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ABSTRACT

Discovery of novel diversity in high-throughput sequencing studies is an important
aspect in environmental microbial ecology. To evaluate the effects that amplicon
clustering methods have on the discovery of novel diversity, we clustered an environ-
mental marine high-throughput sequencing dataset of protist amplicons together with
reference sequences from the taxonomically curated Protist Ribosomal Reference (PR?)
database using three de novo approaches: sequence similarity networks, USEARCH,
and Swarm. The potentially novel diversity uncovered by each clustering approach
differed drastically in the number of operational taxonomic units (OTUs) and in the
number of environmental amplicons in these novel diversity OTUs. Global pairwise
alignment comparisons revealed that numerous amplicons classified as potentially
novel by USEARCH and Swarm were more than 97% similar to references of PR?.
Using shortest path analyses on sequence similarity network OTUs and Swarm OTUs we
found additional novel diversity within OTUs that would have gone unnoticed without
further exploiting their underlying network topologies. These results demonstrate
that graph theory provides powerful tools for microbial ecology and the analysis of
environmental high-throughput sequencing datasets. Furthermore, sequence similarity
networks were most accurate in delineating novel diversity from previously discovered
diversity.

Subjects Biodiversity, Bioinformatics, Environmental Sciences, Microbiology, Molecular Biology
Keywords Environmental diversity, Barcoding, Molecular operational taxonomic unit

INTRODUCTION

High-throughput sequencing technologies have fundamentally changed our perceptions
and concepts of environmental protist diversity (Amaral-Zettler et al., 2009; De Vargas

et al., 2015; Logares et al., 2014; Massana et al., 2015; Stoeck et al., 2009). Current high-
throughput sequencing surveys analyze protist communities by targeting specific molecu-
lar markers, resulting in datasets of many millions of sequencing reads that can be used to
address community-comparative, ecosystem-functioning, and novel-diversity questions
(Dunthorn et al., 2014b). The detection of novel diversity, in specific, is often based on
sequence similarity. Potentially novel reads are identified by having a low similarity to
previously sequenced reference taxa (e.g., Berney et al., 2013; Dunthorn et al., 2014b;
Edgcomb et al., 2011b; Filker et al., 2014; Gimmler & Stoeck, 2015; Hartikainen et al., 2014).
Following this strategy, groups of sequences that contain both environmental reads and
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references represent environmental diversity which is covered by taxonomic reference
databases, whereas groups of sequences that exclusively contain environmental reads
represent novel variants of diversity. Our understanding of protist diversity is far from
complete (Pawlowski et al., 2012). While the detection and description of novel protists is
a central task, our ability to detect novel diversity in molecular environmental studies is
affected by the way reads are clustered into operational taxonomic units (OTUs).

A traditional method of constructing de novo OTUs is by using the popular program
USEARCH (Edgar, 2010), though several other similar alternatives exist (e.g., Fu ef al.,
20125 Ghodsi, Liu & Pop, 20115 Schloss et al., 2009). USEARCH and these other related
programs initiate OTUs by selecting an amplicon (i.e., a dereplicated read) to serve as a
centroid. Pairwise comparisons score the global sequence similarity of other amplicons
with the centroid. Amplicons with a global sequence similarity to the centroid equal or
greater than a given threshold join the OTU. The OTU is then closed, and its maximal
radius (or diameter, depending on the method used) is equal to the global similarity
threshold value. There is no consensus on which global similarity threshold value should
be used because taxa evolve at different rates (Brown et al., 2015; Caron et al., 2009; Nebel
etal., 2011): a 97% value is commonly used in protist studies (Edgcomb et al., 2011a;
Massana et al., 2015), although higher values are also used (Egge et al., 2015).

A second method of constructing de novo OTUs is by using sequence similarity
networks (e.g., Forster et al., 2015). Each node in these networks represents one amplicon,
and two nodes are connected by an edge only if their amplicons are within a global
similarity value that is computed by pairwise alignment scores. Sequence similarity
networks seldom result in one single continuous graph, but consist of several subgraphs
of connected nodes. These subgraphs are called connected components and can be used
as OTUs (Forster et al., 2015). Since additional nodes are added iteratively, the radius of
a connected component is not pre-defined, but can be any value, including higher than
the global similarity value. As with USEARCH, there is no agreement upon which global
similarity threshold should be used. Unlike USEARCH, sequence similarity networks
produce OTUs that exhibit an internal network topology which can be further evaluated
by methods of graph theory (Bapteste et al., 2012; Bittner et al., 20105 Jachiet et al., 2013;
Junker & Schreiber, 2011; Newman, 2010). For instance, assortativity analyses reveal if
nodes that share the same trait preferentially connect with each other (Newmian, 2003),
while centrality analyses give information about the position of a node in a network and if
this node serves as a hub in the network (Newman, 2005). How these and other methods
can address ecological questions in high-throughput sequencing diversity surveys of
protists is demonstrated in Forster et al. (2015). To target novel diversity, we used shortest
path analyses as a straightforward way to measure the distance (expressed as the number
of edges that have to be crossed) between two nodes in a network (Alvarez-Ponce et al.,
20135 Forster et al., 2015), specifically between environmental amplicons and reference
sequences.

