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Highlights

•	 Our scoping review showed that most studies using 
British and Irish species occurrence records focused 
on ecological or biological questions, rather than 
developing or testing methodology.

•	 We found that different types of biological records 
data were used to study different questions, and it 
follows that data providers should identify priority 
uses in order to provide appropriate data.

•	 More structured biological records data were generally 
analyzed with more powerful methods (e.g., statistical 
inference).

•	 Although most studies used multiple biological records 
datasets, few studies attempted to validate results 
using independent data.

•	 We suggest that future studies using multiple biological 
records datasets withhold at least one of those 
datasets for use as independent validation data.

Abstract

Biological records provide biodiversity information over 
large spatial and temporal scales. Our systematic scoping 
review of biological records from the well-recorded 
region of the United Kingdom (UK) and Ireland revealed 
that over half of all studies using biological records were 
studying species distributions (134 of 253 studies) and/
or temporal trends (139 of 253 studies). A minority of 
studies (61 of 253) focused on methodological questions, 
while most studies used biological records with existing 
methods as tools for answering biological and ecological 
questions. However, only 31 of 253 studies tested models 
using independent data. Most studies (154 of 253) 
integrated multiple biological records datasets, showing 
that biological records hold a largely untapped potential 
for independently testing conclusions by withholding 
some of those datasets for use as independent test 
data. Our results provide guidance for data providers 
and researchers interested in more effectively collecting 
and using biological records.

Introduction
Biological records are “what, where, when” 

observations from citizen science or other sources 
that record the presence of a species in a particular 
place and at a particular time (Isaac and Pocock 2015). 
Additional information may be associated with the basic 
“what, where, when” data: the name of the person who 
collected the data, the survey methods, the duration or 
spatial extent of the survey during which the records, 
photos, or sound recordings were collected. National 
and international data centers, including the Global 

Biodiversity Information Facility (GBIF), aggregate and 
disseminate biological records data, with the mission 
of making biodiversity data available for the scientific 
community, governments, and non-governmental 
organizations (National Biodiversity Network 2015).

We are interested in questions such as the following. 
To what extent are efforts to share biological records 
data successful? Are the data widely used by researchers 
not affiliated with the groups that collect and provide 
the data? What questions are studied using biological 
records? Some data providers are explicitly interested 
in providing data that will be used in applied settings. 
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For example, informing decision-making is a “key 
objective” of the Irish National Biodiversity Data Centre 
(NBDC): “The [NBDC] facilitates and promotes the 
use of biodiversity data to inform public policy and 
decision-making through analysis, interpretation and 
reporting” (National Biodiversity Data Centre n.d.). 
In order to provide data that meet the needs of users, 
data providers need to know how biological records 
are likely to be used and what characteristics of the 
data enable or inhibit studying particular questions or 
using particular techniques of analysis. For example, 
governments may wish (or be required) to report on 
multiple different biodiversity questions, including 
concerning species distributions, population sizes, and 
temporal trends for individual species (Department of 
Arts Heritage and the Gaeltacht 2017). But data needs 
are not necessarily the same for all study questions. 
Studying temporal trends in species population 
abundance may require different types of data than 
studying species distributions. Knowing which types 
of data are commonly used to study different types of 
questions will be useful to data providers who wish to 
facilitate studies of specific types of questions.

Similarly, researchers downloading and using 
biological records data, especially those using biological 
records for the first time, can gain insight into how to 
conduct their own studies by knowing which types 
of data and which methods of analysis are used or 
avoided by the community of researchers working 
with biological records. Identifying biological and 
ecological study questions that are commonly studied 
with biological records but for which methodological 
development is not particularly active can give a 
“sense of the field” about areas where methods for 
analyzing biological records are largely settled. Similarly, 
identifying particular study questions that are rarely 
addressed with certain types of data could highlight 
fundamental underlying challenges – challenges either 
to be avoided, or perhaps challenges to be tackled 
with methodological development.

Analyses using statistical inference to estimate 
relationships between variables, along with associated 
uncertainty (e.g., confidence intervals or p-values), are 
arguably the most powerful way to answer questions 
using data. But statistical inference is not the only 
useful way of studying questions. Prediction can be a 
powerful and useful tool, and some research focuses 
on high-quality prediction of response variables, 
without explicitly attempting to interpret the effects or 
statistical significance of predictor variables (Fink et al. 
2010). Purely descriptive studies of observations or 
descriptive statistics are more limited, but can still be 
useful, for example, in assessments of invasive species 
(Millane and Caffrey 2014). However, we assume that a 
researcher who has adequate data to do prediction or 
statistical inference would not present only descriptive 
results. We therefore tested whether some types of 
biological records were more frequently used than 
others in purely descriptive analyses, which would 
indicate that characteristics of those data limit the 

1  www.biodiversityireland.ie, last accessed 02/06/2020; https://nbnatlas.org/, last accessed 02/06/2020

strength of conclusions. If some types of biological 
records do limit analyses to being purely descriptive, 
why would researchers still use those data? To explore 
this, we investigated potential trade-offs by looking 
at whether some types of data were associated with 
studies that covered longer temporal or spatial extents.

