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ABSTRACT
We developed a bio-inspired robot controller combining an artificial genome with an
agent-based control system. The genome encodes a gene regulatory network (GRN)
that is switched on by environmental cues and, following the rules of transcriptional
regulation, provides output signals to actuators. Whereas the genome represents the
full encoding of the transcriptional network, the agent-based system mimics the active
regulatory network and signal transduction system also present in naturally occurring
biological systems. Using such a design that separates the static from the conditionally
active part of the gene regulatory network contributes to a better general adaptive
behaviour. Here, we have explored the potential of our platform with respect to the
evolution of adaptive behaviour, such as preying when food becomes scarce, in a
complex and changing environment and show through simulations of swarm robots
in an A-life environment that evolution of collective behaviour likely can be attributed
to bio-inspired evolutionary processes acting at different levels, from the gene and the
genome to the individual robot and robot population.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies
Keywords Complex adaptation, Complex adaptive systems, Self-organizing systems, Artificial
life, Swarm robots, Emergent behaviour

INTRODUCTION
In biology, evolutionary systems of all kinds, such as gene regulatory networks, organisms,
populations, and even entire ecological communities can be regarded as complex systems
of many interacting components. Furthermore, these interacting components have not
evolved independently and in isolation, but in concert throughout different levels of
organization. Indeed, gene regulatory networks act in organisms, while organisms form
populations and in turn, the latter often form complex ecological communities interacting
with other organisms and populations. As a matter of fact, such nested architecture
involving different levels of organization can be observed in all biological systems and
makes the evolutionary process tick at multiple levels in parallel (Poli, 2001; Mazzocchi,
2010; Wilson, Vugt & O’Gorman, 2008; Koch, 2012). Natural selection and subsequent
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adaptation is highly dependent on the current environmental and evolutionary context
(Allison, 1956; Harper & Pfennig, 2007; Bijma, Muir & Arendonk, 2007; Lichtenstein &
Pruitt, 2015). Furthermore, adaptation to a complex environment or to a complex change in
environment requires time for interactions between individual entities to evolve gradually.
In addition, the more complex a system is, the more unpredictable the outcome of
newly introduced changes. Therefore, the complexity of adaptation is often difficult to
understandwithout prior knowledge of the environmental or evolutionary context. Usually,
complex adaptation requires more than one novel mutation to yield a functional advantage
(Lynch & Abegg, 2010) and even if one single ‘mutation’ could lead to a novel trait (for
instance in the case of genetically modified organisms where one gene can be introduced
to confer a novel phenotype), the novel trait still needs to exist and persist in a biological
context (Williamson, 1992; Prakash, 2001).

Another issue is the ‘cost of complexity’ (Gould, 1988; Orr, 2000; Wagner et al., 2008).
Based on Fisher’s geometric model (Fisher, 1930; Orr, 2005), the rate of adaptation
decreases quickly with the rise in complexity, because complexity increases the chance
of mutations having more pleiotropic effects on the phenotype (Orr, 2000; Lamb, 2000).
In addition, it has been suggested that adaptation is easier to be threatened by random
changes in organisms or systems with higher complexity (Orr, 2005). All in all, higher
complexity requires a finer balance between mutations and adaptive advantage, while
it decreases the tolerance for random trial and error (Welch & Waxman, 2003). For the
reasons discussed above, it can prove difficult for an evolutionary system to overcome the
‘cost of complexity’ and to achieve novel complex adaptation (Moore, 1955). However, as
we observe in the real world, most species can still efficiently deal with these difficulties
and develop enough complexity to adapt to ‘their’ environment during evolution (Welch &
Waxman, 2003). In our current research, we assume that considering evolution at different
levels and considering interactions between these multiple levels of organization (i.e., the
genome, the organism, the population, etc.), as found in real biological systems, might
be one way to help systems overcome problems associated with the ‘cost of complexity’
(see also Hogeweg, 2012).