A third method to define de novo OTUs is by using the program Swarm (Mahé et al.,
2015; Mahé et al., 2014). Unlike USEARCH, Swarm relies on an iterative, single-linkage
algorithm that uses a small local clustering threshold d. This value d is user-defined (1 by
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default), and corresponds to the maximum number of differences due to substitutions
or insertions/deletions between two globally aligned amplicons. Swarm selects the most
abundant amplicon available in the amplicon pool to serve as a centroid for a new OTU.
All pool amplicons with d or less differences to the centroid are added to the OTU and
removed from the pool. Each of those newly added amplicons are compared to the

pool amplicons to find those with d or less differences. The process is repeated until

no new amplicon can be added to the OTU. To avoid the formation of long chains of
amplicons, a classic issue with single linkage clustering, swarm takes into account the
abundance of each amplicon (i.e., the number of times it has been observed) and can
interrupt the iterative process locally. The combination of these two processes confers to
Swarm a high level of stringency and a robustness to changes in initial conditions (e.g.,
order and abundance of amplicons). Like sequence similarity networks, Swarm produces
OTUs whose radii can be any value. Also like sequence similarity networks, the internal
connections between the amplicons in Swarm’s OTUs create a network of edges and
nodes, which can be evaluated using methods based on graph theory.

To compare how USEARCH, sequence similarity networks, and Swarm affect our
ability to uncover novel diversity in protists, we used amplicon data derived from samples
taken in European coastal marine environments. To place the environmental amplicons
into a taxonomic context of already known diversity, we relied on the curated Protist
Ribosomal Reference database (PR?) (Guillou et al., 2012). With this combination
of environmental and taxonomically-identified amplicons, we asked: (i) Do all three
clustering approaches predict the same amount of novel diversity? (ii) Do network
analyses uncover additional novel diversity within OTUs that have underlying network
topologies?

MATERIAL AND METHODS

Datasets

We used already published environmental high-throughput sequencing data from the
BioMarKs Consortium (www.biomarks.eu) that sampled microbial eukaryote commu-
nities at six near-shore marine sites in Norway, France, Spain, Italy and Bulgaria (e.g.,
Bittner et al., 2013; Dunthorn et al., 2014a; Logares et al., 2014; Massana et al., 2015). The
sample design and sample processing, as well as Roche/454 GS FLX Titanium sequencing
of the V4 region of 18S rDNA, is detailed in Massana et al. (2015). Quality filtering and
chimera check of the raw reads with both UCHIME (Edgar, 2010) and ChimeraSlayer
(Haas et al., 2011) is also outlined in Massana et al. (2015). The 1,476,249 cleaned V4
DNA and RNA reads were dereplicated into 312,503 strictly identical amplicons (dataset
provided as Supplemental Information 1). The scripts used to perform the analyses
presented in this study can be found online in HTML format (File S1).

For reference amplicons, we used the PR? v203 taxonomic reference database (Guillou
et al., 2012). From this database we extracted 115,043 taxonomically identified V4 ampli-
cons. We then combined these reference amplicons with the environmental amplicons for
all downstream analyses. The clustering approaches would thus produce OTUs containing
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a blend of environmental and reference amplicons, or OTUs containing only one type of
amplicons. Our goal was to identify differences between the three approaches, focusing
on OTUs containing exclusively environmental amplicons, more likely to represent novel
diversity.

Clustering

Three de novo clustering approaches were used to cluster the combined amplicons. First,
USEARCH v8.0.1623 (Edgar, 2010), with a 97% global similarity value using options
-cluster smallmem and -sortedby size. This analysis took 57 s on a Linux 2.6 operated
machine with dual Intel Xeon E5-2670 processors (2.6 GHz) using 16 physical cores and
64 GB RAM.

Second, basic network topology information was gathered by running a global
pairwise alignment analysis in VSEARCH v1.1.3 (https://github.com/torognes/vsearch)
using options -allpairs_global and -iddef 1. This analysis took about 5 days on the same
computer. The resulting matrix contained 682,621,198 edges with a weight of at least 97%
global sequence similarity. Based on this matrix we created sequence similarity networks
in R version 3.2.1 (http://r-project.org) using ‘igraph’ scripts (Csardi ¢» Nepusz, 2006). To
allow these network analyses in ‘igraph,” we had to switch to a Linux 2.6 operated machine
with dual Intel Xeon E5-4650 processors (2.7 GHz) using 32 physical cores and 256 GB
RAM. Usage of less memory or more input data forced an untimely abort of analyses. The
sequence similarity networks analyses took 3 h with this setting.

Third, SWARM v2.1.1 (Mahé et al., 2015; Mahé et al., 2014), with -d = 1 and -f.

This analysis took 33 s on the first computer. Singleton and doubleton OTUs (OTUs
consisting of one or two amplicons, respectively) were removed from the results of all
three clustering approaches for downstream analyses.

Analyses

For each clustering approach we distinguished if an OTU consisted of: (i) both environ-
mental and reference amplicons, (ii) exclusively reference amplicons, and (iii) exclusively
environmental amplicons. The number of reads in each OTU was also counted.

