im = N − 1 for some integer 1 ≤ m ≤ j so that

Tim(βm, αm) · · ·Ti1(β1, α1) = TN−1(βm, αm) · · ·TN−m(β1, α1) = wN−1 ∈ ΣN−1.

By Lemma 2.1 and recalling the form of (2.2),

[Tim(βm, αm) · · ·Ti1(β1, α1)]N,N = QβmαmSβm−1αm−1 · · ·Sβ1α1

= [TN−1(βm, αm)]N,N · · · [TN−m(β1, α1)]N,N .

Since Tij , . . . ,Tim+1 are not from wN−1, the integers ij , . . . , im+1 are not equal to N−1. Hence,
each of Tij , . . . ,Tim+1 is in the form of GN−1⊕Sβα where GN−1 is an (N −1)× (N −1) matrix
(recall the form of (2.2)). Hence,

[Tij · · ·Tim+1 ]N,N = [Tij ]N,N · · · [Tim+1 ]N,N = Sβjαj
· · ·Sβm+1αm+1

and

[Aσ]N,N =
[
Tij · · ·Ti1

]
N,N

= Sβjαj
· · ·Sβm+1αm+1QβmαmSβm−1αm−1 · · ·Sβ1α1 .

If i1, . . . , ij ̸= N − 1, then each of Tij , . . . ,Ti1 is in the form of GN−1 ⊕ Sβα. Hence,

[Aσ]N,N = [Tij · · ·Ti1 ]N,N = Sβjαj
· · ·Sβ1α1 . ■

The formulas for other cases of ν that are considered in this paper can be similarly obtained
by using the same techniques, so we provide their formulas without proofs.
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Proposition 3.2. Let ν = 12 · · · 2 and

σ = wN−1 · · ·w1 = Tij (βj , αj) · · ·Ti1(β1, α1)

be given as in Proposition 2.3. Let

Aσ = Tij (βj , αj) · · ·Ti1(β1, α1)

be the matrix corresponding to σ. Then,

[Aσ]ν,ν = [Tij ]ν,ν · · · [Tim ]ν,ν · · · [Ti1 ]ν,ν

=

{
Sβjαj

· · ·Sβm+1αm+1PβmαmSβm−1αm−1 · · ·Sβ1α1 if im = 1,

Sβjαj
· · ·Sβ1α1 if ii, . . . , ij ̸= 1.

(Note that T1 appears at most once in any expression of σ in Proposition 2.3.)

Proposition 3.3. Let ν = 21 · · · 1 and

σ = wN−1 · · ·w1 = Tij (βj , αj) · · ·Ti1(β1, α1)

be given as in Proposition 2.6. Let

Aσ = Tij (βj , αj) · · ·Ti1(β1, α1)

be the matrix corresponding to σ. Then,

[Aσ]ν,ν = [Tij ]ν,ν · · · [Tim ]ν,ν · · · [Ti1 ]ν,ν

=

{
Sβjαj

· · ·Sβm+1αm+1QβmαmSβm−1αm−1 · · ·Sβ1α1 if im = 1,

Sβjαj
· · ·Sβ1α1 if ii, . . . , ij ̸= 1.

(Note that T1 appears at most once in any expression of σ in Proposition 2.6.)

Proposition 3.4. Let ν = 1 · · · 12 and

σ = wN−1 · · ·w1 = Tij (βj , αj) · · ·Ti1(β1, α1)

be given as in Proposition 2.9. Let

Aσ = Tij (βj , αj) · · ·Ti1(β1, α1)

be the matrix corresponding to σ. Then,

[Aσ]ν,ν = [Tij ]ν,ν · · · [Tim ]ν,ν · · · [Ti1 ]ν,ν

=

{
Sβjαj

· · ·Sβm+1αm+1PβmαmSβm−1αm−1 · · ·Sβ1α1 if im = N − 1,

Sβjαj
· · ·Sβ1α1 if ii, . . . , ij ̸= 1.

