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ABSTRACT

As a fundamental dimension of cognition and behavior, time perception has been found
to be sensitive to stress. However, how one’s time perception changes with responses to
stress is still unclear. The present study aimed to investigate the relationship between
stress-induced cortisol response and time perception. A group of 40 healthy young
male adults performed a temporal bisection task before and after the Trier Social Stress
Test for a stress condition. A control group of 27 male participants completed the
same time perception task without stress induction. In the temporal bisection task,
participants were first presented with short (400 ms) and long (1,600 ms) visual signals
serving as anchor durations and then required to judge whether the intermediate
probe durations were more similar to the short or the long anchor. The bisection
point and Weber ratio were calculated and indicated the subjective duration and the
temporal sensitivity, respectively. Data showed that participants in the stress group had
significantly increased salivary cortisol levels, heart rates, and negative affects compared
with those in the control group. The results did not show significant group differences
for the subjective duration or the temporal sensitivity. However, the results showed a
significant positive correlation between stress-induced cortisol responses and decreases
in temporal sensitivity indexed by increases in the Weber ratio. This correlation was not
observed for the control group. Changes in subjective duration indexed by temporal
bisection points were not correlated with cortisol reactivity in both the groups. In
conclusion, the present study found that although no significant change was observed
in time perception after an acute stressor on the group-level comparison (i.e., stress
vs. nonstress group), individuals with stronger cortisol responses to stress showed
a larger decrease in temporal sensitivity. This finding may provide insight into the
understanding of the relationship between stress and temporal sensitivity.

Subjects Cognitive Disorders, Neurology, Psychiatry and Psychology

Keywords Cortisol, Acute stress, Temporal bisection, Temporal sensitivity, The Trier Social Stress
Test, Time perception

INTRODUCTION

Individuals differ dramatically in their psychophysiological responses to stress, and their
brain functions and behavioral performances also vary with their stress responsiveness
(Pruessner et al., 1997; Lupien et al., 2007; Sapolsky, 2015). For example, Starcke and
colleagues (2011) found large interindividual differences in endocrine stress reactions
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and an association between individual’s cortisol response to stress and decision-making
behavior, although no significant behavioral changes in decision-making were found under
stress compared with the nonstress control condition. Time perception is a fundamental
dimension of cognition and behavior (Buhusi ¢ Meck, 2005). Studies have shown that time
perception is crucial for many fundamental functions, e.g., motor control (Edwards, Alder
¢ Rose, 2002) and acoustic communication signals, including human speech and music
(Mauk & Buonomano, 2004; Schirmer, 2004). These functions rely on precise temporal
perception and play important roles for everyday functioning (Buhusi ¢ Meck, 2005).
Maintaining accurate and sensitive time perception is essential for individuals’ adaptation
to the changing environment, especially when facing stressful conditions (Hancock ¢
Weaver, 2005; Eisen, 2009). However, how one’s time perception alters with responses to
stress is still unknown.

Accuracy and precision are two elementary aspects of time perception. The subjective
duration and the temporal sensitivity are the index of these two aspects, respectively. The
former refers to one’s perceived duration of a certain stimulus interval, and the latter
refers to one’s ability to discriminate between different durations (Meck, 1983; Grondin
& Rammsayer, 2003; Kopec ¢ Brody, 2010). Literature on time perception has suggested
disassociated underlying mechanisms for subjective duration and temporal sensitivity
(Grondin & Rammsayer, 2003; Cheng & Meck, 2007; Rammsayer, 2010; Stauffer et al., 2012;
Yin & Meck, 2014). This assumption was supported by the dissociated performance on
perceived durations and discrimination on a behavioral level (Rammsayer, 2010). On a
neurological level, it has been found that lesions of the dorsal hippocampus decreased the
subjective duration with the temporal sensitivity unaffected (Yin ¢ Meck, 2014).