To compare the novel diversity reported by each clustering approach, we analyzed
OTUs consisting of exclusively environmental amplicons. For each amplicon in exclu-
sively environmental OTUs, we conducted global pairwise alignments of these amplicons
with all PR? references using VSEARCH (with the options-allpairs_ global, -iddef 1 and-id
0.70), and recorded the highest percentage of similarity to any reference. This revealed
how divergent the novel diversity reported by each clustering approach was with regard to
taxonomically identified references. Considering that a 97% sequence similarity threshold
is routinely used to delineate between different protist species (Edgcomb et al., 2011a;
Massana et al., 2015), we applied the same threshold and expected each potentially novel
diversity amplicon in exclusively environmental OTUs to be less than 97% similar to its
closest reference. We also compared if the same environmental amplicons were classified
as novel diversity among the different approaches.

To analyze the internal network structure of OTUs, shortest path analyses were
conducted within each sequence similarity networks and within each Swarm OTU with
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Table 1 Sequence clustering results of the three tested approaches. Indicated is the amount of OTUs and the amount (and type) of amplicons

within these OTUs for each class of OTUs defined in our analyses.

USEARCH Sequence similarity Swarm
networks
OTUs 12,427 8,202 13,240
OTUs containing environmental and reference amplicons 2,527 1,619 1,993
Environmental amplicons 223,735 253,965 142,946
Reference amplicons 33,386 54,988 18,774
OTUs containing exclusively reference amplicons 4,558 3,138 5,019
Reference amplicons 59,368 46,255 49,147
OTUs containing exclusively environmental amplicons 5,342 3,445 6,228
Environmental amplicons 71,337 47,116 81,073

‘igraph’ scripts. The shortest path concept emerges from graph theory and exploits
connections between nodes in a network (Newman, 2010). In this particular case, we used
shortest path analyses to find the minimal number of edges (i.e., connections) that have
to be crossed within an OTU to move from each environmental node (i.e., amplicon) to
its closest reference node. If an environmental node and a reference node were directly
linked (i.e., direct neighbors separated by exactly one edge), they exhibited a distance

of ‘1’ to each other. As the edges reflected global sequence similarity values of at least
97% (in sequences similarity networks), or a local basepair difference of ‘1’ (in Swarm),
we defined these environmental nodes as the part of diversity that is well represented
by the PR? reference database. Environmental nodes that were not directly linked to
reference nodes exhibited a distance of two edges or more, and were thus indirectly
linked. Environmental nodes in OTUs, which exclusively consisted of environmental
amplicons, exhibited ‘infinite’ distances to all reference nodes since no shortest path
existed. We defined all environmental nodes with distances of two edges or more to
reference nodes as novel variants of diversity that are currently not covered by the PR?
database.

RESULTS AND DISCUSSION

Contrasting OTU results from three approaches

The number of resulting OTUs varied across the three clustering approaches (Table 1).
The fewest OTUs in total were produced by sequence similarity networks (n = 8,202).
Sequence similarity networks also produced the fewest OTUs containing both environ-
mental and reference amplicons (n = 1,619), containing exclusively reference amplicons
(n = 3,138), and containing exclusively environmental amplicons (n = 3,445). This
approach was especially effective in linking environmental and reference amplicons: it
had the most amplicons in OTUs containing both types (n = 253,965 environmental and
n = 54,988 reference). On the other hand, this also led to fewer amplicons in exclusively
environmental OTUs (n = 47,116), meaning that sequence similarity networks reported

the least novel diversity in terms of both amplicons and OTUs.
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USEARCH produced more OTUs in total (n = 12,427) and more OTUs (n = 5,342)
that contained exclusively environmental amplicons (#n = 71,337). The fraction of novel
amplicons was therefore increased by one third in USEARCH compared to sequence
similarity networks. These differences in OTU numbers may be due in part to how
the two methods use their global clustering values: while connected components in
sequence similarity networks grow iteratively, OTUs in USEARCH are restricted to a
maximum radius (at most 3% divergence from the centroid). Amplicons whose sequences
are less than 97% similar to the centroid are consequently placed outside of the OTU,
although they might be more than 97% similar to other amplicons inside the OTU. This
behavior of USEARCH and other closely-related methods results in an over-splitting of
OTUs (Flynn et al., 2015; Mahé et al., 2014) compared to sequence similarity networks.
Additionally, this behavior also causes OTU instability, meaning that a re-clustering with
USEARCH may result in slightly different OTU sizes and membership, especially if the
input order of the amplicons is shuffled (He et al., 2015; Mahé et al., 2014). Since both
factors are especially important for an accurate detection of novel diversity, we argue that
the more conservative results of the sequence similarity networks are less prone to contain
amplicons and OTUs that are spuriously classified as novel.

Although not tested here, previous studies have shown that all-vs.-all pairwise compar-
ison clustering approaches such as sequence similarity networks generally produce more
reliable and stable OTUs than heuristic clustering methods such as USEARCH (Schmidt,
Matias Rodrigues & Von Mering, 2015; Sun et al., 2011). This higher reliability and stability
of all-vs.-all pairwise comparisons comes at the cost of extensive computational time
(Flynn et al., 2015; Sun et al., 2011), which increases with the square to the number of
input sequences (Bik et al., 2012). By calculating a pairwise comparison matrix of the
currently largest dataset of near-shore marine protists in Europe, we operated close to the
limit of dataset size that can be handled in all-vs.-all current approaches.

