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ABSTRACT

The non-feeding postlarva (puerulus) of spiny lobsters actively swims from the open
ocean to the coastal habitats where it settles and molts to the first-stage juvenile (JI).
Because pueruli use much of their energy reserves swimming and preparing for the
post-settlement molt, the survival of JIs presumably depends on resuming feeding
as soon as possible. To test this hypothesis, the resistance to starvation of JIs of the
Caribbean spiny lobster, Panulirus argus, was evaluated by measuring their point-
of-no-return (PNR, minimum time of initial starvation preventing recovery after
later feeding) and point-of-reserve-saturation (PRS, minimum time of initial feeding
allowing for food-independent development through the rest of the molting cycle) in
a warm and a cold season. Each experiment consisted of eight groups: a continuously
fed control (FC) group, a continuously starved control (SC) group, and six groups
subjected to differential periods of either initial starvation and subsequent feeding (PNR
experiments) or initial feeding and subsequent starvation (PSR experiments). No JIs
molted under continuous absence of food (SC). In both PNR experiments (temperature
in warm season: 29.79 =+ 0.07 °C, mean =+ 95% CI; in cold season: 25.63 & 0.12 °C)
mortality increased sharply after 9 d of initial starvation and intermolt periods increased
with period of initial starvation, but were longer in the cold season. The PNRs, was
longer in the warm season (12.1 £ 1.2 d, mean =+ 95% CI) than in the cold season
(9.5%2.1d). In PRS experiments (temperature in warm season: 29.54 = 0.07 °C; in cold
Submitted 20 September 2016 season: 26.20 = 0.12 °C), JIs that molted did so near the end of the feeding period; all JIs
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having fed previously. The PRSsy did not differ between the cold (13.1 & 0.7 d) and
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INTRODUCTION

The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) is widely distributed in
the wider Caribbean region, where it constitutes one of the most important fishing
resources (Holthuis, 1991; Phillips et al., 2013). In the warm Caribbean waters, P. argus
breeds throughout most of the year, with a major peak during the spring and a secondary
peak in the fall (Briones et al., 1997). The larval phase consists of 10 flattened planktonic
stages, the phyllosomata (Goldstein et al., 2008). Larval development takes place in oceanic
waters and lasts 5-9 months, conferring an enormous dispersion potential. The final
larval stage undergoes a drastic metamorphosis into the postlarval phase, which consists
of a single nektonic stage, the puerulus, which is more similar in shape to an adult
lobster but is completely transparent (Phillips et al., 2006). Unlike phyllosomata, which
are planktotrophic, pueruli do not feed, i.e., they represent a secondary lecithotrophic
phase that depends on its own energy reserves (Kittaka, 1994; Lemmens, 1994; McWilliam
& Phillips, 1997; Cox, Jeffs ¢& Davies, 2008). Pueruli actively swim towards the shore and
settle in shallow coastal vegetated habitats, such as seagrass and macroalgal beds (Butler
& Herrnkind, 2000; Briones-Fourzdn ¢ Lozano-Alvarez, 2001). A few days after settling,
pueruli molt into the first juvenile stage, also known as post-puerulus (e.g., Limbourn et
al., 2008), which resumes feeding.

Under laboratory conditions, the total duration of the non-feeding puerulus phase of
P. argus has been 16 to 26 d at 25 °C and 11 to 18 d at 27 °C (Goldstein et al., 2008).
During this period most of the puerulus energy is allocated to swimming and preparing
for the post-settlement molt into the first juvenile stage (JI), which involves further
morphological changes (Lewis, Moore ¢ Babis, 1952; Goldstein et al., 2008; Ventura et al.,
2015). Swimming for distances of up to tens of kilometers to the settlement site can
severely deplete the energy stores of the puerulus, potentially compromising its ability
to molt into the JI (Jeffs, Willmott ¢~ Wells, 1999; Jeffs, Chiswell ¢ Booth, 2001). Moreover,
resumption of feeding by the JI may depend on local food availability and predation risk
(Lozano-Alvarez, 1996; Weiss, Lozano-Alvarez & Briones-Fourzdn, 2008). If the JI cannot
restore sufficient energy reserves quickly enough, it could starve to death (Fitzgibbon, Jeffs
¢ Battaglene, 2014). Therefore, it is important to determine the resistance to starvation
(sensu Sulkin, 1978) of JIs of P. argus. This information, in addition to increasing knowledge
regarding the biology of the early benthic stages of this species, is important for its potential
in aquaculture and for the generation of predictive models of local lobster production based
on levels of puerulus settlement (Phillips et al., 2000).

