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ABSTRACT
Predictive habitat suitability models are powerful tools for cost-effective, statistically
robust assessment of the environmental drivers of species distributions. The aim of this
study was to develop predictive habitat suitabilitymodels for two genera of scleractinian
corals (Leptoseris and Montipora) found within the mesophotic zone across the main
Hawaiian Islands. The mesophotic zone (30–180 m) is challenging to reach, and
therefore historically understudied, because it falls between the maximum limit of
SCUBA divers and the minimum typical working depth of submersible vehicles. Here,
we implement a logistic regression with rare events corrections to account for the
scarcity of presence observations within the dataset. These corrections reduced the
coefficient error and improved overall prediction success (73.6% and 74.3%) for both
original regression models. The final models included depth, rugosity, slope, mean
current velocity, and wave height as the best environmental covariates for predicting
the occurrence of the two genera in the mesophotic zone. Using an objectively selected
theta (‘‘presence’’) threshold, the predicted presence probability values (average of
0.051 for Leptoseris and 0.040 forMontipora) were translated to spatially-explicit habitat
suitability maps of the main Hawaiian Islands at 25 m grid cell resolution. Our maps
are the first of their kind to use extant presence and absence data to examine the habitat
preferences of these two dominant mesophotic coral genera across Hawai‘i.

Subjects Ecology, Ecosystem Science, Environmental Sciences, Marine Biology
Keywords Mesophotic, Rare events corrected regression, Species distribution model, Hawaii,
Scleractinian corals, Leptoseris,Montipora, Theta threshold selection, Predictive modeling

INTRODUCTION
Consistent and pervasive deterioration of marine ecosystems worldwide highlights
significant gaps in current management of ocean resources (Foley et al., 2010; Douvere,
2008; Crowder & Norse, 2008). One such gap is the data required for informed marine
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spatial planning, a management approach that synthesizes information about the location,
anthropogenic use, and value of ocean resources to achieve better management practices
such as defining marine protected areas and implementing harvesting restrictions (Jackson,
Trebitz & Cottingham, 2000; Larsen et al., 2004). The creation of spatial predictive models
for improved marine planning is a relatively low-cost and non-invasive technique for
projecting the effects of present-day human activities on the health and geographic
distribution of marine ecosystems.

Defining and managing the biological and physical boundaries of ecosystems is a
complicated but essential component of marine spatial planning (McLeod et al., 2005). The
heterogeneous nature of ecological datasets can require the time-intensive development
of problem-specific ecosystem models (Cramer et al., 2001; Tyedmers, Watson & Pauly,
2005). Scientists frequently use straightforward, easy-to-implement regression methods to
analyze complex datasets. The development of software accessible to relative novices has
contributed to the growing popularity of regression methods (e.g., Lambert et al., 2005;
Tomz, King & Zeng, 2003).

Here, we employ a logistic regression with rare events corrections (King & Zeng, 2001)
to analyze the presence and absence data of two coral genera (Leptoseris and Montipora)
and, thus, develop a predictive framework for the geographic mapping of mesophotic coral
reef ecosystems (MCEs) across the main Hawaiian Islands. Mesophotic coral ecosystems,
located at depths of 30–180 m, are considered to be extensions of shallow reefs because
they harbor many of the same reef species present at shallower depths, and are also oases
of endemism in their own right (Grigg, 2006; Lesser et al., 2010; Kane, Kosaki & Wagner,
2014; Hurley et al., 2016). MCE habitats are formed primarily by macroalgae, sponges, and
hard corals tolerant of low light levels (Lesser, Slattery & Leichter, 2009). Corals of genus
Montipora colonize primarily the shallow reef zone (<30 m), but some species, particularly
Montipora capitata (Rooney et al., 2010), are able to extend their settlement intomesophotic
depths. Corals of genus Leptoseris construct extremely efficient, light-capturing skeletons
that facilitate their habitation of the lower mesophotic zone (Kahng et al., 2012) and are
considered to be exclusively mesophotic dwellers (Kahng & Kelley, 2007).

Ecological studies in the mesophotic zone are sharply limited in contrast to the
shallower photic zone more accessible by open circuit SCUBA, but steady advances
in diving, computing, and remotely operated vehicle technologies continue to facilitate
interdisciplinary mesophotic research (Pyle, 2000; Puglise et al., 2009). Mesophotic research
in Hawai‘i has been conducted primarily in the ‘Au‘au Channel, Maui, a relatively shallow,
semi-enclosed waterway between the islands of Maui and Lāna‘i that is among the most
geographically sheltered and accessible areas in the Hawaiian Archipelago, and, as a
result, much of the existing video and photo records of MCEs are from this area. This
concentration of historic surveys highlights the importance of creating a pan-Hawai‘i
predictive habitat model to identify likely areas of MCEs across unexplored areas of
Hawai‘i’s mesophotic zone. Increasing our knowledge about the habitat preferences of the
deep extensions of shallow coral species is critical given that approximately 40% of shallow
(<20 m) reef-building corals face a heightened extinction risk from the effects of climate
change (Carpenter et al., 2008). Here, we model the habitat associations of mesophotic
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scleractinian corals because of both their intrinsic biological value as well as their potential
to recolonize globally threatened shallow reef areas and serve as a refuge to mobile reef
organisms (Bongaerts et al., 2010; Kahng, Copus & Wagner, 2014).