Compared to both approaches relying on global clustering values, Swarm, with its local
clustering value, produced the most OTUs in total (n = 13,240). The Swarm approach
also produced the most OTUs (n = 6,228) that contained exclusively environmental
amplicons (n = 81,073). These higher numbers of OTUs in total and OTUs containing
exclusively environmental amplicons may be due to Swarm’s high clustering stringency
that iteratively links amplicons with a small number of differences to each other. On the
other hand, these high numbers may be due to missing intraspecific sequence variation
in the PR? reference database, which usually contains only one reference per species. In
natural communities, intraspecific genetic variation of microbial organisms may be much
more diverse than just a few base pair differences, especially in hypervariable gene regions
(Brown et al., 2015; Decelle et al., 2014; Dunthorn et al., 2012; Pernice et al., 2013). But in
Swarm, an environmental amplicon that differs by more than one base pair to a reference
sequence will be placed into a novel OTU, if there are no intermediate amplicons linking
them. As long as reference databases are not covering intraspecific sequence variation,
it is a more effective strategy to compute Swarm OTUs from datasets consisting entirely
of environmental amplicons, and perform a later taxonomical assignment; e.g., as in De
Vargas et al. (2015), Filker et al. (2014) and Gimmler ¢ Stoeck (2015).
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Is novel diversity really novel?

After the identification of novel variants of OTUs and amplicons, the next step in the
discovery of novel diversity is normally the design of specific primers and probes for

the targeted recovery of organisms from environmental samples (Edgcomb et al., 2011b;
Gimmler & Stoeck, 2015; Hartikainen et al., 2014; Orsi et al., 2012; Seenivasan et al., 2013).
However, this process is time-, cost-, and labor-intensive. An accurate initial classification
of novel diversity by clustering approaches is therefore crucial.

There were 29,059 environmental amplicons that were classified as novel by all three
clustering approaches (Fig. 1). However, the number of environmental amplicons
classified as novel exclusively by one approach differed dramatically: 1,232 in sequence
similarity networks, 13,777 in USEARCH, and 40,132 in Swarm. Most environmental
amplicons which shared less than 97% sequence similarity with references in PR?
were congruently classified as novel by all three approaches. But both USEARCH and
Swarm classified as novel numerous amplicons that were more than 97% similar to PR?
references (Fig. 2, Fig. S1). Even though clustering in USEARCH was performed at 97%
similarity to delineate novel environmental amplicons from amplicons representing previ-
ously described diversity, we found 15,438 amplicons in exclusively environmental OTUs
with more than 97% similarity to PR2 references; for Swarm this fraction amounted to
47,007 amplicons. The even larger estimation of novel diversity by Swarm is caused by
a combination of the approach’s high clustering stringency and missing intraspecific
variation in the PR? database. On the other hand, sequence similarity networks classified
no environmental amplicon inadvertently as novel, thereby supporting our argument
of more accurate novel diversity detection in the latter approach. We conclude that the
conservative results of sequence similarity networks most closely match our definition of
how we delineated novel diversity from previously described diversity, for a given global
clustering threshold value.

Beyond that, 97% of the novel diversity amplicons in sequence similarity networks
were identified as novel by at least one of the other two clustering approaches (Fig. 1).
On the other hand, the 1,232 amplicons exclusively identified as novel by sequence
similarity networks clustered into singletons or doubletons in USEARCH and Swarm
and were thus excluded from downstream analyses. The novel diversity uncovered by
sequence similarity networks therefore comes closest to a subset of amplicons detected
by all three clustering approaches that is truly less than 97% similar to references in PR2.
Furthermore, we strongly advise to perform an additionally taxonomic assignment step in
Swarm and USEARCH to validate if potential novel diversity is indeed highly diverse from
deposited references. At the same time, though, we are aware that even amplicons which
are highly similar to entries in reference databases may represent novel genetic variants.
Such hidden diversity is unlikely to be unveiled by approaches solely relying on global
similarity values. Instead, more stringent approaches that trace local substitutions or
methods which explore internal OTU structure stand a higher chance of revealing novel
genetic variants, since they provide a higher resolution of genetic diversity.
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Figure 1 Venn-Diagram of the number of amplicons in exclusively environmental OTUs. The area of
each clustering approach was proportionally adjusted to the amount of amplicons in exclusively environ-
mental OTUs detected in that approach. Overlapping areas reflect amplicons detected in each of the re-
spective approaches. Numbers indicate how many amplicons are represented by each area, whereas each
area’s size is proportional to the number of amplicons included.

Graph theory allows a more detailed evaluation of high-throughput
sequencing datasets

Beyond just being able to relay the number of OTUs, sequence similarity networks and
Swarm provided additional underlying information for each of their OTUs in the form
of network topologies. As pointed out by Forster et al. (2015), these network topologies
can reveal additional within-OTU connections among environmental and reference
amplicons by using shortest path analyses.