To set up a computational framework to study multilevel evolutionary processes and
adaptation in complex systems, and to gain further insights into how adaptation in a
changing environment might evolve, we have developed a robot controller that combines
an artificial genome with an agent-based system that represents the active Gene Regulatory
Network(s) or GRN(s). The full regulatory network is encoded in the genome, consisting
of both regulatory and structural genes. Depending on the environmental signals or
cues, part of the encoded network is activated following the rules of transcriptional
regulation. The activated part, modelled by an agent-based system, is responsible for
sensing the environmental signals, transducing these signals through the network and
translating them into the proper behaviour. Whereas the genome represents the encoding
of the transcriptional network, the agents can be seen as the functional gene products
(i.e., proteins) of the encoded genes. This way, the agent-based system mimics the active
regulatory network and signal transduction system that is also present in naturally occurring
biological systems (Yao, Marchal & Van de Peer, 2014).
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The use of swarm robots has proved very efficient in many different applications, for
example in performing complex tasks in self-assembly (Rubenstein, Cornejo & Nagpal,
2014) self-organizing behaviour (Dorigo et al., 2004), path planning (Ulbrich, Rotter &
Rojas, 2016), human–swarm interaction (Nunnally et al., 2016), and cooperative operation
(Ducatelle, Caro & Gambardella, 2010; Khaluf, Mathews & Rammig, 2011). In all these
studies, swarm robots could achieve complex structures or developed complex behavioural
strategies using comparatively simple rules of interaction. Furthermore, in some of these
recent studies, swarm robots did not only solve complex tasks, but also unveiled some
interesting evolutionary patterns and adaptations. For instance, during simulation, co-
evolution has been observed between different robot populations, which eventually would
lead to improved adaptation (Nolfi & Floreano, 1998; O’Dowd, Studley & Winfield, 2014;
Ferrante et al., 2015).

In our implementation, each individual swarm robot is equipped with a multiple agent
controller representing an active GRN, rather than with an Artificial Neural Network
(ANN)—based system. In a classic ANN, the architecture of the controller usually allows
little interaction with its genetic encoding (the genome). Furthermore, in general, an ANN
evolves (is optimized) in response to a specific set of environmental settings and does not
easily adapt to changes and/or novel settings. Indeed, ANNs usually need to re-optimize
their complete controller network from scratch each time they are subjected to a novel
condition (Floreano & Keller, 2010; Le et al., 2013; Mnih et al., 2015). To overcome these
shortcomings, also others have previously been inspired to use GRNs as controller systems
for robots (e.g., Mattiussi & Floreano, 2007; Joachimczak & Wróbel, 2011; Joachimczak et
al., 2012). Using the principles of gene regulation and gene expression, these approaches
extend the evolvability of the robot controller, leading to more interesting and complex
robot behaviour patterns (Floreano & Keller, 2010; Erdei, Joachimczak & Wróbel, 2013;
Joachimczak & Wróbel, 2010). The agent-based GRN controller we developed is similar
to the one of Yu & Nagpal (2010). The biggest difference between both systems is that
in our system the agents are not only interacting with each other but also with the
‘genes’ (or genome) of each individual robot (Fig. 1). This way, the system is able to
continuously produce new agents and GRNs, while in the system of Yu & Nagpal (2010)
the agents are defined explicitly by the developer, rather than by ‘evolvable’ genes or
genomes. Furthermore, our system uses its genome to store GRNs whose performance was
optimized under a particular environmental condition for a sufficiently long time. When
subjected to a new environment, the previous condition-specific GRN might become
inactivated, but remains present in the genome. This ability to store ‘good behaviour’ and
to disconnect it from the novel rewiring that is essential under a new condition allows faster
re-adaptation if any of the previously observed environmental conditions is reencountered
(Yao, Marchal & Van de Peer, 2014).