Researchers have proposed cognitive models and neural mechanisms for time perception.
In cognitive models, time perception is assumed to be based on three processing stages:
clock stage, memory stage, and decision stage (Church, 1984; Zakay ¢ Block, 1997; Grondin,
20105 Kopec & Brody, 2010). Temporal information is first encoded in the clock stage
which consisting of a pacemaker that emits pulses at a given rate, a switch controlling
pulse transfer, and an accumulator in which the number of pulses is stored (Droit-Volet
& Meck, 2007). Attention and arousal play important roles in the clock stage (Zakay ¢
Block, 1997). Representations of the current passage of time are then stored into working
memory and/or long-term memory, and compared with those stored in long-term memory
to generate a judgment in the decision stage at last (Church, 1984; Grondin, 2010). The
subjective duration may depend mainly on the pacemaker-accumulator process, on which
arousal and attention would exert a critical influence (Grondin & Rammsayer, 2003). The
temporal sensitivity would be more closely associated with higher order components of
the discrimination process, and memory and decisional components may be involved in
these processes (Grondin & Rammsayer, 2003; Wearden & Ferrara, 1993). The prefrontal—
striatal-hippocampal circuits have been suggested to support time perception in the range
of hundreds of milliseconds to multi-seconds (Buhusi ¢» Meck, 2005; Coull, Cheng ¢» Meck,
2011; Gu, Van Rijn & Meck, 2015). The prefrontal cortex is implicated in encoding of
the current durations and comparison between the current and the memorized durations
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(Coull, Cheng & Meck, 2011; Gu, Van Rijn & Meck, 2015). The striatum is critical in the rep-
resentation of temporal information (Buhusi ¢ Meck, 2005; Meck, Church & Matell, 2013).
The hippocampus cooperates with these brain regions to form the representation of
temporal memory (Coull, Cheng ¢» Meck, 2011; Meck, Church & Matell, 2013).

Cognitive components of time perception have been found to be sensitive to acute
stress and to vary with cortisol responses to stress (Buchanan ¢ Tranel, 2008; Buchanan,
Tranel & Adolphs, 20065 Qin et al., 2009; Schoofs, Wolf ¢ Smeets, 2009). Previous studies
found that participants with greater stress-induced cortisol increases performed worse
in working memory tasks (Qin et al., 2009; Schoofs, Wolf & Smeets, 2009). Higher cortisol
responses to stress were associated with larger long-term memory impairments (Buchanan
& Tranel, 2008; Smeets, 2011). Negative correlations between male individual’s cortisol
stress responses and disadvantageous decisions were also reported. The male participants
with higher cortisol responses to stress showed poorer performance in the subsequent
decision-making task (Van den Bos, Harteveld ¢ Stoop, 2009).

Meanwhile, brain regions involved in time perception (Coull, Cheng ¢ Meck, 2011;
Gu, Van Rijn & Meck, 2015), especially the prefrontal cortex and hippocampus, are main
targets of the stress hormones including cortisol (McEwen, 2004; Lupien et al., 2007,
Arnsten, 2009). More importantly, functional activities of theses brain regions also showed
a correlation with stress-induced cortisol responses. For example, cortisol increases to stress
were found to be related to reduced activation in dorsolateral prefrontal cortex during a
working memory task (Qin ef al., 2009). Studies also found a positive correlation between
the degree of deactivation in the hippocampus and the release of cortisol in response to the
stress task (Pruessner et al., 2008).

Previous studies investigating the relationship between stress and time perception
have focused on comparing differences between stress condition and control condition.
Subjective durations under acute stress were found to be longer than those under control
condition (Meck, 1983; Watts & Sharrock, 1984; Campbell & Bryant, 2007; Droit-Volet et
al., 2010; Tamm et al., 2014). However, mixed results were found regarding temporal
sensitivity under acute stress. In an early study, Watts ¢ Sharrock (1984) found that
acute stress decreased temporal precision. However, two recent studies showed increased
temporal sensitivity under stress condition relative to the control condition (Tamm et al.,
2014; Tamm et al., 2015). In addition, there was also the study reporting that acute stress did
not affect temporal sensitivity (Droit-Volet et al., 2010). One of the reasons of these complex
results between groups might be the large individual difference in the effect of stress on
time perception. As the previous studies showed, individual differences in responses to
stress are enormous (Lupien et al., 2007), and the impairments of stress on the cognitive
components, including memory and decision making, varies a lot among individuals (e.g.,
Qin et al., 2009; Smeets, 2011). According to the framework of the cognitive models, the
temporal sensitivity is associated with memory and decisional components (Grondin ¢
Rammsayer, 2003). Some individuals may have severe impairments on these components
under stress, and thus show imprecise temporal perception. But these cognitive components
of other individuals may not be affected by stress and these individuals can remain good
temporal sensitivity. Therefore, besides the comparisons between the groups or conditions,
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investigations on the correlations between the individuals’ stress responses and time
perception are needed. However, these relationships have not yet been investigated.
Therefore, the present study aimed to investigate time perception changes under
psychosocial stress and, most importantly, the relationship between time perception and
stress responses. For this purpose, the Trier Social Stress Test (TSST; Buchanan, Tranel ¢
Kirschbaum, 2009; Kirschbaum, Pirke ¢» Hellhammer, 1993) was used as an acute psychoso-
cial stressor to elicit cortisol responses, and a control group was included. Time perception
was assessed before and after treatment using a temporal bisection task (Droit-Volet et al.,
20105 Droit-Volet, Fayolle ¢ Gil, 2011), which is one of the most commonly used tasks
to measure the subjective durations and temporal sensitivity (Allan ¢ Gibbon, 1991;
Wearden, 1991; for reviews, see Kopec ¢» Brody 2010; Wearden ¢ Jones, 2013). Based on the
aforementioned literature review, it was expected that the time perception performance
would change under the acute psychosocial stress. Specifically, we hypothesized that
longer subjective duration and/or altered temporal sensitivity would be found in the
TSST condition. We also predicted that the stronger cortisol responses to stress would be
correlated to the decline in temporal sensitivity and/or extension in subjective duration.