Identifying new or unusual uses of biological records 
can help data providers anticipate and prepare for new 
data needs and opportunities for the future. Digital 
innovations have transformed how citizen scientists 
submit vouchers of specimens with biological records 
(August et al. 2015). Biological records now include 
everything from literature records, to opportunistic 
observations submitted via mobile phone apps 
(Sullivan  et  al. 2009), to abundance counts from 
standardized transects in citizen science monitoring 
schemes (Van Swaay et al. 2008). Biological records can 
be generated by remote machine-based observations 
(e.g., camera traps or automated acoustic recorders), 
sometimes with the aid of citizen scientists to process 
the large amounts of data generated (Swanson et al. 
2015). There is even potential for citizen scientists to 
use eDNA to produce biological records, which may 
be especially useful for taxa that are difficult to survey 
otherwise (Biggs et al. 2015). Biological records data 
may include photographs or audio recordings (Vellinga 
and Planqué 2015), information about survey effort, or 
nothing more than “what, where, when” observations. 
How are researchers making use of these new types 
of biological records data?

The United Kingdom (UK) and Ireland have some of 
the most intensive biodiversity recording schemes in 
the world (Meyer et al. 2016), and therefore offer an 
excellent opportunity to systematically study the use 
of “what, where, when” data. National biodiversity 
data centers in Ireland and the UK have well-developed 
infrastructure for collating and disseminating data1. 
However, despite relatively intense recording effort, the 
biases and gaps common to all biological records are 
present in UK and Irish records (Isaac and Pocock 2015). 
The uses of biological records from the UK and Ireland 
therefore provide insight about the current “best 
case” scenario in terms of biological recording; to the 
extent that these records are used to study biological 
and ecological questions with powerful methods (i.e., 
prediction and statistical inference), the structure of 
these records can serve as a goal for data collectors 
and aggregators in other regions. On the other hand, 
identifying characteristics of these records that limit 
their use can inform recorders and data aggregators 
elsewhere (and in the UK and Ireland) about what is 
needed to make data more useful in the future.

Methods

Literature search, review process, and data reliability
We undertook a systematic scoping review (Arksey 

and O’Malley 2005) of original research published 
since 2014 that used biological records from Ireland 
and/or the UK. We limited the review to studies 
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published since 2014 in order to focus on the most 
recent literature and to keep the number of reviewed 
studies below 300, which we estimated would be a 
manageable number given the time-intensive review 
process. We generated a list of potentially relevant studies 
by searching Web of Science, Scopus, ProQuest, the 
GBIF website, and GoogleScholar (using Harzing 2007; 
see Appendix S1 for search terms). One researcher 
evaluated each study for inclusion eligibility according 
to criteria described in Gaul, Roark, and Yearsley (2020). 
For eligible studies, one researcher coded variables 
describing basic descriptive information (e.g., temporal 
and spatial extent), study questions, data type, and 
analytical approach (Table 1). To assess the reliability 
of codings, a second researcher (hereafter “coder”) 
coded the variables for a subset of 20% of the eligible 
studies (40 studies). Agreement between the two 

coders was evaluated using Krippendorff’s alpha, which 
measures agreement while accounting for agreement 
by chance (Gamer  et al. 2012, Krippendorff 2013). 
We only conducted statistical analyses for variables 
with Krippendorff’s alpha values above 0.67 and 
with relative frequencies above 0.14 for the least 
common category of the variable, following rule-of-
thumb guidelines from Krippendorff (2013;Table S1). 
For variables with insufficient variation to estimate 
coding reliability (variables with relative frequencies 
below 0.14 for the least common category) we did not 
perform statistical analyses, but we do comment on 
them because the rare categories of these variables 
are interesting from a horizon-scanning perspective. 
A brief description of the variables that were reliably 
coded according to Krippendorff’s alpha and that we 
used in analyses is given in Table  1. Variables that 

Table 1. Descriptions of variables that were reliably coded and used in subsequent analyses. For clarity of presentation, 
some variables are grouped by theme (indicated in italic font), and we refer to those variables in the text using the theme.

Theme or Variable Description
Study Question This describes the ecological or biological focus of the study. We categorized 

study questions as being about: abundance, species distribution, phenology, 
species richness, temporal trends, or “other”.

Data Type This describes different types of biological records data. We categorized each 
study based on whether the biological records data: came from an organized 
monitoring scheme; included explicit non-detection information; included explicit 
sampling effort information; included visit-specific covariates (e.g., wind speed 
at the time of the survey); or whether the study included multiple biological 
records datasets. We also evaluated whether studies used biological records that 
included photographs, audio or video recordings, physical voucher specimens, 
or life stage information.