In conclusion, we here want to investigate the potential of a novel computational
framework that combines a bio-inspired gene regulatory network with an agent-based
control system. Through simulations in an A-life environment we show that a swarm of
robots running on our bio-inspired controller can indeed evolve complex behaviour and
adaptation in a dynamically changing environment.
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Figure 1 Outline of our GRN based controller during runtime/simulation. The blue area represents the
genome with genes indicated as red circles and active (expressed) genes indicated in yellow. Yellow genes
connected by white arrows represent the currently active GRN, invoked by environmental inputs. This
GRN is translated into (represented by) an agent-based system (Agent-based representation of the GRN).
New agents can be introduced/invoked based on changing environmental cues while existing agents will
continue to exist or, on the contrary disappear, based on feedback from the system (evaluation of fitness,
i.e., energy level), achieved by the currently active GRN. Dark coloured agents (represented by small robot
figures) represent active agents, while grey agents represent agents that will be removed at subsequent
steps in the simulation. Genes (and GRNs) that are no longer active but reside in the system are denoted
by green circles. If a gene is translated into an agent, the ‘concentration’ of this agent, representing dosage,
depends on the expression level of the gene, which is determined by the rules encoded in the AG (see Sup-
plemental Information 1). In general, the higher the concentration value of an agent, the higher the influ-
ence of the agent on the final output. The concentration of the agent decays with time, mimicking protein
degradation. If the concentration of the agent drops below a pre-set minimal level (for instance because of
bad performance), the agent will be deleted (e.g., grey agents). The change in concentration of an agent is
determined by a default decay rate and its effect on the fitness of the robot.

METHODS
Rational
The main motivation for the particular design of our framework was to allow artificial
evolution at multiple levels thereby mimicking biological evolution more closely. In
biological systems, the actual phenotype is not only determined by the GRNs encoded
by the genome but also depends on the interacting environment, epigenetic effects,
chemical reactions, etc. In general, gene regulation is sensitive to environmental changes
and depends on the evolutionary context (Jaenicke & Böhm, 1998; Arnold et al., 2001).
Simulating such complex biological evolution with artificial genomes and GRNs is difficult
and usually limited by the underlying network structure and the way this is implemented
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(for instance on an ANN). To encode, represent andmaintain a complex evolvable network
requires considerable resources which requires (sometimes extreme) simplification of gene
regulation and gene regulation modelling. Our agent-based GRN aims to allow adaptation
at different levels (so not only at the GRN level) while keeping the system structure as
simple as possible. As a result, in our approach, for every gene, we only specified the
models about how the particular gene product (agent) interacts with genes, gene products
and environmental conditions. Based on a limited knowledge base of interaction rules
(which are encoded in the genome), agents are used to maximize the potential of the GRN
in a variable evolutionary context.

The experiments are designed such as to test the advantage of integrating evolutionary
context at multiple levels (the genome, GRN, organisms, population, . . . ). By comparing
with an ANN network based framework for which the evolutionary context at the lower
level is limited (the ANN controller has a much simpler implementation of interaction, i.e.,
there is no interaction between agents such as in theGRN controller, Fig. 1), we can examine
the effect of the broader evolutionary context implemented in our current approach, and
in particular on emergent behavioural patterns. Through our experimental setup, we hope
to demonstrate that adding evolutionary context at the lower level (the genome, the GRN)
can accelerate the evolution of complex behaviour at the higher level (population level)
while also improving overall adaption in a changing environment (Walker et al., 2004;
Ciliberti, Martin & Wagner, 2007; Signor, Arbeitman & Nuzhdin, 2016).

A GRN based controller
Our GRN-based controller actually consists of two separate layers: a bio-inspired artificial
genome (AG), based on the model of Reil (1999), and an agent-based layer. For the
genome, in short, we distinguish between signalling, regulatory and structural genes, which
all have the same basic structure but different functionalities (see The Artificial Genome,
Supplemental Information 1). The AG thus encodes the full regulatory network or entire
collection of genes and all its possible interactions, but which specific GRN (part of the AG)
is active at a certain time depends on the environmental cues and thus is context-dependent
(see Fig. 1). The AG, which consists of 10 chromosomes of 10,000 randomly generated
characters, changes over time by evolutionary forces such as mutations and duplications
(see Mutational Operators Acting on the Genome, Supplemental Information 1).

The second layer consists of an agent-based system that represents the context-
dependent instantiation of the GRN (Fig. 1). Three types of agents have been defined,
each corresponding to a specific gene type. Agents can be seen as the translation product
of genes. When a new robot is initialised, based on the current sensor inputs, signalling
genes will be activated. These genes will produce a number of signalling agents that will
produce a signal value. Next, the signalling agents will search the genome to activate those
genes for which the signal value matches the binding site. This will lead to the activation
of regulatory genes, again via the translation to agents, which are initialized with certain
concentration values, mimicking dosage values of proteins or enzymes. Binding of a target
gene by a regulator can have different outcomes and will either activate expression of the
target gene or block expression of the target gene. If the regulatory gene binds to a structural
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gene (end product), structural agents will send output values to the actuators, leading to
certain behaviour of the (simulated) robot, increasing or decreasing its fitness (Fig. 1). It
should be noted that usually, each actuator receives many parameter values from different
structural agents and will average these into one final value that will then be used as the
control parameter (output value) for this particular actuator. We refer to the Supplemental
Information 1 (The Agent-Based System) for more information.