METHODS

Participants

Sixty-seven healthy male students (age range: 18—24 years; mean (M ): 21.22 years; standard
deviation (SD): 1.28) were recruited in the present study from different universities

in Beijing by advertising online. Due to a potential influence on stress responses, the
following exclusion criteria were employed: (1) cold or any medication use within 2 weeks
of participation in the study; (2) chronic use of any psychiatric, neurological, or endocrine
medication; (3) any major chronic physiological disease; (4) any history of psychiatric,
neurological, or endocrine disorders; (5) chronic overnight work or circadian disruption;
and (6) current periodontitis. Besides, individuals who had excessive alcohol consumption
(more than two alcoholic drinks daily) or nicotine consumption (more than five cigarettes
a day) were excluded from recruitment because ample evidence showed that alcohol and
nicotine (for a review, see Kudielka, Hellhammer & Wust, 2009) influence stress responses.
All participants had normal or corrected-to normal vision and were right handed.

The participants were randomly assigned to either the stress or the control condition.
Five participants in the stress condition and three participants in the control condition had
missing data of salivary cortisol due to insufficient salivary volume or outliers in data of one
or more measurements (3 SD), and thus were excluded from the analysis. In addition, two
stress nonresponders in the stress group, that is, whose cortisol changes from the baseline
to the peak of cortisol response (25 min after the onset of TSST; Dickerson ¢ Kemeny,
2004) were equal to or less than zero, were excluded (Buchanan, Tranel & Adolphs, 2006;
Buchanan & Tranel, 2008; Merz, Wolf ¢ Hennig, 2010; Rimmele & Lobmaier, 2012). This
resulted in a total of 57 participants with 33 in the stress group and 24 in the control
group. The two groups in this final sample did not differ significantly in age (stress group:
M =21.39 years, SD = 1.35; control group: M = 21.21 years, SD = 1.22; p =.595), body
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Figure 1 General procedure of the experiment. Timeline depicting the saliva sampling(S) procedure, the
heart rate (HR) recording procedure, the affective state measurement procedure (the Positive and Nega-
tive Affect Schedule, PANAS), the pre-treatment temporal perception task, stress induction (the Terier So-
cial Stress Test, TSST) or control task, and post-treatment temporal perception task.

mass index (stress group: M = 21.89 kg/m?, SD = 1.86; control group: M = 21.48 kg/m?,
SD =2.05; p = .443), and years of education (stress group: M = 14.73 years, SD = 0.57;
control group: M = 14.58 years, SD = 0.83; p = .442). This experiment was approved by
the Ethics Committee of Human Experimentation in the Institute of Psychology, Chinese
Academy of Sciences. All participants gave written informed consent and were paid for
their participation.

General procedure

Before coming to the laboratory, all participants were required not to drink or eat anything
besides water and not to do vigorous exercise for 2 h. All participants reported to have
complied with these requirements. To control for the circadian rhythm of cortisol levels
(Dickerson & Kemeny, 2004; Kudielka et al., 2004), all participants were tested between
2:00 pm and 5:00 pm. Upon arrival, the participants were introduced briefly about the
experiment. They were then required to complete a questionnaire of basic information and
allowed to relax in a quiet room for 25 min. The heart rate (HRy.), the salivary sample
(Spre)> and the positive and negative affective states (PA,re and NAp.) were measured.
The participants completed the first session of the temporal bisection task (pretreatment
session). The participants were randomly assigned to either the stress or the control
condition. During the stress induction or control task (15 min in total), the heart rate was
continuously recorded (HRguring). Immediately after the treatment, the heart rate (HRpost1)s
the salivary sample (Spost1), and the positive and negative affect states (PAposti and NApost1)
were measured again. Then, the participants completed the second session of the temporal
bisection task (post-treatment session, which was the same as the pretreatment session).
The heart rate, the salivary sample, and the positive and negative affect states were measured
again at +25 min and +45 min relative to the onset of the stress/control condition. The
general procedure of the experiment is depicted in Fig. 1.