Analytical Approach This describes the broad analytical approach used for biological records. We 
categorized each study as using one of the following three analytical approaches: 
statistical inference, prediction, or descriptive only. Statistical inference indicates 
analyses that included the estimation of uncertainty or significance (e.g., p-values 
or confidence intervals). Prediction indicates analyses that use predicted values 
of a response variable with no associated uncertainty estimates (e.g., model-
predicted probability of a species occurring at a location). Descriptive only indicates 
analyses that used neither statistical inference nor prediction, but presented 
results descriptively through, e.g., narrative descriptions of patterns, maps of 
observed values, or point estimates of descriptive statistics.

Testing procedure Indicates whether the study tested their analyses using cross-validation, a 
“holdout” subset of the data, or independent data.

Author associated with 
data provider

Indicates whether any of the authors were affiliated with the institution that 
provided the data

Temporal extent The time period (in years) covered by the study.
Methodology development 
or analysis

Indicates whether a major focus of the study was development of a new analysis 
method or testing how well a method works.

Proximate data source The source from which the biological records data were obtained by the authors 
of each study. Note this is not necessarily the source that generated the data 
(e.g., if a study downloaded data from GBIF, but the data were produced by a 
non-profit citizen science organization, the proximate data source would be GBIF).
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were not reliably coded, or that were too rare for us 
to evaluate their reliability, are listed in Table S1 and 
described fully in Gaul, Roark, and Yearsley (2020). 
Analyses were conducted in R version 3.5 (R Core 
Team 2018). Data and review protocols are provided in 
Gaul, Roark and Yearsley (2020). Scripts to conduct all 
analyses are available in Gaul (2020) or from GitHub2. 
A list of reviewed studies is in Appendix S2.

Who used biological records?
In order to determine how often studies using 

biological records were conducted by researchers who 
were not affiliated with the data provider, we coded 
whether each study had at least one author who was 
affiliated with the data-providing institution.

Data sources
To investigate how studies acquired biological records 

data, we counted the number of studies that got data 
from each proximate data source.

Temporal extent of studies
We tested whether the temporal extent of studies 

differed based on data type by fitting a linear model with 
the natural-log transformed temporal extent of studies 
(in years) as the response. We summarized the data 
type variables using multiple correspondence analysis 
(MCA;Mair and de Leeuw 2019) to reduce dimensionality 
and produce uncorrelated predictor variables, because 
three of our data type variables indicating structured 
data (sampling effort, non-detection, and data from 
an organized monitoring scheme) were correlated. 
As predictors in the linear model, we used the first 
two MCA dimensions (accounting for 85.9% of the 
variance in the MCA, Fig. S1), indicating whether studies 
used more structured biological records data types 
(dimension one, eigenvalue = 2.44) and whether studies 
used multiple biological records datasets (dimension 
two, eigenvalue = 0.99). We assessed the significance 
of data types for predicting temporal extent by using 

2  https://github.com/wgaul/systematic_review, last access on 06/02/2020

a likelihood ratio test to compare a model containing 
the two MCA dimensions to an intercept-only model.

Ecological and biological study questions
We assessed which ecological or biological study 

questions were addressed using biological records. 
A study could address more than one study question 
using biological records. We tested for differences in 
the number of studies investigating each study question 
by looking at whether there was overlap of 95% bias-
corrected accelerated bootstrap confidence intervals 
around the mean number of studies investigating each 
study question.

Development of methodology across different study 
questions

We expected to find more methodological development 
studies for some types of ecological and biological 
questions than for others. To test for differences in the 
proportion of methodological studies across different 
study questions, we used logistic regression with a 
binary response variable indicating whether the study 
addressed a methodological question and six predictor 
variables (listed in Table 2) indicating the ecological or 
biological study questions. We tested whether the full 
model including all six predictor variables was better 
than an intercept-only null model using a likelihood 
ratio test. After performing the likelihood ratio test 
comparing the null and full models, we performed 
exploratory variable selection using AIC. We tested the 
prediction performance of the full, null, and AIC top-
ranked models using McFadden’s pseudo-R2 (Domencich 
and McFadden 1975) and the area under the receiver 
operating characteristic curve (AUC).

What data types are used for each study question?
We asked whether different biological records 

data types were used to study different ecological 
or biological study questions. We used a random 
permutation procedure (Manly 2007) that broke the 
association between data type and study questions to 

Table 2. The relationship between ecological or biological study question and whether or not studies developed or tested 
methodology. Study questions are listed, along with the number of studies that were and were not methodological. 
Coefficient estimates (with 95% confidence intervals), z-statistics, and p-values for each term are from a logistic regression 
testing whether the probability of a study developing or testing methodology depended on the ecological or biological 
study question.