Previous research about the environmental variables driving mesophotic scleractinian
colonization in Hawai‘i suggests that distinct variation in community structure exists
between the upper (30–50 m) and mid to lower mesophotic (50–180 m) depths (Rooney
et al., 2010; Kahng et al., 2010; Kahng, Copus & Wagner, 2014). Potentially influential
environmental variables include photosynthetically active radiation (PAR) levels (Goreau &
Goreau, 1973; Fricke, Vareschi & Schlichter, 1987; Kahng & Kelley, 2007; Kahng et al., 2010),
isotherms (Grigg, 1981; Kahng & Kelley, 2007; Rooney et al., 2010), and hard substrate
availability (Kahng & Kelley, 2007; Costa et al., 2012). Rooney et al. (2010) noted that hard
coral abundance declined dramatically below 100 m despite high (>25%) availability of
colonizable substrate; this sudden reduction in coral cover occurs at increasingly shallower
depths across the northwestern Hawaiian Ridge and may be driven by the synchronously
shallower occurrence of isotherms.

Light and temperature intensity (Jokiel & Coles, 1977; Rogers, 1990), physical stress
(e.g., wave energy or uncontrolled tourism) (Dollar, 1982; Nyström, Folke & Moberg, 2000;
Franklin, Jokiel & Donahue, 2013), and availability of colonizable substrate (Jokiel et al.,
2004; Franklin, Jokiel & Donahue, 2013) are known drivers of shallow (<30 m) reef coral
distributions across the world. We expect that our model will capture the influence of
these abiotic variables on the distribution of mesophotic corals, especially in the shallower
mesophotic zone. We speculate that our model may detect unexpected drivers of Leptoseris
distribution, particularly because Leptoseris is known to colonize deeper depths that bear
little resemblance to shallow reefs (Lesser, Slattery & Leichter, 2009; Rooney et al., 2010).
Finally, previous predictive modeling research about the drivers of Hawaiian mesophotic
coral colonization identified depth, distance from shore, euphotic depth, and sea surface
temperature as potentially influential environmental variables (Costa et al., 2012; Costa
et al., 2015). Our novel modeling approach utilizes all observational data (corals present
and absent), which we believe will offer more insight into the dynamics that facilitate and
inhibit coral colonization across the mesophotic zone.

MATERIALS AND METHODS
Organismal and environmental data
The Hawai‘i Undersea Research Laboratory (HURL) and the Pacific Islands Fisheries
Science Center (PIFSC) provided video and photo records from MCEs in the Hawaiian
Islands for our analyses. This imagery came from 19 dives conducted using submersibles,
remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), and tethered
optical assessment devices (TOADs) in the ‘Au‘au Channel, Maui (13 dives) and two other
geographically distinct regions: south O‘ahu (5 dives) and southeast Kaua‘i (1 dive). These
dives were conducted between 2001–2013. We analyzed dive video using the Coral Point
Count with Excel extensions (CPCe) tool (Kohler & Gill, 2006) in combination with a
modified PIFSC 2011 mapping protocol (Pacific Islands Benthic Habitat Monitoring Center
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Figure 1 The mesophotic zone of the main Hawaiian Islands. The study domain, demarcated in blue,
encompasses the mesophotic zone (30–180 m in depth) of the main Hawaiian Islands. Black circles are the
observations from the pre-existing Maui Nui dataset. Red circles are the previously unprocessed observa-
tions in south O‘ahu and southeast Kaua‘i.

Table 1 Number of field observations for each coral genus.

Source No. observations Leptoseris Montipora

O‘ahu 2,645 192 0
Kaua‘i 112 38 3
Maui 19,957 708 791
Total 22,714 938 794

(PIBHMC), 2015). PIFSC has used this type of combined analysis, referred to as the
random five point overlay method (RFPOM), to process coral reef ecosystem benthic
imagery throughout the U.S. Pacific Islands Region since August 2011, and our use of it
ensures database consistency with regions processed prior to this study. The CPCe software
placed five points randomly on each snapshot, which we then assessed for coral presence.
If any of the five points was on coral, that observation was recorded as a ‘‘presence.’’ In an
effort to evaluate the accuracy of RFPOM, we counted all corals in 200 randomly selected
screengrabs and found that this method misses 2.4% of coral observations recorded in
these images. We categorized corals by genus, because both Montipora (Forsman et al.,
2010) and Leptoseris (Luck et al., 2013) contain species complexes that remain the subject
of taxonomic uncertainty which prevent us from being able to reliably identify corals to
the species level from photographs.

