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Abstract
Intracellular metabolites can cause critical changes in biological functions. Itaconate is 
perhaps the most fascinating substance in macrophages. Lipopolysaccharide can activate 
aconitate decarboxylase 1 and induces the generation of itaconate from the tricarboxylic 
acid cycle by decarboxylation of cis‑aconitate. It has been reported that itaconate has 
beneficial effects on inflammation and oxidation. The mechanisms involved in these 
effects include the suppression of succinate dehydrogenase, the activation of nuclear factor 
E2‑related factor 2 by alkylation of Kelch‑like ECH‑associated protein 1, suppression of 
aerobic glycolysis through regulation of glyceraldehyde‑3‑phosphate dehydrogenase and 
fructose‑bisphosphate aldolase A, and suppression of IκBζ translation through activating 
transcription factor 3 activation. All of these findings elucidated the possible therapeutic 
implications of itaconate in inflammation‑related diseases. In this review, we highlight that 
itaconate is a crucial molecule of the immunomodulatory response in macrophages and 
can regulate between immune response and cardiovascular metabolism. Furthermore, these 
discoveries suggest that itaconate is a very novel therapeutic molecule for the treatment of 
inflammation‑related heart diseases.

Keywords: Activating transcription factor 3, Inflammation, Itaconate, Nuclear factor 
erythroid 2‑related factor 2, Succinate dehydrogenase

that itaconate inhibited the formation of abdominal aortic 
aneurysm  (AAA) induced by angiotensin II in apolipoprotein 
E‑deficient mice [15]. In addition, inhaled itaconate improves 
bleomycin‑induced pulmonary fibrosis in mice [16]. Ho et al. 
found that the combination of antibiotic tobramycin with 
itaconate increases the Pseudomonas aeruginosa biofilm 
eradicating efficiency  [17]. Based on the previous findings, 
suggesting that itaconate has potentials in the therapeutic 
treatment of various diseases in mice models. In this review, 
we emphasize on itaconate metabolism and itaconate 
regulation of inflammation‑related cardiovascular diseases, 
giving a rationale for therapeutic applications in future.

Itaconate synthesis and metabolism
Itaconate displays a similar structure to succinate 

and malonate  (SDH inhibitor). The metabolic process of 
itaconate is linked with the tricarboxylic acid  (TCA) cycle. 

Introduction

Intermediary metabolites are responsible for maintaining 
organ homeostasis, and their signaling functions are 

involved in the modulation of cell function  [1]. Numerous 
studies have found that internal metabolites perform an 
important part in the progress of several diseases, such as 
Type  2 diabetes  [2], cancers  [3,4], atherosclerosis  [5,6], 
cardiac disease  [7,8], chronic kidney disease  [9], and 
Alzheimer disease  [10]. These natural chemical compounds 
are rather cheap and simple to manufacture in huge quantities. 
The most intriguing example of a metabolite with specific 
immunologic functions is itaconate, which was initially 
determined as an object during the distilled process of citric 
acid in 1836 and has been used broadly in the polymer 
industry for several years. Previous studies have found that 
itaconate acts as an antibacterial metabolite by inhibiting 
the activity of isocitrate lyase involved in the maintenance 
of the bacterial growth amid infection  [11‑13]. In addition, 
itaconate alleviates reperfusion injury through the suppression 
of succinate dehydrogenase  (SDH)  [14]. Itaconate increased 
the survival rate in mice models with traumatic brain 
injury and hemorrhagic shock  [14]. It has been reported 

aDepartment of Pediatrics, Taipei 
Tzu Chi Hospital, Buddhist 
Tzu Chi Medical Foundation, 
New Taipei, Taiwan, bDivision 
of Cardiovascular Surgery, 
Department of Surgery, Taipei 
Tzu Chi Hospital, Buddhist Tzu 
Chi Medical Foundation, New 
Taipei, Taiwan, cInstitute of 
Biomedical Sciences, Academia 
Sinica, Taipei, Taiwan,  
dSchool of Medicine, Tzu Chi 
University, Hualien, Taiwan

How to cite this article: Ku HC, Shen TC, Cheng CF. The potential of using itaconate 
as treatment for inflammation-related heart diseases. Tzu Chi Med J 2022;34(2):113-8.