Study question Methodological Not methodological Coefficient estimate 
(95% CI) z P-value

(intercept) na na -1.12 (-2.02, -0.25) -2.51 0.01
abundance 19 41 0.36 (-0.40, 1.09) 0.95 0.34
species distribution 25 109 -0.52 (-1.26, 0.22) -1.38 0.17
phenology 7 29 -0.47 (-1.49, 0.43) -0.98 0.33
species richness 8 34 -0.35 (-1.32, 0.52) -0.76 0.45
temporal trends 36 103 0.33 (-0.36, 1.04) 0.92 0.36
other 9 15 0.61 (-0.61, 1.82) 0.99 0.32
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test the null hypothesis of no difference in the types 
of data used to study different biological or ecological 
questions. The permutation procedure and associated 
residual and test statistic calculations are described 
in Figure S2.

For variables indicating rare data types (including 
photo, audio, and video data) we could not estimate 
the reliability of our coding of the variables (Table S1). 
We therefore did not include those rare data types in 
the formal permutation analysis. Instead, we reported 
the percentage of studies that used each rare data type 
and discussed the implications of the rarity.

Analytical approach and data type
To investigate whether different biological records 

data types were used with different analytical 
approaches, we used random permutations to 
test a null hypothesis of no difference in the data 
types used with different analytical approaches. 
We classified the analytical approach of each study 
into one of three categories: “statistical inference”, 
“prediction”, or “descriptive”. We defined “statistical 
inference” narrowly as statistical inference that 
included estimation of uncertainty or confidence 
(including but not limited to hypothesis testing). 
We defined prediction as predicting point estimates 
(e.g., from a model), but without including estimates 
of uncertainty or confidence with the predictions. 
For example, a map of the predicted probability of 
a species occurring in each grid square of a raster 
would be categorized as “prediction” if there was 
no measure of the uncertainty associated with the 
predicted probabilities. Finally, we defined descriptive 
analyses as those that did not include any estimation of 
uncertainty or prediction to new data or parts of data 
space (e.g., maps of observations or point estimates 
of summary statistics are descriptive only). We chose 
to differentiate between prediction and statistical 
inference because biological records data often contain 
a wide variety of sampling biases, including spatial 
and temporal biases, which make many observations 
non-independent. Non-independent data, such as 
when observations are spatially auto-correlated, are 
particularly problematic when estimating coefficients 
and their associated uncertainty (Beale et al. 2010, and 
references therein), in part because it can be unclear 
what the effective sample size is (Lennon 2000). Model 
predictions (i.e., point estimates of the response 
variable) are less affected by spatial auto-correlation 
(Thibaud et al. 2014, but see Guélat and Kéry 2018), 
and therefore we expected that researchers might 
chose to do prediction without estimating uncertainty 
or confidence and without interpreting coefficient 
estimates when the data were particularly “messy”.

The permutation procedure we used to investigate 
whether different biological records data types were 
used with different analytical approaches was similar to 
that used for the analysis of the relationship between 
data type and study questions, but using variables 
describing analytical approach instead of variables 
describing study questions (Fig. S2).

Testing on independent data
We estimated the proportion of studies that tested 

models using cross-validation (in which data are split 
into sets used for either model training or testing) 
and the proportion that tested on independent data.

Results

Literature search, review process, and data reliability
The search returned 2,695 potentially relevant 

studies, of which 253 (9.4%) were eligible for inclusion 
in this review. Of the studies that we deemed eligible 
for inclusion in this review, 53 (20.9%) were returned 
more than once by the search. Sixteen variables met our 
criteria for inclusion in further analyses (Krippendorff’s 
alpha greater than 0.67 and relative frequency of at 
least 0.14 for the least common category, Table S1). 
Five variables had relative frequencies of the least 
common category high enough to estimate alpha, but 
they had alpha values less than or equal to 0.67 and 
were therefore deemed unreliable.

Who used biological records?
Coder agreement was low when determining whether 

a study had an author associated with the proximate 
data provider (Table S1), so we did not further analyze 
the association between authors and data providers.

Data sources
Most studies used traditional data sources such as 

biodiversity data centers, taxon-specific monitoring 
schemes, and natural history museums (Table S2). 
There were many data sources that were only used 
by one study, including some non-traditional data 
sources, such as the media sharing platforms Flickr 
and YouTube.

Temporal extent of studies
Studies using multiple biological records datasets 

covered longer temporal extents than studies that 
did not (Fig. 1, overall significance of data type on 
temporal extent p < 0.0001, F2, 198 = 41.32, Adjusted 
R2 = 0.29, regression coefficient estimate for MCA 
dimension two = 0.71, p < 0.0001, F1, 199 = 46.38). Studies 
using more structured biological records data types 
covered shorter temporal extents than studies that 
used less structured data types (regression coefficient 
estimate for MCA dimension one = -0.63, p < 0.0001, 
F1, 199 = 36.26). We removed from analysis 52 studies 
for which we could not determine the temporal extent, 
leaving 201 studies for analysis.