In sequence similarity network OTUs containing both types of amplicons, 239,472 of
the 253,965 environmental amplicons were directly connected to reference amplicons
(Fig. 3), while the remaining 14,493 environmental amplicons were indirectly connected
to reference amplicons. These latter environmental amplicons represent potentially novel
genetic variation on top of the 47,116 amplicons placed into sequence similarity network
OTUs which contained no reference amplicons. In Swarm OTUs that contained both
types of amplicons, only 5,757 of the 142,946 environmental amplicons were directly
connected to reference amplicons. The 137,189 environmental amplicons with indirect
connections also represent novel genetic variation along side of the 81,073 amplicons in
exclusively environmental OTUs. This large number of indirectly connected amplicons
in Swarm OTUs may be an overestimation because current reference databases do not
yet cover intraspecific sequence variation (see above). However, our analyses are a first
indication that shortest path analyses are a promising way to explore Swarm OTUs. By
analyzing paths within an OTU one could, for example, investigate whether amplicons
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Figure 2 Genetic divergence of amplicons in exclusively environmental OTUs to PR? references by
clustering approach. Each point represents one amplicon clustered into an exclusively environmental
OTU by the respective clustering approach. Position on the x-axis gives the abundance of each amplicon
in the initial dataset before dereplication. The y-axis gives the highest pairwise sequence similarity score of
an amplicon to any entry in the PR? database as calculated by VSEARCH.
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Figure 3 Shortest path analyses of CCs and swarms. The plots illustrate how many edges separated each
environmental amplicon from its closest reference amplicon in sequence similarity networks and Swarm.
A distance of ‘1’ edge means that the environmental amplicon was directly connected to a reference. ‘Infi-
nite’ means that the environmental amplicon was placed into an exclusively environmental OTU (see also
Table 1) and did not exhibit any connection to a reference amplicon.

from the same sampling site are more often directly connected to each other than to
amplicons from another site. Thus, screening for genetic variation related to regional
populations or species.

Nevertheless, shortest path analyses are just one way to explore genetic variance and
novel diversity within OTUs with network topologies. Graph theory can be used to ask
numerous questions in microbial ecology (Junker ¢ Schreiber, 2011; Newman, 2010;
Proulx, Promislow ¢ Phillips, 2005). For instance, analyses of assortativity can indicate if
environmental sequences affiliated with a certain habitat more preferentially connect with
reference sequences than environmental sequences affiliated with another habitat (Forster
et al., 2015), thus revealing which habitat’s microbial community is less adequately
covered by reference databases.

CONCLUSIONS

Each of the three clustering approaches provided different perspectives on microbial
diversity, while also showing individual weaknesses. Our results corroborate previous
observations of inaccuracy in heuristic clustering approaches and highlight how this
inaccuracy also affects the detection of novel diversity. Despite their weaknesses, we argue
that the combination of high stringency clustering methods and sequence similarity
networks, and the implementation of additional tools based on graph theory principles
will be beneficial for the evaluation of high-throughput sequencing datasets. Such tools
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will uncover underlying patterns from microbial high-throughput sequencing data, which
hold important information about environmental microbial communities.

ACKNOWLEDGEMENTS

We would like to thank the computational resources at the Regional Computing Center
at the University of Kaiserslautern, and the BioMarKs consortium for the data analyzed in
this study. We thank the editor, Antonio Fernandez-Guerra, and an anonymous reviewer
for constructive comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

FM and MD were supported by the Deutsche Forschungsgemeinschaft (grant #DU1319/1-
1). DF was supported by a graduate scholarship of Stipendienstiftung Rheinland-Pfalz.

TS was supported by the Deutsche Forschungsgemeinschaft (grant #5T0O/414/11-1). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Deutsche Forschungsgemeinschaft: #DU1319/1-1, #STO414/11-1.
Stipendienstiftung Rheinland-Pfalz.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Dominik Forster conceived and designed the experiments, performed the experiments,
analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of
the paper.

e Micah Dunthorn and Thorsten Stoeck conceived and designed the experiments, con-
tributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

e Frédéric Mahé conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the

paper.
Data Availability

The following information was supplied regarding data availability:
The research in this article did not generate any raw data.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.
7717/peerj.1692#supplemental-information.

Forster et al. (2016), PeerJ, DOI 10.7717/peerj.1692 11/16


https://peerj.com
http://dx.doi.org/10.7717/peerj.1692#supplemental-information
http://dx.doi.org/10.7717/peerj.1692#supplemental-information
http://dx.doi.org/10.7717/peerj.1692

Peer

REFERENCES

Alvarez-Ponce D, Lopez P, Bapteste E, McInerney JO. 2013. Gene similarity networks
provide tools for understanding eukaryote origins and evolution. Proceedings of
the National Academy of Sciences of the United States of America 110:E1594-E1603
DOI10.1073/pnas.1211371110.

Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. 2009. A method for
studying protistan diversity using massively parallel sequencing of V9 hyper-
variable regions of small-subunit ribosomal RNA genes. PLoS ONE 4:e6372
DOI 10.1371/journal.pone.0006372.

Bapteste E, Lopez P, Bouchard F, Baquero F, McInerney JO, Burian RM. 2012.
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Proceedings of the National Academy of Sciences of the United States of America
109:18266—18272 DOI 10.1073/pnas.1206541109.

Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. 2013. Vampires in the oceans:
predatory cercozoan amoebae in marine habitats. ISME Journal 7:2387-2399
DOI 10.1038/ismej.2013.116.

Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. 2012. Sequenc-
ing our way towards understanding global eukaryotic biodiversity. Trends in Ecology
¢ Evolution 27:233-243 DOI 10.1016/j.tree.2011.11.010.