We recorded snapshots every 30 s for the duration of each dive video. In addition to an
existing database of 40,193 records from dives in the ‘Au‘au Channel, 3517 new snapshots
were collected from the additional dives across south O‘ahu and Kaua‘i (Fig. 1). Of these
43,710 total images, 20,980 were discarded because either: (1) crucial observational data
were absent; (2) they were redundant due to an extended stationary period; or (3) they fell
outside the study depth range of 30–180 m. Of the remaining 22,714 records, we analyzed
2,757 unprocessed images using the RFPOM (Table 1).
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We selected our environmental covariates, listed in Table 2, based on the sufficiency
of the data and the potential significance of each variable as an indicator of hard coral
habitat suitability (e.g., Dolan et al., 2008; Rooney et al., 2010; Costa et al., 2012). We
defined summer and winter seasons as May–September and October–April, respectively
(Kay, 1994; Rooney et al., 2010). We delineated significant wave height estimates and
mean current velocities by season and direction. We extracted and averaged significant
wave height data from 144 days per season of twenty-four hour PacIOOS Simulating
WAves Nearshore (SWAN) regional wave models estimated values for 2011–2015 (see
website: http://oos.soest.Hawaii.edu/las/). Mean current velocity values were available
from 0:00–21:00 every three hours for all months from 2013–2015; for each season and
direction, 48 mean current velocity values were extracted and averaged from the PacIOOS
Regional Ocean Modeling System (see website: http://oos.soest.Hawaii.edu/las/). This
model has a 4 km horizontal resolution with 30 vertical levels across seafloor terrain. We
sourced monthly MODIS Aqua Chlorophyll a averages for the year 2012 from the NOAA
PIFSC OceanWatch Live Access Server (see website: http://oceanwatch.pifsc.noaa.gov/).
Using the Morel (2007) method, we applied the following cubic polynomial equation to
obtain logged euphotic depth:

log10Zeu= 1.524−0.436x−0.0145x2+0.0186x3, (1)

where x represents the measured Chlorophyll a concentrations (mg/m3) at sea surface.
Euphotic depth is the depth at which the level of photosynthetically active radiation (PAR),
a limiting factor formany heterotrophicmesophotic corals, is at 1% of surface PAR. In total,
we used 14 environmental predictor variables to shape our model (Table 2) (Figs. S1–S5).

The spatial resolution of the bathymetry data was 50 m × 50 m for all islands. We
resampled the bathymetry raster to a cell size of 25× 25 m consistent with a conservatively
estimated±25mpositioning errormargin observed at a depth of∼ 800m.We estimated an
average camera swath value of 3.24m (range 2.45–4.54m) based on previousmeasurements
from 19 still image screenshots taken when the submersible was located at different heights
above the seafloor. Our geopositional error for the images is ±5 m and we can expect that
the location data are within a circle with a 10 m diameter. Our observation sampling area
is projected out from the location area a distance of ≤5 m. Addition of a conservative 5 m
observation area buffer to the location error area produces an observational data position
of ±20 m from the given coordinates of a data point.

We removed all subsampling within cells due to slight variations in camera angles or
vessel speed through a point-to-raster conversion.We categorized all cells with≥1 presence
observation as ‘‘present’’ cells and all cells with only absence observations as ‘‘absent’’ cells.
This removal ofmultiple observations within the same 25× 25mpixel effectively eliminates
pseudoreplication within the data. We used ArcToolbox and the Benthic Terrain Modeler
Toolbox to calculate slope, curvature, rugosity, and aspect (compass direction) values
(Wright et al., 2012). We performed a spatial join based on proximity to observation point
data to assign values for surface Chlorophyll a concentration, mean current velocities,
distance from shore, and significant wave heights.
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Table 2 List of all variables considered for inclusion in our analyses.

Variable Category Variable description Source Resolution Variable

LeptoserisBiological
(response) Hard coral

Presence/absence between 30–180 m in
depth

PIFSC, HURL optical
validation data

NA
Montipora

Light
availability

The depth of the euphotic zone (PAR
1%) determined using the Morel
method (2007)

NOAA Oceanwatch Live
Access Server; NASA,
2014

4 km× 4 km Mean euphotic depth (m)

Seafloor complexity calculated with the
ArcGIS BTM Terrain Ruggedness tool

Rugosity (unitless)

Depth of seafloor Depth (m)
Rate of change calculated with the
ArcGIS BTM Slope tool

Slope (degrees)

Curvature of the seafloor calculated
using the ArcGIS Curvature tool

Curvature (degrees of degrees)

Hardness of seafloor detected by
acoustic backscatter

Substrate hardness (unitless)

Distance of observation point to nearest
coastline

Distance to coastline (m)

Topography

Compass direction of maximum slope
calculated using the ArcGIS Aspect tool

USGS, 1998; University
of Hawaii SOEST, 2014

50 m× 50 m
resampled to
25 m× 25 m

Aspect (degrees)

Mean cur. vel. (northward/summer) (m s-1)
Mean cur. vel. (northward/winter) (m s-1)
Mean cur. vel. (eastward/summer) (m s-1)

Mean current velocity data obtained
per season (winter/summer) for depths:
200, 150, 125, 100, 75, 50, 30 m

PacIOOS Hawaii
Regional Ocean Model 4 km× 4 km

Mean cur. vel. (eastward/winter)(m s-1)
Sig. wave height (summer) (m)

Environmental
(predictor)

Waves/currents

Sea surface mean significant wave
height

PacIOOS Hawaii SWAN
Wave Model

0.5 km× 0.5 km
and 1 km× 1 km Sig. wave height (winter) (m)
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Regression methods
In describing the relationship between a response variable and one or more predictor
variables, we use a logistic regression model because the response variable is dichotomous
(Hosmer & Lemeshow, 2004). The ordinary logistic regression (OLR) model is defined as:

θ = expit(µ)=
1

1+exp(−µ)
, (2)

where θ is the probability that the species of interest is present (y = 1), and 1−θ is the
probability it is absent (y = 0). The logit function is the inverse of the expit function, and

logit(θ)=µ=β0+β1x1+···+βnxn (3)

is the linear sum of predictor variables, x1, x2, ..., xn, with intercept β0 andregression
coefficients β1, β2, ..., βn. In the language of generalized linear models (GLM), OLR is
said to have the logit function as its link function and the expit function as its inverse link
function. Logistic regression provides a straightforward, meaningful interpretation of the
relationship between a dichotomous dependent variable y and a set of predictor variables
(Allison, 2001).