(Note that TN−1 appears at most once in any expression of σ in Proposition 2.9.)
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3.2 Case [Aσ]π,ν = 0 where π ̸= ν = 2 · · · 21

If π ̸= ν = 2 · · · 21, then [Aσ]π,ν where π ̸= ν is either zero or a product of some factors where
the product is taken over all inversions in σ. First, let us investigate when it can be zero. Let
σ = w1 · · ·wN−1 be expressed as in Theorem 1.1 and let

wm = Tm(βm, αm)Tm−1(βm−1, αm−1) · · ·Tl(βl, αl)

if wm = Tm(βm, αm)Tm−1(βm−1, αm−1) · · ·Tl(βl, αl), and let wm be the identity matrix if
wm = 1. Recalling the form of the matrix in (2.2), we see that wm is in the form of Gm+1 ⊕
DN−m−1 where Gm+1 is an (m+1)×(m+1) matrix and DN−m−1 is an (N−m−1)×(N−m−1)
diagonal matrix. An immediate consequence of Lemma 2.1 is as follows:

Lemma 3.5. The (m+ 1)st column of wm ̸= 1 is given by

[wm]i,m+1 =



0 if 1 ≤ i ≤ m− 1,

pTβmαm

m−l∏
k=1

Sβm−kαm−k
if i = m,

Qβmαm

m−l∏
k=1

Sβm−kαm−k
if i = m+ 1,

0 if m+ 2 ≤ i ≤ N.

Since we are interested in the last column of Aσ, that is, [w1 · · ·wN−1]i,N , we separate
w1 · · ·wN−1 into two parts (w1 · · · )(· · ·wN−1) and consider the last column of the second part.
The following result tells that the last column of the second part is in the form of

0
...
0
∗
...
∗


.

Lemma 3.6. Suppose that wN−k, . . . ,wN−1 ̸= 1 for some 1 ≤ k ≤ N − 2. Then,[
wN−k · · ·wN−1

]
i,N

= 0

for all 1 ≤ i ≤ N − k − 1, and
[
wN−k · · ·wN−1

]
i,N

̸= 0 for N − k ≤ i ≤ N .

Proof. If k = 1, the statement is the same as Lemma 2.1. Let 2 ≤ k ≤ N − 2. Noting that
wN−2 is in the form of GN−1⊕S where GN−1 is an (N−1)× (N−1) matrix and S is a nonzero
scalar, and applying Lemma 2.1 to GN−1, we obtain

[
wN−2

]
i,N−1

= 0 for all i ̸= N − 1, N − 2,

and [wN−2]i,N = 0 for all i ̸= N . Hence, computing wN−2wN−1 directly, we obtain

[wN−2wN−1]i,N = 0

for 1 ≤ i ≤ N − 3 and [wN−2wN−1]i,N ̸= 0 for i = N − 2, N − 1, N . Repeating this procedure,
we obtain the required result. ■

Now, we prove Theorem 1.6. Recall that we use the convention about sub-matrices introduced
in the beginning of this section.
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Proof of Theorem 1.6. Let l be the largest integer such that wl = 1 and

Aσ = w1 · · ·wl−1wl+1 · · ·wN−1.

By Lemma 3.6, [wl+1 · · ·wN−1]i,N = 0 for 1 ≤ i ≤ l and
[
wl+1 · · ·wN−1

]
i,N

̸= 0 for l+1 ≤ i ≤ N .

Recalling the form of the matrix in (2.2), we see that all matrices w1, . . . ,wl−1 are in the form
of Gl ⊕DN−l where Gl is a l× l matrix and DN−l is an (N − l)× (N − l) diagonal matrix with
some nonzero diagonal entries. Hence, [(w1 · · ·wl−1)(wl+1 · · ·wN−1)]i,N is zero for 1 ≤ i ≤ l
and nonzero for l + 1 ≤ i ≤ N . Now, suppose that wi ̸= 1 for all i so that Aσ = w1 · · ·wN−1.
By Lemma 3.6, [w2 · · ·wN−1]1,N is zero and [w2 · · ·wN−1]i,N ̸= 0 for all i ̸= 1, and we note that

w1 = T1(β, α) =

[
Pβα pTβα

qTβα Qβα

]
⊕DN−2

for some (β, α). Hence,
[
w1 · · ·wN−1

]
i,N

̸= 0 for all i. ■

3.3 Case [Aσ]π,ν ̸= 0 where π ̸= ν = 2 · · · 21

Lemma 3.6 stated that [wl+1 · · ·wN−1]i,N = 0 for i = 1, . . . , l and [wl+1 · · ·wN−1]i,N ̸= 0 for
i = l + 1, . . . , N . Now, we give the formulas for these nonzero terms.