Stress induction and control condition
Stress induction

Acute psychosocial stress was induced by a modified version of TSST (Kirschbaum, Pirke
& Hellhammer, 1993; Buchanan, Tranel ¢& Kirschbaum, 2009; Buchanan et al., 2012). The
modified TSST was as effective as or even more effective in eliciting cortisol responses

Yao et al. (2016), PeerJ, DOI 10.7717/peerj.2061 519


https://peerj.com
http://dx.doi.org/10.7717/peerj.2061

Peer

than the original TSST (Buchanan, Tranel ¢ Kirschbaum, 2009; Buchanan et al., 2012),
consisting of a preparation period (5 min) and a test period (10 min) during which the
participants delivered a speech (5 min) and performed mental arithmetic (5 min) in front
of an “audience” of experimenters. In the scenario of the speech, the participants were
instructed to imagine that they were accused of shoplifting and had to defend themselves
in front of the store managers. During the mental arithmetic task, the participants were
required to serially subtract the number 13 from 1,022 as fast and as accurately as possible.
They had to restart at 1,022 once they made an error. After the preparation in laboratory
room A, the participants were escorted to laboratory room B to complete the speech and
mental arithmetic tasks. Three experimenters (two females and one male) were present
throughout the Test period. They wore white coats, kept a neutral expression, withheld
facial and verbal feedback, and communicated with the participants in a neutral manner.
The participants stood in front of the experimenters and spoke into a microphone and a
video camera throughout.

Control condition

The control task contained similar tasks (verbal and numeric) designed to be analogous
to the TSST in time course and cognitive load, but not stressful with the social and self-
relevant components omitted (Het et al., 2009). The procedures in the control condition
were similar to the original version (see Het et al., 2009) but modified in aspect of the
speech content (based on Buchanan, Laures-Gore & Duff, 2014). As in the TSST group, the
control group had a 5-min period for preparation in laboratory room A, during which the
participants were instructed to read a general interest travel article and prepare a summary
of its contents. During the speech task, the participants remained seated in laboratory
room A to deliver a 5-min speech of the prepared summary into a video camera without
any experimenter present. The participants were then asked to complete a simple written
arithmetic task for 5 min.

Temporal bisection procedure

The settings and procedure of the temporal bisection task were as described in previous
studies (Droit-Volet et al., 2010; Droit-Volet, Fayolle ¢ Gil, 2011; Yao et al., 2015). Each
participant completed two sessions of the temporal bisection task with exactly the same
procedure. The first session was given before the treatment (pretreatment), and the
second was given 5 min after the end of the treatment (post-treatment). For each session,
the participants were first presented with the short (400 ms) and long anchor duration
(1,600 ms) once in a random order. Then, they completed eight blocks of seven trials (a
total of 56 trials), with each probe duration (400, 600, 800, 1,000, 1,200, 1,400, or 1,600 ms)
presented once in a random order within each block. For each trial, the word “ready” was
first presented for 500 ms, immediately followed by a blank screen of 200 ms, and then
the blue circle (presenting the probe duration, 2.5 cm in diameter) was presented in the
center of the screen. The participants were required to judge whether the probe duration
was more similar to the short or long anchor duration by pressing the corresponding key
with the index fingers of their right or left hand. The inter-trial interval was random from
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500 to 1,500 ms. All participants were instructed not to use any strategy to count time,
such as counting numbers or tapping (Clement ¢ Droit-Volet, 2006). The procedure was
run using E-prime (Psychological Software Tools Inc., PA, USA).

Physiological measures

Saliva sample was collected using Salivette collection tubes (Sarstedt, Rommelsdorf,
Germany). Within 40 min after collection, the saliva sample was frozen at —22 °C until
analysis. Sample was thawed and centrifuged at 3,000 rpm for 10 min. Cortisol concen-
tration was measured using electrochemiluminescence immunoassay (Cobas e 601, Roche
Diagnostics, Numbrecht, Germany). The lower sensitivity for cortisol was 0.5 nmol/L.
Intra- and inter-assay variations were below 10%.