Bittner L, Gobet A, Audic S, Romac S, Egge ES, Santini S, Ogata H, Probert I, Ed-
vardsen B, De Vargas C. 2013. Diversity patterns of uncultured Haptophytes
unravelled by pyrosequencing in Naples Bay. Molecular Ecology 22:87—-101
DOI10.1111/mec.12108.

Bittner L, Halary S, Payri C, Cruaud C, Reviers B, de, Lopez P, Bapteste E. 2010. Some
considerations for analyzing biodiversity using integrative metagenomics and gene
networks. Biology Direct 5:1-17 DOI 10.1186/1745-6150-5-1.

Brown EA, Chain FJJ, Crease TJ, MaclIsaac HJ, Cristescu ME. 2015. Divergence thresh-
olds and divergent biodiversity estimates: can metabarcoding reliably describe zoo-
plankton communities? Ecology and Evolution 5:2234-2251 DOI 10.1002/ece3.1485.

Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, Dennett
MR, Moran DM, Jones AC. 2009. Defining DNA-based operational taxonomic
units for microbial-eukaryote ecology. Applied and Environmental Microbiology
75:5797-5808 DOI 10.1128/AEM.00298-09.

Csardi G, Nepusz T. 2006. The igraph software package for complex network research.
InterJournal Complex Systems 1695:1-9.

Decelle J, Romac S, Sasaki E, Not F, Mahé F. 2014. Intracellular diversity of the V4 and
V9 regions of the 18S rRNA in marine protists (Radiolarians) assessed by high-
throughput sequencing. PLoS ONE 9:104297 DOI 10.1371/journal.pone.0104297.

De Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C,
Bescot NL, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M,
Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak
A, Jaillon O, Lima-Mendez G, Lukes J, Malviya S, Morard R, Mulot M, Scalco

Forster et al. (2016), PeerJ, DOI 10.7717/peerj.1692 12/16


https://peerj.com
http://dx.doi.org/10.1073/pnas.1211371110
http://dx.doi.org/10.1073/pnas.1211371110
http://dx.doi.org/10.1371/journal.pone.0006372
http://dx.doi.org/10.1371/journal.pone.0006372
http://dx.doi.org/10.1073/pnas.1206541109
http://dx.doi.org/10.1038/ismej.2013.116
http://dx.doi.org/10.1038/ismej.2013.116
http://dx.doi.org/10.1016/j.tree.2011.11.010
http://dx.doi.org/10.1111/mec.12108
http://dx.doi.org/10.1111/mec.12108
http://dx.doi.org/10.1186/1745-6150-5-1
http://dx.doi.org/10.1002/ece3.1485
http://dx.doi.org/10.1128/AEM.00298-09
http://dx.doi.org/10.1371/journal.pone.0104297
http://dx.doi.org/10.7717/peerj.1692

Peer

E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-

Lewis S, Coordinators TO, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N,
Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich

S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E,
Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon
D. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605
DOI10.1126/science.1261605.

Dunthorn M, Klier ], Bunge J, Stoeck T. 2012. Comparing the hyper-variable V4 and V9
regions of the small subunit rDNA for assessment of ciliate environmental diversity.
The Journal of Eukaryotic Microbiology 59:185-187
DOI10.1111/j.1550-7408.2011.00602.x.

Dunthorn M, Otto J, Berger SA, Stamatakis A, Mahé F, Romac S, De Vargas C, Audic
S, Consortium B, Stock A, Kauff F, Stoeck T. 2014a. Placing environmental next-
generation sequencing amplicons from microbial eukaryotes into a phylogenetic
context. Molecular Biology and Evolution 31:993—-1009 DOI 10.1093/molbev/msu055.

Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F. 2014b. Ciliates and the
rare biosphere: a review. The Journal of Eukaryotic Microbiology 61:404—409
DOI10.1111/jeu.12121.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26:2460-2461 DOI 10.1093/bioinformatics/btq461.

Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R, Leslin C, Holder M, Taylor GT,
Suarez P, Varela R, Epstein S. 2011a. Protistan microbial observatory in the Cariaco
Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME
Journal 5:1344-1356 DOI 10.1038/ismej.2011.6.

Edgcomb VP, Orsi W, Breiner H-W, Stock A, Filker S, Yakimov MM, Stoeck T. 2011b.
Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern
Mediterranean deep-sea. Deep-Sea Research, Part I. Oceanographic Research Papers
58:1040-1048.

Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A, Sandaa R-A,
Edvardsen B. 2015. Seasonal diversity and dynamics of haptophytes in the Sk-
agerrak, Norway, explored by high-throughput sequencing. Molecular Ecology
24:3026-3042 DOI 10.1111/mec.13160.

Filker S, Gimmler A, Dunthorn M, Mahé F, Stoeck T. 2014. Deep sequencing uncovers
protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds.
Extremophiles 19:283-295 DOI 10.1007/s00792-014-0713-2.

Flynn JM, Brown EA, Chain FJJ, MaclIsaac HJ, Cristescu ME. 2015. Toward accurate
molecular identification of species in complex environmental samples: testing the
performance of sequence filtering and clustering methods. Ecology and Evolution
5:2252-2266 DOI 10.1002/ece3.1497.

Forster D, Bittner L, Karkar S, Dunthorn M, Romac S, Audic S, Lopez P, Stoeck T,
Bapteste E. 2015. Testing ecological theories with sequence similarity networks: ma-
rine ciliates exhibit similar geographic dispersal patterns as multicellular organisms.
BMC Biology 13:16 DOIT 10.1186/s12915-015-0125-5.