Despite the popularity of OLR, it may yield extremely biased results when an imbalance
exists in the proportion of the response variable data (e.g., such as in our case, when
y = 0� y = 1) (Van Den Eeckhaut et al., 2006). King & Zeng (2001) coined the term
‘‘rare events logistic regression’’ to describe their corrective methodology in dealing with
unbalanced binary event data:
1. The first step requires the selection of a representative sample. Though researchers

generally prefer to work with more uniform response data (e.g., Liu et al., 2005),
selection of an unusually high proportion of the rare event (in this case, y = 1)
to ‘‘balance’’ the dataset and increase θ estimates will yield nonsensical results. We
divided the data in half to create our training and testing datasets and checked that each
set of observations had an approximately equal proportion (y) of presence observations
to better reflect the ‘‘true state’’ of the full dataset.

2. The second step rectifies any bias that might be introduced when dividing the dataset.
This prior correction on the intercept (β0) can be calculated as:

β̂0= β̃0− ln
[(

1−τ
τ

)(
y

1−y

)]
; (4)

here, β̂0 is the corrected intercept, β̃0 is the uncorrected intercept, τ is the true
proportion of 1s in the population; and y is the observed proportion of 1s in the
training sample.

3. The third step rectifies any underestimation of the probabilities of the independent
variables β1...n from the substitution of the intercept value, obtained as:

P(yi= 1)= θ̃i+Ci, (5)

where the correction factor Ci is given by:

Ci= (0.5− θ̃i)θ̃i(1− θ̃i)XV (β̃i)X ′, (6)
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where X is a 1×(n+1) vector of values for each independent variable βi, X ′ isthe
transpose of X , andV (β̃i) is the variance covariance matrix. We obtained the improved
probability estimates through estimation of βi via β̃i , thereby considered ‘‘mostly’’
Bayesian (King & Zeng, 2001). Our priors in this case would be uninformative, which
means that we lack sufficient knowledge to estimate the probability distributions of
our data and our parameter of interest, θ . This is often the case when working with
sparse ecological datasets. As the uninformative prior for a regression coefficient with
domain (∞,−∞) is uniform, a full Bayesian estimation with uninformative priors is
equivalent to a traditional logistic regression. Therefore, this correction is effectively
a correction to the approximate Bayesian estimator, and its addition improves our
regression by lowering the mean squared error of our estimates. We implemented this
rare events logistic regression using the ‘Zelig’ package run in R (Imai, King & Lau,
2008; Choirat et al., 2015).
We constructed a correlation scatterplot matrix per coral genus to observe correlation

levels between all variables. In choosing which highly correlated variables to exclude from
the analyses, we followed the criteria outlined by Dancey & Reidy (2004) and Tabachnick
& Fidell (1996), who suggest a cutoff correlation value of 0.7. Only mean significant wave
height parsed by season consistently overreached this threshold; the covariate that was least
correlated with the response variable was removed. We excluded predictors that lacked a
clear distribution pattern or correlated minimally (<0.05) with the response variable.

One of the more studied habitat preferences of Leptoseris andMontipora is the influence
of depth on their distribution (Rooney et al., 2010; Costa et al., 2012; Kahng et al., 2010).
Increasing depths often correlate with greater distance from shore. The inclusion of squared
terms (e.g., x2= x21 ) in our regression equation expit(θ)= β0+β1x1+···+βnxn permits
the logistic curve to reflect the bell curve shape expected in plotting the distribution of
these animals across a range of depths or distance from shore. In order to account for
these trends, we added Depth Squared and Distance Squared as potential variables for
consideration in our final model. As depth or distance increases, its square increases even
more rapidly, allowing the squared term to eventually dominate and ‘‘pull down’’ the
probability curve.

We withheld 50% of our information per genus as testing (i.e., validation) data. Using
the remaining 50% (our training data), we performed the rare events corrected logistic
regression described above. Using an exhaustive iterative algorithm (Calcagno, Mazancourt
& Claire, 2010), we modeled all possible combinations of included covariates. We ranked
models using the corrected Akaike information criterion (AICc) (Hurvich & Tsai, 1989),
which is considered an excellent comparative measurement of model strength, especially
for sparse datasets. For both genera, the models with the lowest (lowest= best) AICc scores
were lower than the ‘‘second best’’ AICc scores by at least 2 (i.e., 1 AICc ≥ 2), indicating
strong preference for the best model (e.g., (Hayward et al., 2007)).

In an ideal and unrealistic study, all biotic and abiotic components of a model would
be homogenous and evenly distributed across a sampling space. Our sampling design
includes overlapping submarine dive tracks and the inherent heterogeneity of the marine
environment, which could problematically violate our model’s underlying assumption
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Table 3 Summary statistics for theoretical semivariogrammodels.

Genus Sum of squares Input σ2 Inputψ Actual σ2 Actualψ Actual τ2

Leptoseris 2940.671 0.055 218 0.051 206.909 0
Montipora 14013.610 0.020 390 0.032 390.000 0.003

regarding the independence of our biological and environmental data. We removed all
instances of pseudoreplication (multiple observations in one grid cell) when we assigned
each grid cell to a category of ‘‘corals present’’ or ‘‘corals absent.’’ After we removed
subsampling within our observational data, we checked for the presence of clustering,
or spatial autocorrelation, within these data. Uncorrected spatial autocorrelation between
observational data points confounds and undermines any biological inferences drawn from
model predictions.