Heart rate (HR) was measured using the electrocardiogram module of Biopac Amplifier-
System (MP150; Biopac, Goleta, CA, USA) with three electrocardiograph electrodes placed
on the skin, one placed on the right side of the neck and the other two on the left and right
inner ankles, respectively. Signals were recorded at a sample rate of 1,000 Hz. The pre- and
post-treatment measures of the HR (HRpre, HRpost1, HRpost2, and HRost3) were recorded
continuously for 5 min each, and the measure of HR during treatment (HRguring) Was
recorded continuously for 15 min throughout the stress induction or control task. The HR
was averaged across each measuring period using the AcqKnowledge software and defined
as the number of beats per minutes (bpm).

Psychological measures

Positive and negative affective states were assessed using the Positive and Negative Affect
Schedule (PANAS; Watson, Clark ¢ Tellegen, 1988) consisting of 10 items for positive
affects (PA, e.g., “interested,” “enthusiastic”’) and 10 items for negative affects (NA,

PRINTY

e.g., “‘upset,” “ashamed”) describing current affect. Answers were given on a 5-point scale
from 1 “very slightly or not at all” to 5 “extremely.” The ratings were summed up to a

score for PA and a score for NA both ranging from 10 (minimum) to 50 (maximum).

Data management and analysis
To examine whether the stress induction procedure was effective, mixed two-way analysis
of variances (ANOVAs) were conducted for salivary cortisol, HR, and affective states
by including Group (stress, control) as between-subjects variable and Test period as
within-subjects variable. Note that the number of levels for the Test period differed across
dependent variables, five levels for HR, and four levels for salivary cortisol, PA, and NA.
For time perception performance, P(long), bisection point (BP), and Weber ratio (WR)
were calculated. P(long) is the proportion of “long” responses for each probe duration.
For example, if participants judged 35% of the 800-ms probes to be long, the P(long)
for the 800-ms probe would be 35%. To calculate the BP and WR, the logistic function,
P(long) = 1/[1 + exp(a*Duration + b)], was first fitted to individual participant data, in
which Duration stood for probe duration, and a and b were free parameters (Droit-Volet
et al., 2010). The BP was defined as the probe duration that was judged as long with a 50%
probability (Duration [P(long) = 50%]), which indicated subjective duration. The lower
the BP is, the longer the subjective duration. To calculate the WR, the probe durations
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that were judged as long with 25% and 75% probability, that is, (Duration [P(long) =
25%]) and (Duration [P(long) = 75%]), were first obtained. Then, the WR was calculated
using the following expression: WR = (Duration [P(long) = 75%] — Duration [P (long)
= 25%])/(2*BP) (Meck, 1983). The WR indicates temporal sensitivity, with a lower WR
value indicating a higher temporal sensitivity.

A mixed three-way ANOVA with Probe duration (400, 600, 800, 1,000, 1,200, 1,400, and
1,600 ms) and Test period (pretreatment, post-treatment) as within-subjects variables and
Group (stress, control) as between-subjects variable was conducted for P(long). Also, two
separate mixed two-way ANOVAs for the BP and the WR were conducted with Test period
(pretreatment, post-treatment) as within-subject variable and Group (stress, control) as
between-subjects variable.

To investigate whether stress-induced cortisol responses were correlated with temporal
performance changes, Pearson correlation was conducted between salivary cortisol
responses and temporal performance changes in the stress group, including changes in BPs
(BPposs minus BPpe) and changes in WRs (WR 4 minus WRyye). Individual salivary corti-
sol responses were calculated by the area under the curve with respect to the increase (AUCi)
in salivary cortisol concentration: AUC; = % . (Spre + Spostl) 1S re—Spost1 T % . (Spostl + Spost2) .
LS posti —Spostz T % ’ (SPOStz + SP05t3) “TSpostz—Sposts Spre - (tspre_spostl F LS post1 —Sposz T tSpostz—Sposta) =
% : (Spre + Spostl) : (%) + % : (Spostl +Spost2) : (é) + % . (SpostZ +Spost3) : (%) - Spre : (% + é + %))
in which ¢ denotes the time interval between two successive salivary samplings expressed in
hour (Pruessner et al., 2003). Also, the same analyses were performed for the control group.