Ecological and biological study questions
Over half the studies in this review analyzed 

species distribution (proportion of studies = 0.53, 
95% bootstrap CI [0.46, 0.58]) and/or temporal trends 
(proportion = 0.55, 95% bootstrap CI [0.48, 0.61]), 
which was higher than the proportion analyzing any 
other study question (Fig. 2). We found no difference 
in the proportion of studies analyzing abundance 
(proportion = 0.24, 95% bootstrap CI [0.18, 0.29]), 
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species richness (proportion = 0.17, 95% bootstrap CI 
[0.12, 0.21]), or phenology (proportion = 0.14, 95% 
bootstrap CI [0.1, 0.19]). The proportion of studies 
focused on species diversity (proportion = 0.06) or 
alien species (proportion = 0.11) were too low for us to 
estimate coder agreement using Krippendorff’s alpha.

Development of methodology across different study 
questions

Studies in this review primarily used biological 
records to study ecological and biological questions 
rather than developing or testing methodology for 
analyzing biological records (proportion of studies 
that developed or tested methodology = 0.24, 95% 
bootstrap CI [0.19, 0.29]). Despite our expectations, 
there was no evidence that the probability of a 
study developing or testing methodology depended 
on the ecological or biological study question 
(χ2

6 = 9.66, p = 0.14, Table 2). Our models, including 
the model ranked highest according to AIC, had 
low prediction performance (null model AUC = 0.5; 
full model AUC = 0.62, McFadden’s pseudo-R2 = 
0.034; top-ranked model AUC = 0.58, McFadden’s 
pseudo-R2 = 0.017).

What data types are used for each study question?
Data type and study question were not independent 

(χ2 = 29.1, df = 6, p <= 0.0001, 104 permutations, 

Fig. 1. The distribution of temporal extents (in years) covered by studies using four different biological records data types 
(panels). Studies using multiple biological records datasets covered longer temporal extents. Note the logarithmic scale 
of the horizontal axis.

Fig. 2. The proportion of studies that analyzed different 
ecological or biological study questions. Studies of species 
distributions and temporal trends were the most common 
uses of biological records. Points show proportion of studies, 
vertical lines show 95% bootstrap confidence intervals. 
Proportions in this plot add up to more than one because 
some studies performed multiple analyses and studied 
multiple questions.
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Fig. 3). This non-independence is primarily explained 
by abundance studies and species distribution 
studies (Fig.  3). Studies of species distributions 
used multiple biological records datasets more 
than studies addressing other study questions 
(Fig. 3). Structured data (e.g., data from organized 
monitoring schemes or with sampling effort or non-
detection information) were used more frequently 
for abundance studies and less frequently for studies 
of species distributions than would be expected if 
there were no relationship between data type and 
study question (Fig. 3). Multiple datasets were used 
less often than expected for abundance studies 
(Fig. 3). There was no evidence that particular data 
types were associated with phenology, species 
richness, or “other” study questions.

Analysis of voucher specimens, either physical or 
digital, was rare: 5.1% of studies used photos, 0.4% 
of studies used videos, 2.8% of studies used audio 
recordings, 9.5% of studies used life stage (e.g., 
phenology) information, and 9.1% of studies used 
physical voucher specimens.

Analytical approach and data type
There was strong evidence that data type was associated 

with analytical approach (χ2 = 21.6, df = 6, p < 0.0001, 
104 permutations, Fig. 4). This was primarily explained by 
studies using statistical inference and studies using only 
descriptive results (Fig. 4). Structured data (e.g., data from 
organized monitoring schemes or with sampling effort or 
non-detection information) were analyzed with statistical 
inference more frequently than expected by chance, 
and they were analyzed descriptively less frequently 
(Fig. 4). Multiple biological records datasets were used 
less often than expected for statistical inference and 
more often than expected for descriptive-only analyses.

Testing on independent data
The proportion of studies that tested models using 

cross-validation was only 0.07 (18 of 253 studies), 
and the proportion that tested on independent data 
was 0.12 (31 of 253 studies). Those proportions were 
too low to estimate the reliability of our coding using 
Krippendorff’s alpha, but if our coding is accurate, it 
would mean that a large majority of studies did not 
validate their results on independent data.