Theorem 3.7. Let σ = wl+1 · · ·wN−1 be expressed as in Theorem 1.1 with wl+1, . . . , wN−1 ̸= 1,
and let

Aσ = wl+1 · · ·wN−1

be the matrix corresponding to σ. Then,

[Aσ]i,N =
i−1∏

k=l+1

[wk]i,i

N−1∏
k=i

[wk]k,k+1 (3.1)

for i = l + 1, . . . , N − 1.

Proof. We prove by induction on N . When N = 2, the statement obviously holds. Suppose
that the statement holds for N , that is, for the multi-set [1, 2, . . . , 2︸ ︷︷ ︸

N−1

]. We will show that the

statement is true for N + 1, that is, for the multi-set [1, 2, . . . , 2︸ ︷︷ ︸
N

]. Let σ′ = w′
l+1 · · ·w′

N be

given as in Theorem 1.1 with SN+1. If Ti is a simple transposition in SN and T ′
i is a simple

transposition in SN+1, then Ti(β, α)⊕Sβα = T′
i(β, α) for i = 1, . . . , N −1. Hence, wi⊕Si = w′

i

for i = 1, . . . , N − 1 for some scalar Si, and so

Aσ′ = w′
l+1 · · ·w′

N = w′
l+1 · · ·w′

N−1w
′
N

=
(
(wl+1 · · ·wN−1)⊕ (Sl+1 · · · SN−1)

)
w′

N , l + 1 ≤ N − 1.

Also, note that if 1 ≤ m,n ≤ N , then

[wi ⊕ Si]m,n = [wi]m,n = [w′
i]m,n, i = 1, . . . , N − 1,

and [w′
N ]i,N+1 = 0 for all 1 ≤ i ≤ N − 1 by Lemma 3.5. Hence, for i = 1, . . . , N − 1,

[Aσ′ ]i,N+1 =
N+1∑
k=1

(
(wl+1 · · ·wN−1)⊕ (Sl+1 · · · SN−1)

)
i,k
[w′

N ]k,N+1

=
(
(wl+1 · · ·wN−1)⊕ (Sl+1 · · · SN−1)

)
i,N

[w′
N ]N,N+1

= (wl+1 · · ·wN−1)i,N [w′
N ]N,N+1.



18 E. Lee and T. Raimbekov

By the induction hypothesis,

[wl+1 · · ·wN−1]i,N [w′
N ]N,N+1 =

(
i−1∏

k=l+1

[wk]i,i

N−1∏
k=i

[wk]k,k+1

)
[w′

N ]N,N+1

=

(
i−1∏

k=l+1

[w′
k]i,i

N−1∏
k=i

[w′
k]k,k+1

)
[w′

N ]N,N+1

=
i−1∏

k=l+1

[w′
k]i,i

N∏
k=i

[w′
k]k,k+1.

for i = l + 1, . . . , N − 1. Hence, we obtained

[Aσ′ ]i,N+1 =

i−1∏
k=l+1

[w′
k]i,i

N∏
k=i

[w′
k]k,k+1

for i = l+1, . . . , N − 1. If i = N , then using that w′
l+1 · · ·w′

N−1 = wl+1 · · ·wN−1⊕S for some
scalar S, Theorem 1.4, Lemmas 3.5 and 3.6, we obtain

[Aσ′ ]N,N+1 =

N+1∑
k=1

[w′
l+1 · · ·w′

N−1]N,k[w
′
N ]k,N+1

= [w′
l+1 · · ·w′

N−1]N,N [w′
N ]N,N+1 = [wl+1 · · ·wN−1]N,N [w′

N ]N,N+1

=

(
N−1∏
k=l+1

[wk]N,N

)
[w′

N ]N,N+1 =

(
N−1∏
k=l+1

[w′
k]N,N

)
[w′

N ]N,N+1. ■

Theorem 1.4, Theorem 3.7 and the convention on the product introduced in Section 1.2.2
imply that (3.1) actually holds for i = N .