Access this article online
Quick Response Code:

Website: www.tcmjmed.com

DOI: 10.4103/tcmj.tcmj_83_21

Submission          : 29‑Mar‑2021
Revision               : 03‑May‑2021
Acceptance          : 07‑Jun‑2021
Web Publication : 14-Aug-2021

*Address for correspondence: Dr. Ching‑Feng Cheng, 
Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu 

Chi Medical Foundation, 289, Jianguo Road, Xindian District, 
New Taipei, Taiwan. 

E‑mail: chengcf@mail.tcu.edu.tw

The potential of using itaconate as treatment for inflammation‑related heart 
diseases
Hui‑Chen Kua, Ta‑Chung Shenb, Ching‑Feng Chenga,c,d*

Review Article
Tzu Chi Medical Journal 2022; 34 (2): 113‑118

This is an open access journal, and articles are distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to 
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit is 
given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

[Downloaded free from http://www.tcmjmed.com on Thursday, April 21, 2022, IP: 118.163.42.220]



Ku, et al. / Tzu Chi Medical Journal 2022; 34(2): 113‑118

114�

Itaconate is produced from cis‑aconitate in the TCA cycle 
in macrophages activated with lipopolysaccharide  (LPS), 
Toll‑like receptor  (TLR) ligands, and type  I and type  II 
interferons [18‑21]. The expression of aconitate decarboxylase 
1  (ACOD1), named immune‑responsive gene 1  (IRG1) 
at first is upregulated by these stimuli. It was found that 
the increase in the production of itaconate is through 
upregulation of ACOD1 expression  [Figure  1]  [21]. These 
findings remarkably widen our comprehension of itaconate. 
In addition, the crystal structures of cis‑ACOD  (CAD, also 
known as ACOD1 or IRG1) were determined, with eight 
active sites and were important for CAD function  [22]. 
Despite the fact that rare mutations were observed in the 
active center of CAD in humans, elucidation of the structure 
of CAD would provide insight into the investigation of CAD 
mutations and their relation to the pathological mechanism 
of disease and therapeutic strategy  [22]. Furthermore, 
pyruvate dehydrogenase  (PDH) is partially related to 
itaconate biosynthesis. PDH kinase 1  (PDK1) upregulates 
the phosphorylation of PDH and subsequently inhibits its 
activity  [23]. LPS suppresses PDK1 activity, which results in 
increased switch of pyruvate to acetyl‑CoA through activating 
PDH  [24]. In addition, acetyl‑CoA is a crucial precursor 
for citrate production, and enough citrate is necessary for 
itaconate biosynthesis. These biological reactions represent the 
metabolic cycle in macrophages. Other metabolic approaches 
for itaconate need further investigation.

Itaconate modulates inflammation by 
suppression of succinate dehydrogenase

SDH is a vital enzyme that converts succinate to fumarate in 
the TCA cycle. In addition, SDH oxidizes cumulative succinate 
to produce superfluous reduced coenzyme Q for the production 
of superoxide anion in mitochondrial  [25]. Furthermore, the 
reactive oxygen species  (ROS) triggers the inflammasomes, 
resulting in the secretion of pro‑inflammatory modulators [26]. 

A  previous study had found that itaconate was a competitive 
inhibitor of SDH [27]. The structural similarity between them 
accounts for its ability to inhibit SDH. It had been reported 
that SDH oxidizes succinate to generate ROS, which increases 
hypoxia‑inducible factor 1α and finally, the interleukin (IL)‑1β 
transcription in macrophages  [28]. Moreover, pretreatment 
with dimethyl itaconate  (DI) significantly reduces SDH 
activity, which consecutively inhibits ROS production, 
suppresses the activation of nod‑like receptor protein 3 
inflammasome, and decreases proinflammatory cytokines in 
mouse bone‑marrow‑derived macrophage  (BMDM) cells  [29]. 
In addition, ACOD1 overexpression in macrophages 
induces itaconate production that results in succinate 
accumulation, due to itaconate straightly suppresses SDH 
activity  [Figure  2]  [29,30]. In summary, inhibition of SDH is 
partially involved in itaconate‑regulated inflammation.