Fig. 3. Residuals from a permutation test showed that different biological records data types were used to address 
different study questions. Numbers printed in each grid cell are residuals (observed minus expected counts, 
outside parentheses) and observed counts of studies (inside parentheses). Asterisks indicate significance levels 
(* p < 0.1, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Big absolute values of residuals and small permutation significance 
levels provide evidence for an association between data type and Study Question.
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Discussion

Completeness and representativeness of the search
The low proportion of eligible studies that were found 

by more than one of our search methods indicated 
that none of our search methods searched the entire 
literature. Even combining multiple search methods, 
we did not approach a complete search. Our search 
produced a sample of convenience from the “population” 
of all literature. Our results are not as generalizable as 
they would be if we had a true random sample from 
the literature. However, we do not know of any way 
to achieve a truly random sample from the literature. 
Some reviews try to achieve a complete census (i.e., find 
all relevant studies), by combining database searches 
such as ours with methods including “snowballing”, 
which searches the references of already-discovered 
studies (Pham et al. 2014), hand searching important 
journals, and soliciting input from disciplinary experts 
(Arksey and O’Malley 2005). Given the widespread 
use of biological records, it may not be possible to 
achieve a complete census of studies using UK and 

Irish biological records, even using methods such as 
snowballing. Nevertheless, our review provides a useful 
snapshot of how researchers use biological records. 
A review of a more limited question, for example, 
of studies that used biological records to assess the 
outcomes of habitat restorations, could come closer 
to achieving a comprehensive census.

We included grey literature in our review because 
we expected that biological records would be used in 
the grey literature with direct relevance for society. 
The GBIF website and GoogleScholar were our main 
sources for finding grey literature, though they are 
known to not identify all relevant grey literature 
(Haddaway  et  al. 2015). Our search failed to find 
some obviously important grey literature, including 
the UK State of Nature 2016 report (Hayhow et al. 
2016), and there are almost certainly other important 
studies that our search missed, from both the grey 
and peer-reviewed literature. Similarly, our analyses 
treated each eligible study equally, without taking 
into consideration the quality of the studies, including 
sample size or the rigour of analytical methods used 
in the studies (Lortie 2014).

Fig. 4. More structured data types (non-detection, sampling effort, and data from organized monitoring schemes) were 
analysed with statistical inference more frequently and with purely descriptive methods less frequently than would be 
expected by chance. Studies using multiple different biological records datasets were more likely to use purely descriptive 
analyses than would be expected by chance. Residuals, observed counts, and asterisks indicating significance level are 
as for Fig. 3.
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Reliability of codings
Measuring the agreement between two coders 

using Krippendorff’s alpha allowed us to assess the 
reliability of our data. Much ecological and biological 
research treats explanatory or predictor data as having 
been measured without error (e.g., in regression 
analyses;Austin 2007). Reviews such as ours are 
challenging because the data are generated by human 
coders following guidelines that are almost never 
complete enough to cover all possible cases. Some 
reviews can answer their questions by searching texts 
for specific words (e.g., McCallen et al. 2019), which 
produces unambiguously “correct” data. But such an 
approach is not applicable when assessing concepts 
that are not easily encapsulated by particular words. 
Coding many of our variables required some degree of 
judgment by the human coders, inherently introducing 
the possibility for noise or variation in the measurement 
of the data. Added to this is the ever-present possibility 
of error in data collection (e.g., a coder might mis-type 
the data into the spreadsheet). Krippendorff’s alpha 
assessed the agreement between two coders, and 
therefore served as a quantitative measure of how 
reliable the data are: when coders agreed more often 
than expected by chance, it indicated that the data 
were showing a reliable signal, and another researcher 
could expect to get similar results when following 
our protocol. For most of our variables, agreement 
between the coders was good but less than perfect. 
For example, coders were in good but not perfect 
agreement about whether the analytical approach 
produced only descriptive results (Krippendorff’s alpha 
= 0.8, Table S1). The imperfect agreement between 
coders is not a reason to mistrust the data. We used 
a binary decision threshold to determine whether or 
not a variable was reliable enough to use in analyses 
(see Methods). We did not subsequently propagate 
the estimated error in the predictor data through 
our models to influence our measures of uncertainty 
or significance, but nevertheless our binary decision 
threshold based on the measured data reliability is an 
important step for reviews such as ours in which the 
data are generated by an inherently subjective coding 
process. We note briefly here that it is unwise to “fix” 
disagreements between coders before conducting 
subsequent analyses, because there is then no way to 
assess the reliability of the new “fixed” data without 
repeating the coding process (Krippendorff 2013).