Corollary 3.8. Let σ = wl+1 · · ·wN−1 be expressed as in Theorem 1.1 with wl+1, . . . , wN−1 ̸= 1,
and let

Aσ = wl+1 · · ·wN−1

be the matrix corresponding to σ. Then,

[Aσ]i,N =
i−1∏

k=l+1

[wk]i,i

N−1∏
k=i

[wk]k,k+1

for i = l + 1, . . . , N .

The proof of Theorem 1.7 is based on Corollary 3.8.

Proof of Theorem 1.7. Let l be the largest integer such that wl = 1 and

Aσ =
(
w1 · · ·wl−1

)(
wl+1 · · ·wN−1

)
.

Then,[
wl+1 · · ·wN−1

]
N,N

=
[
wl+1

]
N,N

· · ·
[
wN−1

]
N,N
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by Theorem 1.4, and

[wl+1 · · ·wN−1]i,N =

i−1∏
k=l+1

[wk]i,i

N−1∏
k=i

[wk]k,k+1

for i = l + 1, . . . , N by Corollary 3.8, and

[wl+1 · · ·wN−1]i,N = 0

for i = 1, . . . , l by Theorem 1.6. Note that each wi for i = 1, . . . , l − 1 is written as Gl ⊕DN−l

for some l × l matrix Gl and (N − l)× (N − l) diagonal matrix DN−l. Hence, (w1 · · ·wl−1) is
also in the same form as Gl ⊕DN−l and

[w1 · · ·wl−1]i,i = [w1]i,i · · · [wl−1]i,i

for i = l + 1, . . . , N . Therefore, for i = l + 1, . . . , N , noting that [wl]i,i = 1,

[Aσ]i,N =
N∑
k=1

[w1 · · ·wl−1]i,k[wl+1 · · ·wN−1]k,N = [w1 · · ·wl−1]i,i[wl+1 · · ·wN−1]i,N

= [w1]i,i · · · [wl−1]i,i

i−1∏
k=l+1

[wk]i,i

N−1∏
k=i

[wk]k,k+1 =

i−1∏
k=1

[wk]i,i

N−1∏
k=i

[wk]k,k+1.

If i ≤ l, then [Aσ]i,N must be zero by Theorem 1.6. If i ≤ l, then there exists a factor
[wl]l,l+1 in (1.11) but [wl]l,l+1 = 0 because wl is the identity matrix. Hence, (1.11) holds for all
i = 1, . . . , N . Finally, if there is no integer l with wl = 1, we just set l = 0 in Theorem 3.7 to
complete the proof. ■

The explicit formulas of [wk]i,i and [wk]k,k+1 in (1.11) and in (3.1) are provided in Proposi-
tion 1.8.

Proof of Proposition 1.8. Recalling the form of the matrix in (2.2), we can easily obtain
(1.12) and (1.13) by directly performing matrix multiplication in

wk = Tk(βk1 , αk1)Tk−1(βk2 , αk2) · · ·Tk−l+1(βkl , αkl). ■

A Alternate approach

A.1 Physical interpretation

We give a physical interpretation for the formulas given in this paper and provide an alternate
approach to find [Aσ]π,ν . The cardinality of the set of all permutations of the multi-set MN =
[1, 2, . . . , 2] or NN = [1, . . . , 1, 2] is N . Let F be the function field of all rational functions of N
variables ξ1, . . . , ξN ∈ C over C. Let us consider the vector space FN over the field F on which
a bilinear form ⟨· |A | ·⟩ : FN × FN → F is defined by