Itaconate regulates inflammation via the 
nuclear factor erythroid 2‑related factor 
2 pathway

It is well‑known that the nuclear factor erythroid 
2‑related factor 2  (NRF2) transcription factor plays an 
important role in the modulation of inflammation and 
oxidative stress  [31‑33]. NRF2 can bind to the promoters 
of IL‑6 and IL‑1β, and inhibit their transcription  [34]. In 
addition, NRF2 activation upregulates HO‑1 and modulates 

Figure 1: Itaconate biogenesis and metabolism. (a) Inflammatory stimuli activate 
aconitate decarboxylase 1 expression, which induces the production of itaconate by 
decarboxylation of cis-aconitate in the tricarboxylic acid cycle of the mitochondrial 
matrix. Citrate lyase subunit beta-like catalyzies citramalyl-CoA to pyruvate and 
acetyl-CoA. (b) Chemical structures of itaconate, dimethyl itaconate and 4-octyl 
itaconate

b

a

Figure 2: Itaconate suppresses inflammatory and oxidative signaling pathways. 
Itaconate is produced in macrophages activated by lipopolysaccharide through 
upregulating aconitate decarboxylase 1 expression. Increased itaconate activates 
the nuclear factor erythroid 2-related factor 2 signaling through alkylation of 
Kelch-like ECH-associated protein 1, which activates the transcription of HO-1 
and glutathione. In addition, itaconate can suppress succinate dehydrogenase and 
decrease reactive oxygen species generation and interleukin-1β secretion. Itaconate 
increases activating transcription factor 3 expression, which directly suppresses 
IκBζ expression and results in reducing interleukin interleukin-6. Furthermore, 
itaconate promotes alkylation of glyceraldehyde-3-phosphate dehydrogenase and 
aldolase A to suppress glycolysis, thus alleviating the inflammation
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glutathione  (GSH) production, which results in protecting 
against oxidative stress  [35,36]. Under quiescent conditions, 
Kelch‑like ECH‑associated protein 1  (KEAP1) suppresses 
NRF2 activity in the cytoplasm, while NRF2 is dissociated 
from KEAP1 under the stimulus. NRF2 can then shift to the 
nucleus to trigger the anti‑inflammatory and antioxidative 
pathways  [37‑41]. In addition, the alkylation of KEAP1 fails 
to suppress NRF2  [42]. Itaconate was found to enhance the 
alkylation of cysteine residues on KEAP1, which promotes 
KEAP1 degradation to further activate NRF2  [37]. 4‑Octyl 
itaconate  (4‑OI) alleviated H2O2‑activated ROS generation, 
cell death, and lipid oxidation in SH‑SY5Y cells through the 
KEAP1‑NRF2 pathway  [43]. Itaconate was found to reduce 
cerebral ischemia/reperfusion injury through activation of 
the NRF2 signaling and inhibition of SDH activity  [44]. In 
addition, DI decreased ROS production and malondialdehyde 
levels through NRF2/HO‑1 signaling in doxorubicin‑induced 
cardiotoxicity in mice  [45]. 4‑OI treatment ameliorated 
the survival rate and decreased the expression level of 
proinflammatory cytokines in the mouse model of LPS‑induced 
sepsis  [37]. Furthermore, Song et  al. found that itaconate 
inhibited the formation of AAA induced by angiotensin II in 
apolipoprotein E‑deficient mice. Mechanistically, itaconate 
suppressed vascular inflammation by allowing NRF2 to act as 
a repressor of downstream inflammation‑related genes through 
KEAP1 alkylation. This suggested that therapeutic strategies 
to increase itaconate are feasibly valuable for the prevention 
of AAA formation  [15]. These observations suggest that 
itaconate is attributed to activating the NRF2 signaling and the 
transcription of downstream antioxidant genes [Figure 2].