In summary, in our approach, the different components of a GRN, such as regulatory
and structural genes, active in a single (simulated) robot, are simulated by different agents.
Contrary to fixed nodes in a neural network, these agents can dynamically alter their status
and functionality in response to changes in the environment and the feedback they receive
based on performance (Fig. 1).

Simulation framework
We have used artificial life simulation (Sigmund & Young, 1995; Mangel, 1998; Lenski et
al., 2003) to see how our GRN-based simulated swarm robots perform in a changing
environment. As previously described, every simulated robot has different functionalities,
each of which comes with a different energy cost and energy consumption style
(see Robot Functionalities, Supplemental Information 1). The total energy consumption
for one robot during one time step depends on some basic energy consumption plus
some energy consumption for performing certain functionalities. The robots live in a
two-dimensional 90 by 90 matrix or grid in which a number of energy (food) sources are
randomly distributed. Several types of food sources exist that differ from each other in the
minimal amount of energy required to access the food source. If a robot does not have
enough energy to cover its basic living energy consumption, it will be regarded as dead and
removed from the simulation.

During every time step, every robot will sense the number of surrounding robots
and food sources. This information will be returned to the controller of the robot as
environmental input (Fig. 1). Except for such external input, the robot will also keep track
of its own energy level and energy consumption and of certain other actions such as the
number of successful attacks, defences, replications, and so on as internal input. Both
external and internal inputs will be regarded as sensor inputs by the controller. Selection
and fitness of the robots are all based on energy. The energy consumption of the robot is
based on its behaviour. For example, movement, replication, attack and defence all have
different costs (see Robot Functionalities, Supplemental Information 1).

In our simulations, we have used both so-called GRN robots (running on the
newly developed GRN controller) and ANN robots. For the ANN robots, we also have
implemented reinforcement learning on each edge of the ANN to optimize the structure
of the ANN dynamically (Lenski et al., 2003; Pfeifer, Lungarella & Iida, 2007; Conforth &
Meng, 2008) but we only allow rewiring of the ANN (e.g., setting edge values at zero) based
on the feedback of the robot performance. More details of the ANN robots can be found
in Supplemental Information 1 (Implementation of the ANN Controller).

During runtime, the robot population will be regarded as gone extinct (or better, not
being able to survive) when the population size becomes smaller than 100 (robots). Indeed,
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we observed that the robot population will quickly die off when the population size is close
to 100 and food has become scarce. Although the energy level in the robot population is an
indicator of the fitness of the population, there is no explicit fitness function. The energy
level of each individual robot is the only critical factor for its survival or reproduction but is
not directly responsible for any particular trait to evolve or for showing some behavioural
pattern. Indeed, robots can have various strategies to obtain or save energy during the
simulation, so the energy level of robots is always a combination of multiple strategies and
responses to various environmental conditions.