Greenhouse—Geisser correction was used when the requirement of sphericity in the
ANOVA for repeated measures was violated. The n? measure of effect size was included
where appropriate. Post hoc comparisons were conducted using the Bonferroni adjustments
for the p values. All reported p values were two-tailed, and the level of significance was set
at .05. The statistical analyses were performed using SPSS 18.0.

RESULTS

Stress responses

For salivary cortisol, the mixed two-way ANOVA revealed significant main effects of Test
period, F(3, 165) = 14.742, p < .001, partial n* = .211, and Group, F(1,55) =20.272,

p < .001, partial n? = 0.269, and a significant interaction of Test period * Group,
F(3, 165) = 22.425, p < .001, partial n* = 0.290. Simple effects analysis revealed that
the baseline salivary cortisol level (Spr) in the stress group was not significantly different
from that in the control group (p > .05), and salivary cortisol levels (Spost1> Spostz> and
Spost3) measured after treatment were significantly higher in the stress group compared
with those in the control group (ps < .01) (see Fig. 2).

For HR, the mixed two-way ANOVA revealed a significant main effect of Test period,
F(4,220) = 141.644, p < .001, partial n?> = 0.720, and a significant interaction of Test
period * Group, F(4,220) = 43.338, p < .001, partial n*> = 0.441. Simple effects analysis
revealed that the interaction was driven by the significantly higher HR in the stress group
during treatment (HRquring) compared with that in the control group (p < .001) (see
Table 1).
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Figure 2 Salivary cortisol concentrations across the experiment for the stress group and the control
group. Error bars are SEM. * denotes significant group difference (p < 0.05).

Table 1 Mean values (£SD) for the heart rate (HR), negative affect (NA), and positive affect (PA) mea-
sured before, during, and after treatments in the stress group and the control group.

Test period
Group Pre During Post1 Post2 Post3
HR (bmp) Stress 69.5 (£7.8) 88.3 (£12.5) 73.1 (£9.8) 73.0 (£9.0) 72.3 (£8.2)
Control  69.9 (£10.2)  75.4 (£9.7) 715 (£9.3) 714 (£9.5) 703 (£9.2)
Stress 14.8 (£4.2) - 17.8 (£6.2) 15.1 (+4.7) 14.2 (£4.1)
NA Control  15.8 (£4.0) - 14.8 (£3.8)  13.1(£3.2) 13.6 (£3.2)
- Stress 30.8 (£6.4) - 28.3 (£6.9) 27.6 (£6.8) 27.1 (£7.4)
Control  29.7 (£5.9) - 29.3 (£6.9)  27.6 (£7.0)  25.6 (£7.3)

For negative affective state, the mixed two-way ANOVA revealed a significant main
effect of Test period, F(3, 165) =10.608, p < .001, partial n>=0.162, and a significant
interaction of Test period * Group, F(3, 165) =6.750, p < .001, partial n*=0.109. Simple
effects analysis revealed that the interaction was driven by the significantly higher negative
affect measured immediately after treatment (NAp1) in the stress group compared with
that in the control group (p < .05) (see Table 1).

For positive affective state, the mixed two-way ANOVA revealed a significant main effect
of Time, F(3, 165) =20.872, p < .001, partial n* =0.275, but no significant main effect of
Group or significant interaction of Time * Group (ps > .05). Post hoc comparisons found
that the PA score of the first measure was higher than that of the second measure, and
PA scores of the second and third measures were higher than that of the fourth measure
(ps < .05) (see Table 1).

Descriptive statistics of temporal perception performance
The mean values of P(long) were plotted against probe durations for the stress group and
the control group before and after the treatment, as shown in Fig. 3. The analysis of P(long)

Yao et al. (2016), PeerJ, DOI 10.7717/peerj.2061 919


https://peerj.com
http://dx.doi.org/10.7717/peerj.2061

Peer

(a) Before treatment (b) After treatment

1.0 ) =—m—giress
=we control

1.0 =———ctress
=== control

0.8 0.8
% 0.6 0.6
=
S
T 0.4 0.4
0.2 0.2
0

0.0
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600
Probe duration (ms)

Figure 3 Proportion of long responses, P(long), was plotted against probe durations for the stress
group and the control group before (A) and after (B) the treatment. Error bars are SEM.

Table 2 Mean (M) and standard deviation (SD) for the temporal perception performance before and
after treatments in the stress group and the control group.