Itaconate modulates inflammation through 
the activating transcription factor 3 and 
iκbζ pathway

Exposure of macrophages to LPS has been widely utilized 
as a model of inflammation. LPS activates the inflammatory 
pathways by binding to TLRs on the surfaces of macrophages. 
In addition, LPS stimulates the production of tumour necrosis 
factor‑alpha  (TNF‑α) and IL‑6  [46]. TNF‑α is induced by 
nuclear factor‑κB during LPS treatment  [47], while IL‑6 is 
induced by IκBζ pathway  [48]. The transcription factor IκBζ 
is an ankyrin‑repeat‑containing nuclear protein  [48]. It was 
found that knockout of Nfkbiz decreases IL‑6 production in 
peritoneal macrophages after the treatment with TLR ligands 
and IL‑1 [49]. The ablation of IκBζ caused a reduction in IL‑6 
production in mouse macrophages treated with LPS [50]. Kim 
et  al. had found that activating transcription factor 3  (ATF3) 
deficiency in mouse embryonic fibroblasts increases IκBζ 
expression and stimulates the secretion of proinflammatory 
cytokines  [51]. Furthermore, Bambouskova et  al. had found 
that DI was less capable to downregulate LPS‑induced IκBζ 
expression in BMDMs of ATF3 KO mice  [52]. Furthermore, 
the upregulation of ATF3 by DI treatment inactivated α 
subunit of eukaryotic initiation factor 2α, which further 
suppressed IκBζ transcription  [52]. Furthermore, treatment 
with antioxidant or GSH could abolish the effect of DI on IL‑6 
expression  [52]. This suggested that GSH/ROS pathway is 
involved in the modulation of DI‑regulated inflammation [52]. 

In addition, it was noted that NRF2 is involved in the 
suppression of macrophage inflammation by 4‑OI  [37]. 
These findings suggest that targeting the itaconate/IκBζ 
modulatory axis could be a novel strategy for the treatment of 
inflammatory diseases [Figure 2].

Itaconate modulates inflammation 
by suppressing glycolysis via 
targeting glyceraldehyde‑3‑phosphate 
dehydrogenase

Glycolytic pathway acts as an important role in cell growth, 
differentiation, and phenotype shifts in macrophages [53]. LPS 
treatment results in the increment of glycolysis. The immune 
phenotypes of macrophages are related to their metabolic 
statuses  [53]. Macrophages can be classified into two types: 
The M1 phenotype activated by LPS has proinflammatory 
property, and the M2 phenotype activated by IL‑4 and IL‑10 
displays anti‑inflammatory features [54]. In addition, itaconate 
regulation of macrophage polarization is yet controversial. 
Qin et  al. had found that the anti‑inflammatory effect of 
itaconate is mediated by subsiding glycolysis through 
fructose‑bisphosphate aldolase A  (ALDOA, a glycolytic 
enzyme) suppression  [55]. 4‑OI induced alkylation of 
glyceraldehyde‑3‑phosphate dehydrogenase  (GAPDH), 
which suppressed glycolysis and the generation of cytokines 
in LPS‑stimulated macrophages  [56]. Furthermore, the 
anti‑inflammatory effect exerted by 4‑OI was suppressed 
by a high concentration of glucose, thus implying that 4‑OI 
suppresses inflammation via the inhibition of glycolysis  [56]. 
In contrast, one study found that microRNA‑93 downregulates 
ACOD1expression and itaconate production to trigger M2 
polarization, probably due to less itaconate for enhancing 
oxidative phosphorylation  [57]. In summary, these findings 
suggest that itaconate modulates the inflammation and 
cell polarization of macrophage in distinct metabolic 
statuses [Figure 2].

Itaconate may act as a possible therapeutic 
molecule in heart disease via activating 
transcription factor 3 signaling

DI has been reported to induce ATF3 expression  [52]. 
ATF3 modulation of cardiac function varies depending on 
the stress patterns. ATF3 deficient mice show decreased 
cardiac remodeling and hypertrophy after phenylephrine 
treatment [58,59]. Ectopic ATF3 expression in cardiomyocytes 
induces cardiac dysfunction in transgenic mice  [58,60]. On 
the contrary, our previous study showed that ATF3 knockout 
showed a loss of normal hypertrophic remodeling after 
transaortic banding treatment  [61]. Some studies showed 
that ATF3 plays a beneficial role in the mice model of 
transverse aortic constriction  [62,63]. The effect of ATF3 in 
cardiac remodeling is still inconclusive and worth further 
exploring  [64,65]. Cardiac ATF3 deficient mice show worse 
cardiac remodeling and cardiac dysfunction after a high‑fat 
diet  [66]. Furthermore, Song et  al. found that itaconate 
inhibited the AAA formation induced by angiotensin II in 
apolipoprotein E‑deficient mice. This suggested that therapeutic 
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strategies to increase itaconate are feasibly valuable for the 
prevention of AAA formation [15]. Further studies are needed 
to elucidate whether itaconate is a therapeutic molecule in 
heart diseases via ATF3 signaling pathways.