Forster et al. (2016), PeerJ, DOI 10.7717/peerj.1692 13/16


https://peerj.com
http://dx.doi.org/10.1126/science.1261605
http://dx.doi.org/10.1126/science.1261605
http://dx.doi.org/10.1111/j.1550-7408.2011.00602.x
http://dx.doi.org/10.1093/molbev/msu055
http://dx.doi.org/10.1111/jeu.12121
http://dx.doi.org/10.1111/jeu.12121
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1038/ismej.2011.6
http://dx.doi.org/10.1111/mec.13160
http://dx.doi.org/10.1007/s00792-014-0713-2
http://dx.doi.org/10.1002/ece3.1497
http://dx.doi.org/10.1186/s12915-015-0125-5
http://dx.doi.org/10.7717/peerj.1692

Peer

FuL, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics 28:3150-3152
DOI 10.1093/bioinformatics/bts565.

Ghodsi M, Liu B, Pop M. 2011. DNACLUST: accurate and efficient clustering of phylo-
genetic marker genes. BMC Bioinformatics 12:271 DOI 10.1186/1471-2105-12-271.

Gimmler A, Stoeck T. 2015. Mining environmental high-throughput sequence data
sets to identify divergent amplicon clusters for phylogenetic reconstruction
and morphotype visualization. Environmental Microbiology Reports 7:679—-686
DOI10.1111/1758-2229.12307.

Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G,

De Vargas C, Decelle J, Del Campo J, Dolan JR, Dunthorn M, Edvardsen B,
Holzmann M, Kooistra WHCF, Lara E, Bescot NL, Logares R, Mahé F, Massana
R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet A-L, Siano
R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2013. The protist ribosomal
reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit
rRNA sequences with curated taxonomy. Nucleic Acids Research 41:D597-D604
DOI 10.1093/nar/gks1160.

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D,
Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Consortium THM,
Petrosino JF, Knight R, Birren BW. 2011. Chimeric 16S rRNA sequence formation
and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research
21:494-504 DOI 10.1101/gr.112730.110.

Hartikainen H, Ashford OS, Berney C, Okamura B, Feist SW, Baker-Austin C,
Stentiford GD, Bass D. 2014. Lineage-specific molecular probing reveals novel
diversity and ecological partitioning of haplosporidians. ISME Journal 8:177-186
DOI 10.1038/ismej.2013.136.

HeY, Caporaso JG, Jiang X-T, Sheng H-F, Huse SM, Rideout JR, Edgar RC, Kopylova E,
Walters WA, Knight R, Zhou H-W. 2015. Stability of operational taxonomic units:
an important but neglected property for analyzing microbial diversity. Microbiome
3:Article 20 DOI 10.1186/540168-015-0081-x.

Jachiet P-A, Pogorelcnik R, Berry A, Lopez P, Bapteste E. 2013. MosaicFinder: iden-
tification of fused gene families in sequence similarity networks. Bioinformatics
29:837-844 DOI 10.1093/bioinformatics/btt049.

Junker BH, Schreiber F. 2011. Analysis of biological networks. Vol. 2. Hoboken: John
Wiley & Sons.

Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie J-M, Decelle J,
Dolan JR, Dunthorn M, Edvardsen B, Gobet A, Kooistra WHCF, Mahé F, Not
F, Ogata H, Pawlowski J, Pernice MC, Romac S, Shalchian-Tabrizi K, Simon N,
Stoeck T, Santini S, Siano R, Wincker P, Zingone A, Richards TA, De Vargas C,
Massana R. 2014. Patterns of rare and abundant marine microbial eukaryotes.
Current Biology 24:813-821 DOI 10.1016/j.cub.2014.02.050.

Mahé F, Rognes T, Quince C, De Vargas C, Dunthorn M. 2014. Swarm: robust and fast
clustering method for amplicon-based studies. Peer] 2:e593 DOI 10.7717/peerj.593.

Forster et al. (2016), PeerJ, DOI 10.7717/peerj.1692 14/16


https://peerj.com
http://dx.doi.org/10.1093/bioinformatics/bts565
http://dx.doi.org/10.1186/1471-2105-12-271
http://dx.doi.org/10.1111/1758-2229.12307
http://dx.doi.org/10.1111/1758-2229.12307
http://dx.doi.org/10.1093/nar/gks1160
http://dx.doi.org/10.1093/nar/gks1160
http://dx.doi.org/10.1101/gr.112730.110
http://dx.doi.org/10.1038/ismej.2013.136
http://dx.doi.org/10.1038/ismej.2013.136
http://dx.doi.org/10.1186/s40168-015-0081-x
http://dx.doi.org/10.1093/bioinformatics/btt049
http://dx.doi.org/10.1016/j.cub.2014.02.050
http://dx.doi.org/10.7717/peerj.593
http://dx.doi.org/10.7717/peerj.1692

Peer

Mahé F, Rognes T, Quince C, De Vargas C, Dunthorn M. 2015. Swarm v2: highly
scalable and high-resolution amplicon clustering. Peer] 3:e1420
DOI 10.7717/peer;j.1420.

Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen
R, Claverie J-M, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster
D, Guillou L, Jaillon O, Kooistra WHCF, Logares R, Mahé F, Not F, Ogata H,
Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-
Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, Vargas C. 2015.
Marine protist diversity in European coastal waters and sediments as revealed
by high-throughput sequencing. Environmental Microbiology 17:4035-4049
DOI10.1111/1462-2920.12955.

Nebel M, Pfabel C, Stock A, Dunthorn M, Stoeck T. 2011. Delimiting operational
taxonomic units for assessing ciliate environmental diversity using small-
subunit rRNA gene sequences. Environmental Microbiology Reports 3:154-158
DOI10.1111/5.1758-2229.2010.00200.x.

Newman ME]. 2003. Mixing patterns in networks. Physical Review E 67:026126
DOI 10.1103/PhysRevE.67.026126.

Newman ME]J. 2005. A measure of betweenness centrality based on random walks. Social
Networks 27:39-54 DOI 10.1016/j.socnet.2004.11.009.

Newman ME]. 2010. Networks: an introduction. Vol. 1. New York: Oxford University
Press.

Orsi W, Edgcomb V, Faria J, Foissner W, Fowle WH, Hohmann T, Suarez P, Taylor C,
Taylor GT, Vd’acny P, Epstein SS. 2012. Class Cariacotrichea, a novel ciliate taxon
from the anoxic Cariaco Basin, Venezuela. International Journal of Systematic and
Evolutionary Microbiology 62:1425-1433 DOI 10.1099/ij5.0.034710-0.

Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I,
Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirkud
M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Luke$ J, Mann DG, Mitchell EAD,
Nitsche F, Romeralo M, Saunders GW, Simpson AGB, Smirnov AV, Spouge JL,
Stern RF, Stoeck T, Zimmermann J, Schindel D, De Vargas C. 2012. CBOL protist
working group: barcoding eukaryotic richness beyond the animal, plant, and fungal
kingdoms. PLoS Biology 10:¢1001419 DOI 10.1371/journal.pbio.1001419.

Pernice MC, Logares R, Guillou L, Massana R. 2013. General patterns of diversity in
major marine microeukaryote lineages. PLoS ONE 8:¢57170
DOI 10.1371/journal.pone.0057170.

Proulx SR, Promislow DE, Phillips PC. 2005. Network thinking in ecology and evolu-
tion. Trends in Ecology & Evolution 20:345-353 DOI 10.1016/j.tree.2005.04.004.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski
RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG,

Horn DJV, Weber CF. 2009. Introducing mothur: open-source, platform-
independent, community-supported software for describing and comparing
microbial communities. Applied and Environmental Microbiology 75:7537—-7541
DOI 10.1128/AEM.01541-09.

Forster et al. (2016), PeerJ, DOI 10.7717/peerj.1692 15/16


https://peerj.com
http://dx.doi.org/10.7717/peerj.1420
http://dx.doi.org/10.1111/1462-2920.12955
http://dx.doi.org/10.1111/1462-2920.12955
http://dx.doi.org/10.1111/j.1758-2229.2010.00200.x
http://dx.doi.org/10.1111/j.1758-2229.2010.00200.x
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://dx.doi.org/10.1016/j.socnet.2004.11.009
http://dx.doi.org/10.1099/ijs.0.034710-0
http://dx.doi.org/10.1371/journal.pbio.1001419
http://dx.doi.org/10.1371/journal.pone.0057170
http://dx.doi.org/10.1016/j.tree.2005.04.004
http://dx.doi.org/10.1128/AEM.01541-09
http://dx.doi.org/10.1128/AEM.01541-09
http://dx.doi.org/10.7717/peerj.1692

Peer

Schmidt TSB, Matias Rodrigues JF, Von Mering C. 2015. Limits to robustness and
reproducibility in the demarcation of operational taxonomic units. Environmental
Microbiology 17:1689-1706 DOI 10.1111/1462-2920.12610.

Seenivasan R, Sausen N, Medlin LK, Melkonian M. 2013. Picomonas judraskeda Gen.
Et Sp. Nov.: the first identified member of the picozoa phylum nov., a widespread
group of picoeukaryotes, formerly known as “picobiliphytes". PLoS ONE 8:59565
DOI 10.1371/journal.pone.0059565.

Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora M]J, Chistoserdov
A, Orsi W, Edgcomb VP. 2009. Massively parallel tag sequencing reveals the
complexity of anaerobic marine protistan communities. BMC Biology 7:1-20
DOI10.1186/1741-7007-7-72.

SunY, Cai Y, Huse SM, Knight R, Farmerie WG, Wang X, Mai V. 2011. A large-scale
benchmark study of existing algorithms for taxonomy-independent microbial
community analysis. Briefings in Bioinformatics 13:107—-121 DOI 10.1093/bib/bbr009.

Forster et al. (2016), PeerJ, DOI 10.7717/peerj.1692 16/16


https://peerj.com
http://dx.doi.org/10.1111/1462-2920.12610
http://dx.doi.org/10.1371/journal.pone.0059565
http://dx.doi.org/10.1371/journal.pone.0059565
http://dx.doi.org/10.1186/1741-7007-7-72
http://dx.doi.org/10.1186/1741-7007-7-72
http://dx.doi.org/10.1093/bib/bbr009
http://dx.doi.org/10.7717/peerj.1692