A similar ecosystem simulation scenario also has been used in previous research, for
instance for investigating co-evolution between predators and prey (Nolfi & Floreano,
1998; Erdei, Joachimczak & Wróbel, 2013). However, there are important differences with
our approach. For instance, in our simulation, the environment changes continuously as a
consequence of the robots’ behaviour. Indeed, the environment dynamically ‘interacts’ with
the robots’ behaviour during the entire simulation and adaptations of individual robots
can differ depending on the specific context (i.e., number of food sources and number
of other robots in close vicinity of the robot). Furthermore, we force the environment to
change more drastically by adding fluctuations (every 100 time steps = one season) in the
environment mimicking artificial seasons and climate changes in Nature. For instance,
during simulation, at certain times (e.g., mimicking harsher winter conditions), all robots
have to consume extra energy for movement and survival. The values of these extra energy
costs differ at different times during the simulation (e.g., fall and winter are not the same).
Every food source is capable to replicate itself (grow) with a certain rate at every time step.
The growth rate depends on the surrounding food density (the higher the density, the lower
the replication rate). As a result, adaptation of the robots actually comes down to reaching
and maintaining a dynamic equilibrium between finding and consuming food and energy
balance. Reaching such equilibria is a prerequisite in most, if not all evolutionary scenarios
(Rammel, Stagl & Wilfing, 2007). Trying to adapt to a changing environment means that
it is difficult to define an explicit fitness function. Every robot needs to adjust its strategy
based on the current situation. For example, in our simulations, the energy level of a robot
is the key to robot survival and replication but this does not necessarily mean that robots
with higher energy levels are the most adaptive. Having more energy to consume more
food may undermine new food growth in an environment where food is already scarce.
The whole population will face extinction when all food sources are being consumed
and therefore, the robots need to evolve more complex behaviour in order to survive for
extended periods.

RESULTS
We have run 100 different simulations, of which 50 with ANN robots and 50 with GRN
robots. During our simulations, we specifically analysed the adaptive process regarding the
collective behaviour of organisms, based on the interaction between individuals. In our
current simulation scenario, where food has to be located, eaten, and thus is becoming
scarcer during runtime, we particularly have focused on two kinds of behaviour, namely
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prey behaviour and a form of cooperation behaviour, where individual robots aggregate
to join forces (Sigmund & Young, 1995; Mangel, 1998). Prey behaviour represents the
competitive relationship between robots (Nolfi & Floreano, 1998), while the aggregation
behaviour represents the symbiotic relationships between individual robots (Yao, Marchal
& Van de Peer, 2016). For instance, aggregation, by which energy is shared, can be
beneficial for defence against preying. When it comes to preying behaviour, it should
be noted that before the predator can actually prey, it needs to perform an attack. An
attack action does not always result in preying: if predators are comparatively weaker, an
attack action will only cost more energy and will not occur (see Robot Functionalities,
Supplemental Information 1).

When we compared the behaviour of GRN and ANN robots, we found some remarkable
differences. First, both prey and aggregation/cooperation behaviour occursmore frequently
in the ANN robots than in the GRN robots (Fig. 2). However, more or less prey and
aggregation behaviour do not necessarily indicate an ‘evolved’ adaptive behaviour. During
simulation, GRN robots explore the grid more efficiently than the ANN robots, which
reduces the possibility of ‘random’ attacks or aggregation, simply because the robots are
more evenly spread over the grid (see further). Maybe a bit unexpectedly, in all simulations
(GRN and ANN), cooperation behaviour (in the form of aggregation) does not look very
pronounced. We assume that this can be explained by the fact that aggregation requires
extra cooperation between multiple robots and such cooperation needs longer to evolve
than other kinds of behaviours. This will be investigated in future simulations with longer
run times. Furthermore, in our current scenario and implementation, the aggregated
robotic organism has all the single robots’ controllers running and the organism is ‘steered’
by the average of all controllers’ output. Moreover, a single robot’s adaptation could be
detrimental for the cooperation. Indeed, individual members have evolved their own
strategies, but after aggregating, all members of the robotic organism have to use the same
strategy. However, a compromise inferred from all individual strategies can be deleterious
to most members. To really to be able to evolve interesting aggregation patterns in our
evolutionary scenarios and simulations, apart from longer running times, we probably
also need to simplify integration and cooperation in the robotic organism. This could for
instance be achieved by giving the organism a common controller instead of neutralizing
all controller’s outputs.

Prey behaviour as an adaptation to food scarcity
For prey behaviour the situation is clearly different. In the GRN robot simulations, but
not in the ANN robot simulations, we often observe that the occurrence of prey behaviour
increases in the population during the last stages of the simulation, when food becomes
scarce (see Figs. 2 and 3). For the ANN robot simulations, prey frequencies are generally
higher than in GRN robot populations, but do not seem to be a specific adaptation when
food becomes scarcer (not shown). To see whether the increased prey behaviour in GRN
robots are indeed a specific adaptation when food becomes scarce, we estimated the
Pearson correlation between the prey frequency and the current food number recorded
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Figure 2 Comparison of the average frequency of successful prey and aggregation actions in GRN and
ANN simulations, respectively (evaluated every ten time steps). The average frequency is calculated as
the (absolute value/population size)*100. (A) shows the result of GRN robots in the simulation. (B) shows
the typical result for ANN robots in the simulation (evaluations have been done every 10 time steps). See
text for details.

every 10 steps during our simulation. Details on the statistical validation can be found in
Supplemental Information 1 (Statistical evidence of preying as specific adaptation).