Determining the spatial extent of studies was 
surprisingly difficult. Only a minority of studies clearly 
reported the spatial extent in quantitative terms (e.g., 
km2). More commonly, studies included a statement 
such as “we collected... records from different locations 
within the UK...” (Hart, Nesbit and Goodenough 2018). 
The spatial extent in these cases is less clear – it might 
be reasonable to assume that the spatial extent of 
Hart, Nesbit and Goodenough (2018) is the spatial 
area of the UK, because the study question seemed 
to encompass that extent. But it is unlikely that the 
data covered that entire extent. (We do not mean to 
single out Hart, Nesbit and Goodenouh (2018) in this 
respect – we simply use that study to demonstrate a 

common way in which spatial extent is ambiguously 
reported). Even more difficult were cases in which 
the study question was not necessarily limited to 
any particular spatial area, but depended on the data 
available. For example, Leighton, Hugo, Roulin and 
Amar (2016) searched the internet for photographs of 
focal taxa and used the images to assess geographic 
patterns of colour morphs. One of their focal taxa, the 
barn owl (Tyto alba), is widely distributed across the 
globe. It was not clear to us whether we should have 
considered the spatial extent of the study to be the 
potential global distribution of barn owls (which was 
arguably the spatial extent being considered at the 
start of the data search), the area of a convex polygon 
encompassing the locations of the 347 data points they 
ultimately used in their analysis (which we would have 
had to calculate), or some other value. Future reviews 
that wish to evaluate the spatial extent of studies will 
need a more detailed and explicit protocol than ours 
for determining the spatial extent of studies.

More structured data types allowed stronger 
analytical approaches

Using statistical inference generally provides more 
confidence in conclusions than using purely descriptive 
analyses. Our results showed that combining data 
from multiple biological records datasets reduced the 
frequency with which studies performed statistical 
inference (Fig. 4). So why would researchers use multiple 
different datasets in a study? One possible reason is 
that studies using multiple different datasets covered 
longer temporal extents than single-dataset studies 
(Fig.  1). There was, therefore, a trade-off between 
using data from multiple sources to cover longer time 
spans and the inferential rigour of the analyses.

The greater use of statistical inference with 
structured compared to unstructured biological 
records data types underscores the importance of 
routinely recording non-detection data and survey 
effort data with biological records (Sullivan et al. 2009, 
Tingley and Beissinger 2009, Isaac and Pocock 2015). 
New biological recording schemes should collect 
non-detection and survey effort data, and existing 
schemes should consider modifying data submission 
procedures to record non-detection information. 
Input from social scientists and experts in human/
technology interaction may be helpful to recordings 
schemes attempting to collect more complex data 
(e.g., survey effort information) while still attracting 
and retaining volunteer recorders.

Tailoring biological records data to different study 
questions

Researchers’ use of different data types for studying 
different ecological or biological study questions is 
an important consideration for data collectors and 
aggregators. For example, a biodiversity data center 
that aims to provide evidence for evaluating species 
population abundance will need to focus on collating 
structured data (e.g., data with survey effort and 
non-detection information, and data from organized 
monitoring schemes). On the other hand, a data 
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center that wants to provide information about 
spatial patterns of species distribution, perhaps for 
identification of priority conservation areas, may wish 
to focus on collating a wide range of different datasets 
and presenting them in a common, standardized 
format, even if the data lack non-detection or survey 
effort information.

Studies of species distributions and temporal 
trends were more likely to use multiple biological 
records datasets, perhaps because researchers felt 
that multiple datasets added important information to 
distribution studies. Or it may be that integrating data 
from multiple sources into a single model is easier or 
has been better studied for distribution models (e.g., 
Pacifici et al. 2017). However, all types of biological 
or ecological study questions were studied by at least 
a few analyses that integrated multiple separate 
biological records datasets, highlighting the importance 
of standardized formats for sharing biological records 
data (Wieczorek et al. 2012).

Most studies did not develop methodology... but 
also did not validate results

The fact that less than a third of studies developed 
or tested methodology suggests that most studies 
in this review used biological records as a tool for 
answering biological or ecological questions. However, 
we found that rigorous assessments of analyses using 
biological records (e.g., through cross-validation or 
testing on independent data) were rare. Our results are 
similar to those from a review of species distribution 
model ensembles that found that only 13 out of 
their 224 reviewed studies (5.8%) tested model 
performance on independent data (Hao et al. 2019).

Tests of model performance are overly optimistic 
when testing uses the same data as model training 
(Hastie et al. 2009; Bahn and McGill 2013; Roberts et al. 
2017). It is particularly important that conclusions 
drawn from models trained with biological records – 
which are opportunistic and therefore not a random 
sample from the population of interest – are tested 
on independent or semi-independent data. Given the 
rarity of cross-validation and tests on independent data, 
it seems likely that a majority of studies in this review 
overestimated the success of their models and analyses 
(in terms of the models’ ability to explain or predict 
the data, measured using e.g., root mean squared 
error, R2, or AUC), which may lead to unwarranted 
confidence in using biological records.