Stress group Control group
Before After Before After
M SD M SD M SD M SD
Bisection point (BP) (ms) 949 158 962 180 907 144 903 126
Weber ratio (WR) 0.137  0.058  0.139  0.062  0.132 0.044  0.132  0.060

found a significant main effect of Probe duration, indicating that P(long) increased with
the increase in probe duration, F (6, 330) = 668.703, p < .001, partial n* = 0.924. However,
no significant main effect of Group or Test period, or any significant interaction was
detected (ps > .05).

The mean values of BP and WR are shown in Table 2. The analysis for both BP and WR
did not show any significant main effect of Test period or Group, or significant interaction
effect between Test period and Group (ps > .05).

Relationship between stress responses and temporal perception
performance changes

For temporal sensitivity, Pearson correlation found that in the stress group, AUC;s of
salivary cortisol were positively correlated with changes in WRs (r =0.394, n =33, p < .05)
(Fig. 4A). However, in the control group, AUC;s of salivary cortisol were not correlated
with WR increases (r = .049, n =24, p = .822) (Fig. 4B). For subjective duration, AUC;s
of salivary cortisol were not correlated with changes in BPs for the stress group (r =.155,
n =33, P =.388) or for the control group (r =.307, n =24, p=.144).

DISCUSSION

The present study was designed to investigate the relationship between individuals’
stress responses and time perception. The modified TSST task here elicited significant
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Figure 4 Correlation of salivary cortisol responses (AUCi) and changes in Weber ratio (WR) before
and after the treatment in (A) the stress group (n = 33) and (B) the control group (n = 24). * denotes
p <0.05.

physiological responses and affective changes in the stress group compared with the
control group, including cortisol increases, HR increases, and NA increases, suggesting the
TSST task was effective in stress induction. The results did not find a general effect of acute
psychosocial stress on both WR and BP, representing temporal sensitivity and subjective
duration, respectively. However, cortisol responses to stress were found to be positively
associated with changes in WR. This correlation was not observed for the control group.
Also, the correlation between cortisol levels and changes in BP was not observed for both
the groups.

The results found a positive correlation between cortisol responses to stress and increases
in WR after stress, and this association was not observed for the control group (i.e., the
association between changes in cortisol and WR after the nonstress control task). Note that
larger WR indicates lower temporal sensitivity. This correlation suggested that individuals
with stronger cortisol responses to stress had more severe deficits in temporal sensitivity.
This finding is in line with previous studies that found correlations between cortisol
stress responses and cognitive components of time perception (Church, 1984; Zakay &
Block, 1997; Grondin, 2010; Kopec ¢ Brody, 2010). For instance, stress-induced cortisol
elevations have been found to be associated with poorer working memory performance
(Qin et al., 2009; Schoofs, Wolf ¢ Smeets, 2009), larger long-term memory impairments
(Buchanan & Tranel, 2008; Smeets, 2011), and greater decision-making alterations (Starcke
etal, 2011). Both the memory and decisional components play critical roles in time
perception (Grondin ¢ Rammsayer, 2003). The present results provide direct evidence for
the negative association between stress response and temporal sensitivity. However, the
association between changes in cortisol and temporal sensitivity was not observed in the
control group, although the AUCI of the salivary cortisol levels within the control group
also showed individual variability. These results suggest that cortisol responses to stress but
not basal cortisol variations were correlated with temporal sensitivity.
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The mechanism behind the association between the cortisol response to acute stress
and temporal sensitivity is poorly understood. On the one hand, the high stress or stress
hormone level may have an effect on temporal sensitivity. In line with this inference,
previous studies have found that cognitive components of time perception, such as attention
(Braunstein-Bercovitz, 2003; Paczynski, Burton & Jha, 2015), working memory (Duncko et
al., 2009; Qin et al., 2009; Schoofs, Wolf ¢ Smeets, 2009) and long-term memory (Buchanan
& Tranel, 2008; Wolf, 2008; Smeets, 2011; Schwabe & Wolf, 2013), and decision-making
(Van den Bos, Harteveld ¢ Stoop, 2009), were affected by acute stress. Neuroimaging
studies have also suggested that high cortisol release in response to stress has influenced
the functions of brain regions supporting time perception, including the prefrontal cortex
and/or hippocampus (Pruessner et al., 2008; Qin et al., 2009), and may have thus caused
temporal sensitivity decreases.