We checked small-scale, local spatial autocorrelation using Geary’s C statistic (Geary,
1954), based on the deviations in the responses of observation points with one another:

C =
n−1
2S0

∑
i

∑
j

wij(xi−xj)2∑
i(xi−x)2

. (7)

Here, x is the variable of interest, i and j are locations (where i 6= j), wijrepresents the
components of the weight matrix, and S0 is the sum of the components of the weight
matrix. Geary’s C ranges from 0 (maximal positive autocorrelation) to 2 for high negative
autocorrelation. In the absence of autocorrelation, its expectation is 1 (Sokal & Oden, 1978).

We also examined global spatial autocorrelationusingMoran’s I statistic, whichmeasures
cross-products of deviations from the mean (Moran, 1950):

I =
n
S0

∑
i

∑
j

wij(xi−x)(xj−x)∑
i

(xi−x)2
. (8)

Moran’s I values generally range from –1 to 1, with 0 as the expectation when no spatial
autocorrelation is present.

We also verified the spatial independence of our observational point data using a
semivariogram, which is a graphical method of quantifying spatial correlation in a set
of points (Figs. 2–3). We selected our theoretical semivariogram to fit the empirical
semivariance using the ordinary least squares (OLS)method (Jian, Olea & Yu, 1996;Kendall
et al., 2005). The spherical model had the best quantitative fit based on OLS estimates
(Table 3). For each dataset, the low thresholds at which semivariance stopped increasing
indicated the almost complete absence of spatial autocorrelation for each genus.

Model assessment
Evaluation of the rare events logistic regression model output is more complicated than
for the typical linear model. For example, R2 values, although calculated, have little
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Figure 2 Modeled spherical semivariogram for Leptoseris.

Figure 3 Modeled spherical semivariogram for Montipora.

applicability to logistic regressions and are therefore ignored (Menard, 2000; Peng, Lee
& Ingersoll, 2002). Sample size and selected threshold largely influence the results of
the Hosmer and Lemeshow goodness-of-fit test (Hosmer et al., 1997). Accordingly, we
use model classification accuracy as a second measure of goodness-of-fit (in addition
to 1AICc). We want to maximize true positives (TP) and true negatives (TN) while
minimizing false positives (FP) and false negatives (FN). The sensitivity-specificity sum
maximization approach (Cantor et al., 1999) therefore maximizes

SSmax=
TP

TP+FN
+

TN
TN +FP

, (9)

which is equivalent to finding the point on the ROC (receiver operating characteristics)
curve at which the tangent slope is 1, indicating the optimal cutoff point at which ‘‘cost’’
(here, the number of FN and FP) and ‘‘benefit’’ (the number of TN and TP) is balanced.
We chose this technique because we aim to identify regions devoid of hard corals as well
as regions deemed potentially suitable for habitation.
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ROC curves plot the true positive test rate against the false positive test rate across
different theta cutoff points (Hadley & McNeil, 1982). We calculated values for sensitivity
and specificity for threshold increments of 0.005±1 standard deviation of the rounded
mean for each model. Because each theta threshold value varied based on the genus and
model, the threshold-independent area under the curve (AUC) test statistic best reflects
the predictive accuracy of the model.

In addition to creating ROC curves, we also took into account the overall prediction
success of each model, given as:

OPS=
TP+TN

TP+TN +FP+FN
. (10)

Overall prediction success is a measure of total correct classification of both present and
absent observations. While this is a good final assessment of model classification error,
consideration of the prediction success alone is not a viable evaluationmethod when binary
data is highly imbalanced, as a value given by this method may primarily represent model
success in identifying the most common observation type (Fielding & Bell, 1997). We plot-
ted our sensitivity and specificity values on a ROC curve to showhow eachmodel performed
relative to chance (Fig. 4). All models fall in the range 0.7 ≤ AUC < 0.9, which indicates
good discrimination and reliability of model predictions (Hosmer & Lemeshow, 2004).

We also created maps of individual and summed predicted occurrence probabilities of
both coral genera across the main Hawaiian Islands and ran a hotspot analysis using the
ArcGIS Getis-Ord G∗i Hotspot Analysis tool. We constructed a polygon fishnet composed
of 1 × 1 km cells which encompassed all islands. We summed each 25 × 25 m raster cell
value for probability of Leptoseris occurrence and probability ofMontipora occurrence. We
performed a spatial join of raster cell values within each polygon for an average value of
summed probabilities. The Getis-Ord G∗i statistic identifies clusters within these polygons
that display values higher in magnitude than random chance would permit. The Getis-Ord
local statistic is given as:

G∗i =

n∑
j=1

wi,jxj−X
n∑

j=1

wi,j

S

√
1

n−1

[
n
∑n

j=1w
2
i,j−

(∑n
j=1wi,j

)2] . (11)

Here, wi,j represents the spatial weights between features i and j; n represents the

total number of features;xj is the attribute value for feature j; X = 1
n

n∑
j=1

xj ; and

S=

√√√√ 1
n

n∑
j=1

x2j − (X)
2.
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Figure 4 ROC curves for all models. AUC values for all models fall in between 0.7 and 0.9, which indi-
cates predictive reliability. The dashed line from (0, 0) to (1, 1) indicates the null threshold at which model
performance is considered unacceptable (<0.5).