Future application of itaconate
Itaconate was reported to regulate several signaling 

pathways, such as NRF2 and ATF3 for its beneficial role in 
anti‑inflammation and anti‑oxidation. It has been known that 
NRF2 activator has a therapeutic effect in the treatment of 
several inflammation‑related diseases. Dimethyl fumarate had 
been applied in the clinical treatment of multiple sclerosis 
via NRF2 activation  [67]. Furthermore, itaconate is less toxic 
for therapeutic application in treating inflammation‑related 
diseases. However, there is still no obvious proof of the 
outcomes of the in  vivo eradication of itaconate. In addition, 
other pathways may be involved in itaconate‑regulating cell 
function. Citrate lyase subunit beta‑like  (CLYBL) is localized 
in the mitochondria. Mutations in CLYBL cause decreased 
circulating levels of vitamin B12 [68,69]. Itaconate is converted 
to itaconyl‑CoA and then to citramalyl‑CoA catabolized by 
CLYBL to produce pyruvate and acetyl‑CoA  [70]. Knockout 
of CLYBL increases the accumulation of itaconyl‑CoA, which 
results in vitamin B12 degradation. It is still obscure whether 
Vitamin B12 inactivation influences the activity of itaconate 
and whether CLYBL modulates itaconate biosynthesis during 
the inflammation response  [71]; therefore, the utilization of 
itaconate as a treatment agent needs a cautious investigation. 
Furthermore, it is interesting to analyze whether circulating 
levels of itaconate could be utilized as a biomarker for 
inflammation‑related diseases. In addition, treatment of 
inhaled itaconate improves bleomycin‑induced pulmonary 
fibrosis in mice, whereas pulmonary fibrosis worsening 
in the ACOD1 KO mice, implying that directly targeting 
ACOD1/itaconate and pharmacological applications using 
itaconate may potentially act as anti‑fibrotic agents for 
preclinical use in pulmonary fibrosis  [16]. Ho et  al. found 
that itaconate increases the efficacy of tobramycin against 
P.  aeruginosa biofilms. Combination of antibiotic tobramycin 
with an anti‑inflammatory compound itaconate  (molar 
ratio  [tobramycin]:  [itaconate] of 1:5) increases the 
P.  aeruginosa biofilm eradicating efficiency of tobramycin 
four‑fold compared to the usage of tobramycin alone, 
suggesting that combination of tobramycin and itaconate may 
be plausible in preclinical models of P.  aeruginosa biofilm 
infections [17].

Conclusion
Itaconate has received considerable attention due to its 

anti‑inflammatory and anti‑oxidative effects. In addition, 
itaconate acts as an interesting link between metabolism 
and immune response in the cells for elucidating the 
pathogenesis of inflammation‑related diseases. At present, 
the molecular mechanisms of itaconate for anti‑inflammation 
and anti‑oxidation have been elucidated, including the 
suppression of SDH, activation of NRF2 by liberating from 
KEAP1, upregulation of ATF3 to inhibit the IκBζ activation, 
and inhibition of glycolysis through GAPDH alkylation 

and suppression of ALDOA. In addition, itaconate can 
reprogram macrophages into the M2 phenotype. Itaconate 
and its derivatives also can induce electrophilic stress in the 
immunomodulating process. These new findings suggest that 
itaconate acts as a very suitable therapeutic molecule for 
inflammation‑related heart diseases. The immunomodulatory 
mechanisms of itaconate need to be fully determined before 
clinical experiments. A  summary of the related pathways 
involved in itaconate regulation of inflammation is depicted 
in Figure  3. It is concluded that itaconate is a very novel 
therapeutic molecule for the treatment of inflammation‑related 
diseases and has the potential for use as a preclinical drug in 
inflammation‑related heart disease based on the in  vitro and 
in vivo findings.
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