⟨(f1, . . . , fN ) |A | (g1, . . . , gN )⟩ = (f1, . . . , fN )A(g1, . . . , gN )t

for any N ×N matrix A of rational functions of N variables ξ1, . . . , ξN ∈ C. We identify each
permutation ν of M as a vector in the standard basis of FN . (Here, M is either MN or NN .)
In case of M = [1, 2, . . . , 2], we identify the permutation 12 · · · 2 as (1, 0, . . . , 0), 212 · · · 2 as
(0, 1, 0, . . . , 0) and so on. In case of M = [1, . . . , 1, 2], we identify the permutation 1 · · · 12 as
(1, 0, . . . , 0), 1 · · · 121 as (0, 1, 0, . . . , 0) and so on. Using the bra and the ket notations in physics,
we write | 1 ⟩ = (1, 0, . . . , 0), | 2 ⟩ = (0, 1, . . . , 0) and so on. The matrixRβα in (1.5) is interpreted
as so called the S-matrix (scattering matrix) in physics.
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A.1.1 Revisit to Theorem 1.4, Propositions 3.2, 3.3, and 3.4

Recall (2.2) and (2.7). We will omit the superscripts MN and NN in AMN and ANN for
convenience as in Section 3. By using the bra-ket notation, the matrix elements of Ti(β, α) are
given by

⟨ν |Ti(β, α) | ν⟩ =


Sβα if ν(i) = ν(i+ 1),

Pβα if ν(i) < ν(i+ 1),

Qβα if ν(i) > ν(i+ 1),

(A.1)

and

⟨ν ′ |Ti(β, α) | ν⟩ =


pTβα if ν ′(i) = 1, ν ′(i+ 1) = 2 and ν(i) = 2, ν(i+ 1) = 1,

qTβα if ν ′(i) = 2, ν ′(i+ 1) = 1 and ν(i) = 1, ν(i+ 1) = 2,

0 otherwise.

(A.2)

The formula

[Aσ]ν,ν = [Tij ]ν,ν · · · [Tim ]ν,ν · · · [Ti1 ]ν,ν ,

in Theorem 1.4, Propositions 3.2, 3.3, and 3.4 is written

⟨ν|Aσ|ν⟩ = ⟨ν|Tij |ν⟩ · · · ⟨ν|Tim |ν⟩ · · · ⟨ν|Ti1 |ν⟩. (A.3)

(A.1) and (A.3) motivate us to define the following operator which does not change a permutation
of species. Let P be the set of all permutations of a given multi-set [1, 2, . . . , 2] or [1, . . . , 1, 2],
and let us denote an element of SN × P by

(σ, ν) =

(
σ
ν

)
=

(
σ(1)σ(2) · · ·σ(N)
ν(1)ν(2) · · · ν(N)

)
.

For given simple transposition Ti, define a mapping T ∗
i on the set of all objects written

R

(
σ(1)σ(2) · · ·σ(N)
ν(1)ν(2) · · · ν(N)

)
,

where R is 1 or a product of factors in the form of Sβα, Pβα, Qβα, pTβα, qTβα by

T ∗
i R

(
σ(1) · · · σ(i) σ(i+ 1) · · · σ(N)
ν(1) · · · ν(i) ν(i+ 1) · · · ν(N)

)

=



RSσ(i+1)σ(i)

(
σ(1) · · · σ(i+ 1) σ(i) · · · σ(N)

ν(1) · · · ν(i) ν(i+ 1) · · · ν(N)

)
if ν(i) = ν(i+ 1),

RQσ(i+1)σ(i)

(
σ(1) · · · σ(i+ 1) σ(i) · · · σ(N)

ν(1) · · · ν(i) ν(i+ 1) · · · ν(N)

)
if ν(i) > ν(i+ 1),

RPσ(i+1)σ(i)

(
σ(1) · · · σ(i+ 1) σ(i) · · · σ(N)

ν(1) · · · ν(i) ν(i+ 1) · · · ν(N)

)
if ν(i) < ν(i+ 1).