The increase of preying behaviour, as seen in a large number of our simulations
(see Fig. 2 and more examples in Fig. 3), and which is significantly higher than observed
in ANN simulations, likely represents a specific adaptation of the population when food
becomes scarce. Prey behaviour reduces the population size but increases the energy of
the remaining robots, so at least part of the population can survive longer. On the other
hand, prey behaviour also comes with risk and costs energy to every individual robot in
the population (defence and attacks both cost extra energy). However, for such complex
adaptive behaviour to emerge, a number of conditions need to be fulfilled. Only the
combination of a limited number of food sources and large enough population sizes make
prey action a trait for selection and therefore an advantageous adaptation. If food sources
maintain to be abundant to the population, simply searching for food is obviously an easier
and more efficient option than preying. Therefore, we do not observe the combination of
prey and flocking together behaviour evolving at the early stages of our simulations when
food resources are still abundant. Once preying has evolved, it usually continues to be a
useful strategy for the population to survive, as shown in Fig. 4.

GRN robots have longer life spans
It should be noted that, in general, even without showing prey behaviour, GRN robots
survive much longer with fewer food sources than the ANN robots. While on average,
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Figure 3 Additional examples of emerging prey behaviour adaptation in the GRN robot simulations.
For most of the runs here shown, an increase in the number of preying actions can be observed at the end
of the simulation (at time step 3,000). Shortly after however, the population becomes too small and dies
(<100 individuals).

the ANN robot population dies when no more than 120 food sources are available, the
GRN robot population can survive until the number of food sources has been reduced
to, on average, 80 or less (Fig. 5). The fact that the GRN robots can, on average, survive
much longer, is, most likely due to the fact that they are more efficient in finding the food
sources (exploring the grid), also when these become rarer. Furthermore, GRN robots have
higher overall fitness (evaluated based on the energy level) than the ANN robots at similar
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https://peerj.com
http://dx.doi.org/10.7717/peerj.2812


0 100 200 300 400 500 600

0
10

20
30

40
50

60
70

Evaluation step

A
ve

ra
ge

 fr
eq

ue
nc

y 
of

 p
re

yi
ng

 a
ct

io
ns

Figure 4 Emerging prey behaviour in the GRN robot simulations.However, unlike as in the experi-
ments shown in Figs. 2 and 3, food is restored (at time step 2,600) before the population dies out. As can
be observed, once evolved, prey behaviour continues to be a strategy used by (part of) the population to
survive.
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Figure 5 Comparison of the number of food sources left before extinction of the population (sample
estimates: mean of GRN= 78.38889, mean of ANN= 119.52174. Significantly different based on two
sample t -test: p-value <2.2e−16). The population is supposed to be extinct when the number of robots
drops below 100.

times in the simulation, supporting their better overall adaptation (Yao, Marchal & Van
de Peer, 2014).

When food is abundant, both GRN and ANN robots tend to have more neighbours
(Fig. 6). When food is abundant, the robot’s energy level is usually high and this increases
the reproduction rates of the robots (reproduction is one of the functionalities of the robots,
when their energy levels are high enough). Offspring will be created in the same cells as their
parents, which will initially increase the number of neighbours. This explains the higher
number of neighbouring robots early in the simulation, for both GRN and ANN robots.

Yao et al. (2016), PeerJ, DOI 10.7717/peerj.2812 11/20
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Figure 6 The average number of neighbouring robots (the sum of all neighbouring robots/the number
of robots*100) as a function of the number of food sources was used to assess movement of (A) ANN and
(B) GRN robots.