RESULTS
Geary’s C test statistic is a measure of local (small-scale) spatial autocorrelation; in the
absence of correlation, 1 is the expected value of Geary’s C. Moran’s I is a measure of
global (large-scale) spatial autocorrelation; in the absence of correlation, a value of 0 is
expected for the Moran’s I test statistic. For our Leptoseris dataset, Geary’s C = 0.990; for
our Montipora dataset, Geary’s C = 0.996. For our Leptoseris dataset, Moran’s I = 0.006;
for our Montipora dataset, Moran’s I = 0.003. These values do not indicate any local
clustering or global spatial autocorrelation within either dataset. We observed negligible
levels of autocorrelation up to ∼100 m for Montipora (Fig. 3). By ensuring that spatial
autocorrelation is not present in our data, we do not violate the assumption that our
response data are independently observed, which enables us to draw robust conclusions
about the ecological factors influencing the distribution of these coral genera within the
mesophotic zone across the main Hawaiian Islands.

The OLR covariate coefficients were modified using the rare events corrections proposed
by King & Zeng (2001), resulting in a change in predictive power (Table 4). Rare events
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Table 4 Predictive models output. Results by genus: theta threshold subscripts indicate model type and training and validation (c-v) outputs. Sensitivity and specificity
totals apply to training data only.

Genus θ

threshold
TP TN FP FN TPc−v TNc−v FPc−v FNc−v Sensitivity Specificity SSmax OPS OPSc−v AUC

θOLR=

0.065
223 4,133 1,525 84 219 3,757 1,894 94 0.7264 0.7305 1.4569 73.0% 66.7% 0.782

Leptoseris
θcorr=

0.067
220 4,168 1,490 87 182 4,000 1,651 131 0.7166 0.7367 1.4533 73.6% 70.1% 0.780

θOLR=

0.064
200 4,299 1,536 69 159 4,453 1,406 86 0.7435 0.7368 1.4803 73.7% 75.6% 0.808

Montipora
θcorr =

0.0625
198 4,336 1,499 71 165 4,406 1,453 80 0.7361 0.7465 1.4792 74.3% 74.9% 0.809
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Figure 5 Modeled area of suitable habitat for Leptoseris. Probability of presence is depicted along a
color gradient ranging from red (1; most suitable) to blue (0; least suitable).

corrected models usually performed better than the uncorrected models, in terms of
improved specificity and prediction success. Our sensitivity values for both corrected
models were slightly lower than the corresponding OLR sensitivities, but in each case,
specificity and prediction success values were improved. Additionally, standard errors of
the coefficient estimates were lower for corrected models than for uncorrected models
(Tables S1–S4).

Leptoseris corals inhabit mesophotic regions with high slope and rugosity values, high
to moderate perennial current flow, and their occurrence peaks around 100 m (Table S3,
Figs. S6–S10). Montipora corals peak in occurrence around 60 m and colonize regions
less exposed to high energy winter swells (Table S4, Figs. S11–S12). Predicted presence
probability values (θ) averaged 0.051 for Leptoseris and 0.040 for Montipora models in the
validation data (Figs. 5–6). These values agree well with the actual presence frequencies in
that data (0.052, 0.042). To better interpret these realistically low theta values, we chose a
theta threshold to transform the probability estimates to presence/absence values. This is
standard practice when examining the results of a rare events logistic regression, but less
common when performing OLR (Liu et al., 2005). Objective selection of a theta threshold
on a per-model basis is more scientifically sound than, for example, an arbitrary assignment
of 0.5 (Cramer, 2003). The transformed model is valid if a threshold value yields a high
percentage of correctly classified observations and a low number of FP and FN observations
(Gobin, Campling & Feyen, 2001). We selected an appropriate threshold for each model
(Table 4) in order to maximize SSmax (Liu et al., 2005).
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Figure 6 Modeled area of suitable habitat forMontipora. Probability of presence is depicted along a
color gradient ranging from red (1; most suitable) to blue (0; least suitable).

Our final hotspot maps show the results of our analysis for Leptoseris, Montipora, and
both genera combined across all islands (Figs. 7–9). We show hotspots of habitat suitability
for both coral genera in red for areas of highest suitability and blue for areas of lowest
suitability. We identify a cell as a hotspot when the sum of its value and the values of its
nearest neighbors is much higher or lower than the mean over all cells. When the local
sum of a cluster is very different from the expected value, a statistically significant hotspot
is identified (G∗i statistic ≥ 1.96 or G∗i statistic ≤−1.96). Neither genus clearly dominated
the summed probabilities hotspot identification across any of the islands. Large Leptoseris
hotspots were identified in southwest Moloka‘i, northeast O‘ahu, west Hawai‘i, and the
central ‘Au‘au Channel. Montipora hotspots were identified in east Ni‘ihau, southwest
Kaua‘i, west and south O‘ahu, west Hawai‘i, and the central ‘Au‘au Channel.