In other words, T ∗
i acts as the usual simple transposition on permutations in SN but it acts as

the identity on permutations of a multi-set. Then, [Aσ]ν,ν in Theorem 1.4, Propositions 3.2, 3.3
and 3.4 are read off as a by-product obtained after acting T ∗

ij
, . . . , T ∗

i1
consecutively on (12· · ·N, ν),

that is,
∏

(β,α)Rβα in

T ∗
ij · · ·T

∗
i1

(
1 · · · N − 1 N

ν(1) ν(2) · · · ν(N)

)
=

( ∏
(β,α)

Rβα

)(
σ(1) · · · σ(N − 1) σ(N)
ν(1) ν(2) · · · ν(N)

)
.
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A.2 Revisit to Theorem 1.7

The formula

[Aσ]i,N =
i−1∏
k=1

[wk]i,i

N−1∏
k=i

[wk]k,k+1

in Theorem 1.7 is written by using the bra-ket notation

⟨i|Aσ|N⟩ = ⟨i|w1|i⟩ · · · ⟨i|wi−1|i⟩⟨i|wi|i+ 1⟩ · · · ⟨N − 1|wN−1|N⟩.

We observe that each wk with k = i, . . . , N − 1 changes |k + 1⟩ to |k⟩ but each wk with
k = 1, . . . , i− 1 does not change |i⟩. Also, we observe that

[wk]k,k+1 = ⟨k|wk|k + 1⟩ = ⟨k|Tk|k + 1⟩⟨k + 1|Tk−1|k + 1⟩ · · · ⟨k + 1|Tk−l+1|k + 1⟩

by (1.13), (A.1) and (A.2). Motivated by these observations, let us define the following operator
which changes a permutation of species represented by |k + 1⟩ to a permutation of species
represented by |k⟩ and vice versa to consider all four cases of ν = 2 · · · 21, 12 · · · 2, 21 · · · 1, 1 · · · 12.
For given simple transposition Tk, define a mapping T̂k on the set of all objects written

R

(
σ(1)σ(2) · · ·σ(N)
ν(1)ν(2) · · · ν(N)

)
,

where R is 1 or a product of factors in the form of Sβα, Pβα, Qβα, pTβα, qTβα by

T̂iR

(
σ(1) · · · σ(i) σ(i+ 1) · · · σ(N)
ν(1) · · · ν(i) ν(i+ 1) · · · ν(N)

)

=



RpTσ(i+1)σ(i)

(
σ(1) · · · σ(i+ 1) σ(i) · · · σ(N)

ν(1) · · · ν(i+ 1) ν(i) · · · ν(N)

)
if ν(i) > ν(i+ 1),

RqTσ(i+1)σ(i)

(
σ(1) · · · σ(i+ 1) σ(i) · · · σ(N)

ν(1) · · · ν(i+ 1) ν(i) · · · ν(N)

)
if ν(i) < ν(i+ 1),

RSσ(i+1)σ(i)

(
σ(1) · · · σ(i+ 1) σ(i) · · · σ(N)

ν(1) · · · ν(i) ν(i+ 1) · · · ν(N)

)
if ν(i) = ν(i+ 1).

With the argument in the above, we reformulate Theorem 1.7 in terms of the operators T ∗ and T̂
as follows:

Corollary A.1. Let

σ = w1 · · ·wN−1 = Tkj · · ·Tkm−1︸ ︷︷ ︸
w1···wi−1

Tkm · · ·Tk1︸ ︷︷ ︸
wi···wN−1

be expressed as in Theorem 1.1. If wi, . . . , wN−1 ̸= 1, then

T ∗
kj
· · ·T ∗

km−1
T̂km · · · T̂k1

(
1 2 · · · N

ν(1) · · · ν(N)

)
= [Aσ]π(i),ν

(
σ(1) · · ·σ(N)

π(i)(1) · · ·π(i)(N)

)
,

and if i ≤ l with wl = 1, then [Aσ]π(i),ν = 0.

Example A.2. Suppose that we want to find
[
A4321

]
2212,2221

. By Theorem 1.1, we have

4321 = (T1)︸︷︷︸
w1

(T2T1)︸ ︷︷ ︸
w2

(T3T2T1)︸ ︷︷ ︸
w3

.

Figure 3 shows how Corollary A.1 is used to find[
A4321

]
2212,2221

= S43Q42S32pT41S31S21.
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1 2 3 4

2 2 2 1

T̂1

S21

2 1 3 4

2 2 2 1

T̂2

S31

2 3 1 4

2 2 2 1

T̂3

pT41

2 3 4 1

2 2 1 2

T ∗
1

S32

1423

2122

T ∗
2

Q42

1243

2122

T ∗
1

S43

4 3 2 1

2 2 1 2

Figure 3. [A4321]2212,2221 = S43Q42S32pT41S31S21.