When the food becomes scarcer, some robots will stop moving to save energy, while other
robots will tend to flock together for improving their prey conditions or for competing
for the same food sources. Although both kinds of robots are following basically the same
strategies, they will differ in the detailed behaviour. First, the GRN robots spread more
efficiently over the grid (see above) and GRN robots have, in general fewer neighbours
most of the time (Fig. 6). More efficient dispersion corresponds to wider exploration area
and more efficient searching and thus leads to better food searching abilities. Second, when
food becomes scarce, GRN robots can start to see having more neighbours (in ANN robots,
the number of neighbouring robots throughout the simulation is more constant and the
increase in the number of neighbours when food is scarce is much less pronounced).
Interestingly, increasing numbers of neighbours correlates with increasing prey behaviour
of GRN robots, but only when food is scarce (see above). When food is abundant, such
correlation is not observed, which implies adaptation.

Figure 7 shows a comparison, representative for the majority of simulations, of the
distribution of GRN robots and ANN robots for one particular simulation and at different
time steps. The matrix (grid) corresponds to the simulated environment. Each cell of the
map represents one basic space that can be occupied by a robot. All cells are marked in
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Figure 7 Distribution of GRN (left) and ANN (right) robots during a particular simulation (A) time
step 500 (current number of food sources: GRN 339, ANN 461); (B) time step 1,500 (current number
of food sources: GRN 208, ANN 267). For the GRN result (left diagram), we can observe ‘colonies’ to be
formed; (C) time step 2,500 (current number of food sources: GRN 97, ANN 112). Cells in dark blue rep-
resent cells where no robots are present in surrounding cells Cells in light blue have 1 surrounding robot,
cells in green have 2, cells in orange have 3, and cells in yellow (max) have 4 surrounding robots (see scale
to the right).

colours dependent on the number of surrounding robots. Cells in dark blue represent
cells where no robots are present in surrounding cells, while cells in red represent cells
with larg(er) numbers of robots surrounding them. As can be seen, at later stages of the
simulation, specific patterns seem to emerge for the GRN robot simulations, while this is
much less the case for the ANN robots. However, again it is important to note that, for the
GRN robots, the specific robot distribution patterns as shown in Fig. 7, only emerges when
food become scarce.

DISCUSSION
The main aim of our study was not so much to compare the performance of GRN robots
and ANN robots (the ANN robots should be seen more as a point of reference), but rather
to demonstrate the potential of using GRN robot controllers in studies simulating artificial
evolution. However, when comparing our GRN robots with the ANN robots, we observed
that the GRN robots survive (much) longer with fewer food sources. There are several
reasons for this. First, GRN robots explore the grid more efficiently (Fig. 6; Yao, Marchal
& Van de Peer, 2014), while they also seem to evolve alternative strategies, such as prey
behaviour (shown in the current study) as specific adaptations to food scarcity. While prey
behaviour does occur in the ANN robot population, unlike of what happens in the GRN
population it does not seem to be a specific adaptation due to food sources becoming
exhausted (see above).
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In the simulated environment, there is a basic equilibrium that robots need to reach
for survival. In our case, there is a trade-off between availability of food sources and food
consumption. Food consumption depends on food searching efficiency, robot population
size, and so on. During simulation, new food sources arise (comparable to plant growth,
for instance), which is based on the number of the current food sources and is inversely
proportional to food consumption and the robot population size. If robots consume the
food too fast, food sources will get exhausted rapidly, which will lead to extinction of
all robots (the population). On the other hand, if a robot cannot find food fast enough,
that particular robot will become weaker and will eventually die of starvation. Therefore,
some sort of equilibrium needs to be reached for a healthy population to survive for a
considerable amount of time. Furthermore, in our scenario, efficient searching behaviour
can help robots to find more food but it also may lead to overly-fast food consumption.
In general, searching behaviour will be optimized during the simulation since it directly
increases the fitness, as measured by energy level, of individual robots in the short term.
On the other hand, to slow down the total food consumption of the whole population,
robots can decide to prey other robots to gain energy instead of searching for food, if that
would turn out to be the better strategy on the longer term. However, prey behaviour
requires an extra energy cost and it requires both the predator and target robot to be in
the same cell. Compared with searching for static food sources, finding moving robots
and attacking them to gain additional energy will be riskier (i.e., costs more energy) when
food sources are abundant. Also, robots can choose to aggregate to share energy and better
defend against possible attacks. However, aggregation will also come with a certain cost.
Therefore, as already discussed by Smith & Price (1973) organisms need to develop an
evolutionarily strategy that is based on their surrounding environment, with equilibrium
to change dynamically after environmental changes. As a result, selection in our artificial
evolutionary experiments will be more realistic and challenging (Bak & Sneppen, 1993;
Spencer & Feldman, 2005; White et al., 2006).