DISCUSSION
In this study, we used logistic regression with rare events corrections to predict the habitat
preferences of two dominant scleractinian coral genera across the entire mesophotic zone
surrounding the main Hawaiian Islands. The habitat preferences of Montipora in the
mesophotic zone appear distinct from those of Leptoseris. Montipora prefers the middle
mesophotic zone (50–80 m) of reefs less exposed to high-energy winter swells. Leptoseris
prefers steep, rugose slopes and the lower mesophotic zone (>80 m) in regions of high
year–round current flow.
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Figure 7 Mapped result of our Getis-OrdG∗
i hotspot analysis performed for probability estimates

of Leptoseris occurrence. A significant hotspot is <−1.96 or >1.96; here, all hotspots are shown in red
(>1.96) or blue (<−1.96).

Figure 8 Mapped result of our Getis-OrdG∗
i hotspot analysis performed for probability estimates

ofMontipora occurrence. A significant hotspot is <−1.96 or >1.96; here, all hotspots are shown in red
(>1.96) or blue (<−1.96).

Important environmental covariates
PredictedMontiporapresence peaks at about 60m (median occurrence probability= 7.5%);
Leptoseris presence peaks at about 100 m (median occurrence probability = 7.5%). These
predictions are consistent with the inferences of Rooney et al. (2010), which separates
mesophotic reefs into three distinct depth sections: upper (30–50 m), branching/plate
dominated (50–80 m), and Leptoseris dominated (≥80 m). The depth at which suitability
peaks for Leptoseris occurs at a range where steep ridges and drop-offs are plentiful in our
study region, and therefore themean preferred depthmay be prone to slight overestimation.

In addition to depth, four environmental covariates appeared to influence the
distribution of Leptoseris: rugosity, slope, summer mean current velocity (northward),
and winter mean current velocity (eastward). Scleractinians easily colonize environments
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Figure 9 Mapped result of our Getis-OrdG∗
i hotspot analysis performed for summed probability

estimates of Leptoseris andMontipora occurrence. A significant hotspot is <−1.96 or >1.96; here, all
hotspots are shown in red (>1.96).

that are relatively calm and rugose due to the larger amount of available surface area, and
this positive correlation was reflected in our model. Leptoseris habitat preference was also
positively associated with slope, which was not observed forMontipora. Corals that inhabit
the upper mesophotic zone may be more susceptible to damage from debris displaced by
highwave energy, and are therefore less likely to colonize steep slopes (e.g.,Harmelin-Vivien
& Laboute, 1986;Bridge & Guinotte, 2013). The deeper distribution ofLeptoserismayprotect
it from damage related to wave intensity, allowing it to colonize slopes (e.g., White et al.,
2013). Another possibility is that the model is picking up drop-offs from masses accreted
during the last glacial maximum. These steep drop-offs are present between 90–120m in the
Leptoseris-dominated lower mesophotic zone (Yokoyama et al., 2001; Webster et al., 2004).

Leptoseris also favors well-flushed areas exposed to year-round moderate current flow
(i.e., up to 0.3m/s). The plate-likemorphology of Leptoseris corals effectively boosts sunlight
capture by its symbiotic zooxanthellae and zooplankton capture by the corals themselves,
but it also makes the coral vulnerable to smothering by sediment accumulation (Bak,
Nieuwland & Meesters, 2005; Bongaerts et al., 2010; Marcelino et al., 2013). The success of
Leptoseris corals in areas of moderate current flow may be related to the improbability
of sediment settlement and accumulation. While the model did not capture the same
effect of current flow on Montipora distribution, we recognize that the morphology of
some Montipora species is extremely similar to that of Leptoseris. We do not expect either
genus to readily colonize highly turbid regions, especially given that certain species of
heterotrophic Montipora are thought to exploit strong currents to meet their energy
requirements (Grottoli, Rodrigues & Palardy, 2006; Rooney et al., 2010).

Substrate hardness, a variable known to influence coral colonization, was notably absent
from eachmodel. Substrate hardness values were derived from acoustic backscatter imagery
readings. The base resolution of these readings (50 m× 50 m) was not sufficiently detailed
for purposes of this analysis. We noted plentiful coral colonization along larger surfaces
like lava fingers, the hardness of which would be detectable by backscatter surveys, as
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well as across small rock fragments strewn across a sand flat, which would be obscured
by the softness of the surrounding benthos. We can conclude that measurements of
benthic hardness are not detailed enough for predictive modeling purposes at a 25× 25 m
resolution.

We emphasize that the purpose of this study was to build a pan-Hawai‘i predictive
habitat map for two dominant coral genera within the mesophotic zone. Because the scope
of this study included all main Hawaiian Islands, we were constrained by the coarseness
of available full-coverage environmental data. As we build on this analysis, we plan to use
our maps to identify areas of interest for further study at higher resolution and to include
additional variables currently only available in certain regions, such as light intensity and
temperature at depth. For example, our predictive and hotspot maps identify Penguin
Bank (southwest Moloka‘i) as particularly suitable for Leptoseris colonization, which has
not been verified by video or photo records. High resolution backscatter data (1 × 1 m)
exist for this region, and incorporation of these data into new analyses of subsets of our
study area may refine our conclusions.

Error sources and model reliability
We examined two types of error (false negatives and false positives) and analyzed our
models without giving preference to either one. This approach is widely accepted as the
best method of overall error minimization (e.g., Liu et al., 2005; Fielding & Bell, 1997). Rare
events corrected models for both Leptoseris and Montipora achieved levels of specificity
and sensitivity well above the null, indicating good predictive power. Additionally, both
models attained about 74% overall prediction success. We assumed coral detectability
was constant across the study region and that we can therefore consider the true absence
observations to be reliable indicators of a potentially unsuitable habitat for corals. For each
genus, the model tended to slightly over-predict presence observations; large numbers
of false positives lowered sensitivity values. This is inevitable in the analysis of severely
imbalanced or sparse binary data; the ongoing addition of presence observations to the
dataset will improve overall model classification accuracy.