B Matrix elements [Aσ]π,2221

σ [Aσ]2221,2221 [Aσ]2212,2221 [Aσ]2122,2221 [Aσ]1222,2221

1234 1 0 0 0

1243 Q43 pT43 0 0

1324 S32 0 0 0

1342 S32Q42 S32pT42 0 0

1423 Q43S42 pT43Q42 pT43pT42 0

1432 S32Q42S43 S32pT42Q43 pT43pT42S32 0

2134 S21 0 0 0

2143 S21Q43 S21pT43 0 0

2314 S21S31 0 0 0

2341 S21S31Q41 S21S31pT41 0 0

2413 S21Q43S41 S21pT43Q41 S21pT43pT41 0

2431 S21S31Q41S43 S21S31pT41Q43 S21pT43pT41S31 0

3124 S32S31 0 0 0

3142 S32S31Q42 S32S31pT42 0 0

3214 S32S31S21 0 0 0

3241 S32S31S21Q41 S32S31S21pT41 0 0

3412 S32S31Q42S41 S32S31pT42Q41 S32S31pT42pT41 0

3421 S32S31S21Q41S42 S32S31S21pT41Q42 S32S31pT42pT41S21 0

4123 Q43S42S41 pT43Q42S41 pT43pT42Q41 pT43pT42pT41

4132 S32Q42S43S41 S32pT42Q43S41 S32pT42pT43Q41 S32pT42pT43pT41

4213 S21Q43S41S42 S21pT43Q41S42 S21pT43pT41Q42 S21pT43pT41pT42

4231 S21S31Q41S43S42 S21S31pT41Q43S42 S21S31pT41pT43Q42 S21S31pT41pT43pT42

4312 S32S31Q42S41S43 S32S31pT42Q41S43 S32S31pT42pT41Q43 S32S31pT42pT41pT43

4321 S32S31S21Q41S42S43 S32S31S21pT41Q42S43 S32S31S21pT41pT42Q43 S32S31S21pT41pT42pT43
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C Matrix elements [Aσ]π,1112

σ [Aσ]1112,1112 [Aσ]1121,1112 [Aσ]1211,1112 [Aσ]2111,1112

1234 1 0 0 0

1243 P43 qT43 0 0

1324 S32 0 0 0

1342 P42S32 qT42S32 0 0

1423 P43S42 qT43P42 qT43qT42 0

1432 S43P42S32 S43qT42P32 S43qT42qT32 0

2134 S21 0 0 0

2143 P43S21 qT43S21 0 0

2314 S31S21 0 0 0

2341 P41S31S21 qT41S31S21 0 0

2413 P43S41S21 qT43P41S21 qT43qT41S21 0

2431 S43P41S31S21 P43qT41S31S21 qT43qT41S31S21 0

3124 S32S31 0 0 0

3142 P42S32S31 qT42S32S31 0 0

3214 S32S31S21 0 0 0

3241 P41S32S31S21 qT41S32S31S21 0 0

3412 P42S41S32S31 qT42P41S32S31 qT42qT41S32S31 0

3421 S42P41S32S31S21 P42qT41S32S31S21 qT42qT41S32S31S21 0

4123 P43S42S41 qT43P42S41 qT43qT42P41 qT43qT42qT41

4132 S43P42S41S32 P43qT42S41S32 qT43qT42P41S32 qT43qT42qT41S32

4213 P43S42S41S21 qT43S42P41S21 qT43P42qT41S21 qT43qT42qT41S21

4231 S43S42P41S31S21 P43S42qT41S31S21 qT43P42qT41S31S21 qT43qT42qT41S31S21

4312 S43P42S41S32S31 S43qT42P41S32S31 P43qT42qT41S32S31 qT43qT42qT41S32S31

4321 S43S42P41S32S31S21 S43P42qT41S32S31S21 P43qT42qT41S32S31S21 qT43qT42qT41S32S31S21
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