For GRN robots, both the genes (through mutations and duplication) and the GRNs
(through the interaction of individual agents) are evolving in the individual robots.
As a consequence of their specific structure and implementation, as already stated,
GRN controllers will evolve to reach some sort of equilibrium, rather than to evolve
or optimize on one single solution. In other words, the GRNs in the robots have a number
of dynamic statuses and the transitions between these statuses are based on the interaction
of agents, genes and environmental conditions (Fig. 1). The GRN robots directly pass on
the environmental information to the particular agents and through feedback and the
interaction of these agents at the GRN level, the agents and GRN will remain active as
long as performance is good. This way, a self-organized GRN will emerge in the robot.
The formation of the GRN itself is a process to reach equilibrium between agents and
each individual agent could be seen as part of the task solution. The key goal of the GRN
is therefore not to find the optimal solution for a particular environment or task but to
reach a dynamic equilibrium in a continuously changing environment. Moreover, when
the equilibrium has changed because of a different environmental context, the GRN robots
only need to activate and re-organize the corresponding agents instead of evolving all
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connections again, as would be the case in an ANN. In summary, the agents in our system
are dynamically activated or replaced until the GRN reaches a stable status (adaptive status
for the robot). When new environmental conditions occur, this will lead to the activation
of new agents in the GRN and these new agents may change the current equilibrium. At
that time, we will observe a corresponding change in robot behaviour. Later, the agents
(both new agents and the already existing agents) will tend to cooperate (exist together)
and they will reach equilibrium again. Therefore, behaviour will fluctuate to adapt to
changing conditions. Such fluctuations can happen many times until the GRNs in the
robots reach a new equilibrium or, alternatively, the robot dies (when not adapted).
Therefore, re-balancing processes are inherent to the GRN robot framework. If agents
become irrelevant in the current situation, they will be quickly repressed.

For the ANN robots, the whole artificial neural network directly interacts with the
environment. The ANN robot’s behaviour can change as well through learning programs.
Through evolving the weight parameters of the network that is encoded by the genes,
ANN robots may ultimately efficiently reach a good network model for a certain task
(Dürr, Mattiussi & Floreano, 2006). However, balancing between multiple tasks (such as
preying, defending, replicating) is still hard for an ANN, especially in a continuously
changing context and environment, as we have implemented here. In ANN robots, every
new environmental change will directly influence selection on the whole network and the
selection will only have two possible outcomes: either the rewired network fits the new
environment or the rewired network does not fit the new environment.

CONCLUSION
Adaptation in the natural environment usually requires cooperation of several traits rather
than just one. To allow the evolution of complex adaptation, we adopted a multi-level
evolutionary model in the GRN robots. We believe that, using a multiple level evolutionary
framework the system can allow different sub-modules (i.e., agents in GRN, or robots in
the population) to independently self-organize at a so-called lower level (adaptation), while
higher-level evolution is achieved through the interaction betweenmodules across different
levels. This will directly encourage the formation of modularity and such self-organized
modularity plays a significant role in improving evolvability (Wagner & Altenberg, 1996;
Lipson, Pollack & Suh, 2002). Here, we have looked into more detail into the emergence
of complex adaptation and show that, using a recently developed GRN robot controller
based on an artificial genome encoding agents that represent regulatory or structural
genes, complex adaptive behaviour can evolve as a response to a changing environment.
Indeed, we observed that, in an evolutionary scenario where food becomes scarce, the
simulated robot population often evolves more efficient preying behaviour. Of course,
this is something that one could expect to see evolve when food becomes scarce and
examples from the real biological world are many—think of the many wars fought
for food and other much needed resources throughout history. Interestingly, similar
behaviour, which has evolved ‘naturally’ and as an emergent adaptation to a changed
environment, can be observed using a swarm of simulated digital life organisms.
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