While the consistent identification of southern coastal areas as suitable is reliable, the
comparatively infrequent selection of northern coasts is likely due to the source of the
model-building observations. The vast majority of mesophotic exploration has been along
southern coastlines, which is often where waters are calmest in Hawai‘i. It is speculated that
because mesophotic corals are more shielded from winter long-period wave energy than
their shallowwater counterparts, they are able to flourish at depth along northern coastlines
(Grigg, 1998; Rooney et al., 2010). The addition of data sourced from northern expeditions
would likely improve predictive power of the model across north-facing coastlines
(Alin, 2010).

We acknowledge that the original data were not collected in a standardized fashion
(e.g., variation in vessel traveling speed or differences in data collection vessel and/or
quality). Our careful exclusion of overlapping observation points within each 25 × 25 m
rectified this sampling design flaw as much as possible and eliminated pseudoreplication.
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Distinctions between coral genera
Our Montipora model was simpler than the Leptoseris model in that the only variable
included other than depth was winter significant wave height. Though uncertainty was
highest at lower values of significant wave height, Montipora demonstrated a preference
in colonizing habitats that experience lower significant wave height during winter. This
preference contrasts with Montipora species in shallow waters that were more likely to
be observed in higher wave height environments (Franklin, Jokiel & Donahue, 2013). This
likely influenced the inability of the model to identify any suitable habitat around Ni‘ihau,
where the average winter significant wave height equaled 1.78 m, almost double the mean
significant wave height of our model training data (0.91 m). Though mesophotic corals are
generally thought to be exempt from the growth limitations faced by shallow water corals in
regions of high wave energy, prolonged wave intensity has been shown to negatively affect
the colonization of upper mesophotic scleractinians, especially in sloping areas prone to
debris avalanches (Bridge & Guinotte, 2013; Kahng, Copus & Wagner, 2014). Continuation
of this work might include a more in-depth examination of the relationship of this coral
genus with the combined effects of slope of available substrate and exposure to wave energy.

We found no records ofMontipora presence when processing our O‘ahu dataset, which
probably contributed to the very low predicted mean probability ofMontipora occurrence
there (0.1%). We believe this is due in part to the sampling pattern across south O‘ahu;
we recorded 62.3% of all observations processed for this region at a depth of 75 m or
greater. Montipora prevalence is greater in the upper-to-middle mesophotic zone, and the
relative deepness of the O‘ahu dives likely influenced their nonappearance in this portion
of the dataset. We emphasize that the dearth ofMontipora observations around O‘ahu is an
artifact of the dataset we used to construct our model;Montipora corals have been observed
in mesophotic depths across O‘ahu (e.g., Fig. 4B, Rooney et al., 2010). The mean significant
wave height across the mesophotic zone was lower across the southern and western coasts
(1.50 m) than that observed across the northern and eastern coasts (2.37 m) of the island.
As at Ni‘ihau, we assume that this high northern and eastern average height, coupled with
the absence of Montipora presences in O‘ahu in the training dataset, greatly impacted our
model’s ability to detect areas of suitable habitat around the island. The results of our
Getis–Ord G∗i Hotspot Analysis corroborate the findings of Costa et al. (2015), who used
Maximum Entropy software to predict the highest occurrence probability of Leptoseris and
Montipora in the middle and mid-coastal ‘Au‘au Channel, respectively (Costa et al., 2015).

The factors influencing the distribution of coral species in shallow and mesophotic
habitats differ. One of the fundamental drivers of the occurrence and abundance of coral
species on shallow reefs in Hawaiian waters is wave stress (Dollar, 1982; Grigg, 1983;
Franklin, Jokiel & Donahue, 2013). Given the depth range of MCEs, wave stress is unlikely
to serve as a direct influence on coral occurrence but may provide secondary effects as
wave events lead to debris reaching MCEs (Kahng, Copus & Wagner, 2014). Furthermore,
the decoupled effects of environmental drivers on shallow and mesophotic zones extend
between the islands. In shallow reef communitiesMontipora species become relatively more
dominant from Hawaii Island to Ni‘ihau (Franklin, Jokiel & Donahue, 2013), but appear
to peak in occurrence in the mesophotic zone of Maui Nui. While strong environmental
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drivers influence the distributions of shallow corals, the occurrence patterns of mesophotic
corals may reflect a more stable environment with an increased influence of biotic factors
such as interspecific competition in a habitat zone with limited light and space resources
available.

CONCLUSIONS
We implemented a rare events corrected logistic regression to determine themost influential
environmental predictors ofMontipora and Leptoseris colonization in the mesophotic zone.
Habitat preference differences between these genera appear distinct and multi-faceted.
Montipora thrives in the middle mesophotic zone in areas sheltered from high intensity
winter swells, while Leptoseris tends to colonize steep, rugose, well-flushed areas in the
lower mesophotic zone. Improved understanding of the distribution of mesophotic corals
will enable resource managers to propose the construction of seafloor power cables and
other offshore infrastructure in areas less likely to contain coral communities. Results will
likewise facilitate efforts to protect these communities by supplementing scientific dive
planning and strategies for conservation, such as marine spatial planning.
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