On the other hand, this correlation may suggest common mechanisms mediating
hypothalamic—pituitary—adrenocortical (HPA) induction to stress and supporting temporal
sensitivity at the same time. The prefrontal cortex and hippocampus, where corticosteroid
receptors are abundantly expressed, not only support cognitive functions related to
time perception (Coull, Cheng ¢» Meck, 2011; Gu, Van Rijn & Meck, 2015), but also play
important roles in the glucocorticoids negative feedback regulation (McEwen, 2004; Ulrich-
Lai & Herman, 2009). It might be the case that individuals who did worse in recruiting
the prefrontal cortex and/or hippocampus for effective negative feedback regulation of the
HPA axis to attenuate stress-induced increases in cortisol did worse in recruiting these
areas for efficient temporal information processing to maintain sensitive discrimination of
different durations at the same time.

In contrast to temporal sensitivity, changes in subjective duration as indexed by BP were
not found to be related with stress responses in cortisol, which suggested a dissociation in the
relationship between stress and the two elementary aspects of time perception. According
to the assumption in the framework of cognitive models, the subjective duration may
depend mainly on the clock stage while the temporal sensitivity may be related more
closely with the memory and decision stage (Grondin ¢ Rammsayer, 2003). The findings of
the current study may indicate the dissociated effects of stress on the different processing
stages of time perception. Furthermore, previous studies have suggested that these two
aspects of time perception have different neurochemical mechanisms and manipulators
(Santi, Weise & Kuiper, 1995; Crystal, Maxwell ¢ Hohmann, 2003; Grondin ¢ Rammsayer,
2003; Cheng & Meck, 2007; Rammsayer, 20105 Yin ¢ Meck, 2014). For example, pigeons
and rats showed specific declines in temporal sensitivity, but not in subjective duration,
on received injections of compounds that were known to affect memory and attention
(e.g., cannabinoid and amphetamine) (Crystal, Maxwell & Hohmann, 2003; Santi, Weise
& Kuiper, 1995). The findings here further suggested that temporal sensitivity, but not
subjective duration, is related to the HPA axis stress response in humans.

When comparing differences between the stress group and the control group, the results
did not find a general effect of acute psychosocial stress on both temporal sensitivity and
subjective duration. Previous studies focusing on comparing differences between the stress
condition and the control condition found mixed results regarding temporal sensitivity.
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The results of some studies were similar to the results of the present study, showing
unchanged temporal sensitivity under stress (Droit-Volet et al., 2010), while others found
increases (Tamm et al., 2014) or decreases (Watts ¢~ Sharrock, 1984) in temporal sensitivity
under stress. One possible explanation for these inconsistent results may be that individuals
responded differently under stressful conditions and showed different behavioral patterns
in temporal sensitivity. In line with this inference, when individual differences in stress
responses were analyzed, an interesting correlation, as discussed in the preceding text, was
detected in the present study.

However, the result regarding subjective duration was inconsistent with previous studies,
which found longer subjective durations under acute stress compared with the control
condition (e.g., Watts & Sharrock, 1984; Droit-Volet et al., 2010; Tamm et al., 2014). It is
to be noted that subjective durations were measured after the end of the stressor here.
In contrast, the previous studies utilized ongoing stressors and participants performed
the time perception tasks during stress (Watts ¢ Sharrock, 1984; Droit-Volet et al., 2010;
Tamm et al., 2014). As the results showed, the heart rate reached the highest level during
the stressor and recovered very fast after the stress. Considering that the heart rate has been
widely used as an indicator of arousal (e.g., Angrilli et al., 1997; Hellhammer ¢ Schubert,
20125 Pollatos et al., 2007), the differences in arousal levels might explain why significant
effects of stress on subjective duration were not detected as in previous studies.

Limitations of the present study have to be acknowledged. First, in controlling for sex
differences in responses to stress (e.g., Kajantie ¢ Phillips, 2006 for a review, see Kudielka
& Kirschbaum, 2005), only male participants were included. It is important for future
studies to determine whether the results obtained in healthy young male adults here can
be generated for females as well. Second, the duration range used in the temporal bisection
task was from 400 to 1,600 ms. As different neurocognitive mechanisms have been put
forward for the perception of short and long durations (Lewis & Miall, 2003; Lewis ¢ Miall,
2006), it is still unclear whether the same pattern of results would emerge when examining
time perception of longer durations.

In conclusion, the present study found that although no significant change was observed
in time perception after an acute stressor on the group-level comparison (i.e., stress vs.
nonstress group), healthy male participants with stronger cortisol responses to stress
showed a larger decrease in temporal sensitivity. This finding may provide insight into
the understanding of the relationship between acute psychosocial stress and temporal
sensitivity by emphasizing the role of individual differences in stress responses.
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