We urge future studies using biological records 
to use cross-validation or test on independent data 
as standard procedure. The existence of multiple 
biological records datasets that could be used as 
independent test data may be a particular strength 
of biological records. We found that most studies in 
this review (61%) used multiple biological records 
datasets, which means most studies already have 
datasets that could potentially be withheld from model 
fitting for use as independent test data. However, 
testing on independent data will not be insightful if 
the data are bad; all of the criteria that researchers 
consider when choosing appropriate data for model 

fitting should be applied when choosing independent 
test data, including making sure the data are of high 
quality and adequately represent the population of 
interest. Methods for spatial block cross-validation 
(Roberts et al. 2017) and testing on independent data 
(Elith et al. 2006, El-Gabbas and Dormann 2017) are 
now widely documented and are available in software 
packages (Valavi et al. 2018). Only when most studies 
use rigorous validation in independent data will we 
know whether methods for analyzing biological records 
are truly ready to use for answering ecological and 
biological questions.

Untapped potential of digital voucher specimens 
and non-traditional data sources

Given the large and rapidly growing archive 
of digital voucher specimens (e.g., eBird users 
uploaded 135,000 audio recordings to the Macaulay 
Library in 2019;eBird, 2019), the analysis of digital 
vouchers associated with biological records seems 
poised to be a rich area for new research. We were 
surprised to find only one study in this review that 
used data from the bird song archive xeno-canto 
(Petrusková et al. 2015), despite the fact that xeno-
canto contains tens of thousands of recordings of 
birds from the UK and Ireland (Vellinga 2020). A few 
studies made innovative use of digital data that was 
not necessarily collected or stored as “biological” data, 
including photos from Google Images (Leighton et al. 
2016) and Flickr (Petrusková et al. 2015, Jeawak et al. 
2017), and video and audio recordings from YouTube, 
Vimeo, and SoundCloud (Petrusková et al. 2015).

Digital voucher records are often opportunistically 
collected, so analyses of them will face similar 
challenges as analyses using more traditional “what, 
where, when” biological records, including biases 
in data and non-standardized sampling methods. 
Existing techniques for addressing these challenges 
when analyzing traditional biological records could be 
extended to analyses of digital vouchers. For example, 
the spatial distribution of bird song dialects, which 
Petrusková et al. (2015) analyzed descriptively with 
maps of observations, could potentially be modelled 
using predictive species distribution modelling methods, 
as could animal colour morphs sampled using online 
photos (Leighton et al. 2016).

An unanswered question:  Who uses biological 
records?

Surprisingly, low coder agreement (Table S1) 
prevented us from determining how frequently 
biological records were used by researchers unaffiliated 
with the data provider. Pearce-Higgins et al. (2018) 
warned that unfamiliarity with details of a dataset 
could lead to misuse if data are used without input 
from data collectors and providers. This danger can 
be mitigated by providing guidelines for analyzing 
particular datasets (Strimas-Mackey et al. 2020), but 
whether it is worthwhile for a data provider to write 
such guidelines will depend on how often their data 
are used by unaffiliated researchers.
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Conclusions, implications for data 
providers, and opportunities for 
researchers using biological records

Given the extensive biological recording and well-
developed infrastructure for collating and sharing 
biological records in the UK and Ireland, uses of British 
and Irish biological records show the current state of the 
field for research using biological records. Researchers 
and biological records data providers in other geographic 
areas can use results from this review to anticipate needs 
(such as the need for survey effort and non-detection 
data to enable strong analyses, and the opportunity to 
collect “digital vouchers”) and avoid pitfalls (such as a 
failure to test on independent data).

Biodiversity data aggregators and data providers should 
identify what questions they expect their data to be used 
for because this will inform what data types will be most 
useful. Data providers can facilitate the most common 
uses of data by providing guidance targeted at researchers 
studying species distributions or temporal trends (which 
together accounted for over half the studies in this review). 
For example, eBird provides guidelines and a tutorial with 
R code demonstrating how to use eBird data for species 
distribution modelling and studying relative abundance 
(Strimas-Mackey et al. 2020). Data providers could further 
facilitate species distribution studies – which are used in 
spatial and conservation planning – by finding, digitizing, 
and putting into a standard format diverse biodiversity 
datasets. In contrast, studies of species abundance 
might be better facilitated by data providers organizing 
monitoring schemes or coordinating the collection of 
structured biological records that include non-detection 
and sampling effort information.

Most studies in this review treated existing methods 
for analyzing biological records as adequate tools for 
answering biological and ecological questions. Only a 
minority of studies developed or tested methodology. 
At first glance, this appears to be good news for researchers 
considering using biological records in their own research: 
the biases and non-standardized data collection methods 
characteristic of biological records do not seem to interfere 
with the use of biological records for studying ecological 
and biological questions. However, studies in this review 
rarely tested models on independent data or with cross-
validation. We caution that confidence in using biological 
records for studying ecological or biological questions 
may be based on unrealistically optimistic measures of 
model performance derived from testing models on the 
same data that was used for model fitting. Fortunately, 
this shortcoming is easy to overcome, as over half of the 
studies in this review used multiple different biological 
records datasets. We suggest that researchers using 
multiple datasets reserve one or more high quality 
datasets to use as independent test data.
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