In the present study, resistance to starvation of JIs of P. argus was experimentally
determined via two physiological indices, the point-of-no-return (PNR) and the point-of-
reserve-saturation (PRS). The PNR is the duration of initial food deprivation that will cause
irreversible damage, i.e., that will not allow recovery even after later re-feeding (Blaxter
¢ Hempel, 1963; Anger ¢» Dawirs, 1981); the PRS is the minimum time of initial feeding
after which a later food-independent development to the next stage is possible (Anger,
1987; Anger, 1995). To our knowledge, the PRS has not been determined for JIs of any
spiny lobster species, and the only one for which the PNR of JIs has been determined is P.
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cygnus (Limbourn et al., 2008). In the present study, the PNR was determined by subjecting
JIs of P. argus to a range of initial starvation periods shortly after molting, followed by
continuous feeding. The PRS was determined by feeding JIs initially for diverse periods
before food was permanently withheld. Each index was estimated during a warm season
(summer-autumn) and a cold season (winter-spring) because the metabolic and growth
rates of crustaceans in general (e.g., Anger, 2001), and of P. argus in particular (Perera et
al., 2007), increase with temperature, potentially affecting the PNR and PRS (Anger et al.,
1981; Paschke et al., 2004; Bas, Spivak & Anger, 2008; Gebauer, Pashke ¢ Anger, 2010).

MATERIALS AND METHODS

Given the long larval duration and extremely high rates of mortality of phyllosomata
under laboratory conditions (Goldstein et al., 2008), our study was conducted using wild
postlarvae as in Limbourn et al. (2008). Pueruli of P. argus were obtained from a set
of 12 artificial seaweed GuSi collectors (Gutiérrez-Carbonell, Simonin-Diaz ¢» Briones-
Fourzin, 1992) permanently deployed in the reef lagoons of Puerto Morelos (20°52'07"N,
86°52'04"W) and Bahia de la Ascensién (19°49'50”N, 87°27'09”"W), Mexico. These
collectors are only checked once a month because they are used for long-term monitoring
of monthly pueruli settlement. Although monthly settlement in collectors can vary by an
order of magnitude within a year, the average catch is 16 individuals per collector per
month in Puerto Morelos, and four individuals per collector per month in Bahia de la
Ascensién (Briones-Fourzdn, Candela & Lozano-Alvarez, 2008). Therefore, to increase the
number of pueruli, a large mat (1 m x 8 m) of the same artificial seaweed was moored
off a dock at Puerto Morelos and checked for pueruli every morning throughout the dark
phase of the moon, when settlement levels are typically higher (Briones-Fourzin, 1994).
Within 1 h of collection, the pueruli were transported in aerated seawater to the laboratory
where the experiments were conducted. The necessary permits for pueruli collection were
obtained from Comisién Nacional de Acuacultura y Pesca (DGOPA.06695.190612.1737).

The pueruli were individually placed in small covered cylindrical plastic baskets (0.5 1)
to allow free water exchange. Each basket was lined with black nylon mesh to prevent
escape of the puerulus and to reduce the light level. The baskets were partially submerged
and supported by ethylene vinyl acetate (“foamy”) floats to provide buoyancy, and were
distributed among three tanks (2 m in diameter) with a water level of 0.9 m (approximately
2,800 I each), with 67 baskets allotted to each treatment in each tank. The tanks received
seawater from an open-flow system. The inflow water was pumped from the Puerto
Morelos reef lagoon and passed through a mechanical filter and an ozone chamber (ozone
injected at a rate of 0.98 mg/l) to an elevated tank (5,000 L; residence time, 0.3 h), and then
to an open reservoir tank (6,300 I; residence time, 3.5 h). Then, the water was pumped
through a sand filter (S-244T; Hayward high rate sand filter) to remove suspended particles
before its distribution to the experimental tanks. The outflowing water was passed again
through an ozone chamber. Water temperature in the tanks was recorded twice a day with
an YSI Environmental 556 multi-probe system.

Because each experiment required 160 pueruli (see below) but the number of pueruli
that could be collected during any given season (warm or cold) was limited, it was not
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possible to conduct more than one experiment per season. Therefore, the PNR experiments
were conducted in June—October 2012 (warm season) and January—April 2013 (cold
season), and the PRS experiments were conducted in January—April 2014 (cold season)
and July-November 2014 (warm season). For each experiment, 160 pueruli were divided
into eight groups of 20 individuals each. All individuals were checked twice daily, in the
morning and evening. When a puerulus molted into a JI, the exuvia was removed. One
group of recently molted JIs was continuously fed (fed control, FC) until all individuals
molted into second-stage juveniles (JIIs). Another group remained unfed until all the
individuals succumbed (starved control, SC). In the PNR experiments, the six remaining
groups of recently molted JIs were subjected to different treatments (periods of starvation
in multiples of 3 d) and then fed continuously. Thus, one group was starved for 3 d and
then fed (treatment S3), another group was starved for 6 d and then fed (treatment S6), etc.
(up to 18 d of initial starvation) (Fig. 1A). In the PRS experiment, the six remaining groups
of recently molted JIs were also subjected to different treatments, consisting of feeding
periods (also in multiples of 3 d) and then starved. Thus, one group was fed for 3 d and
then starved (treatment F3), another group was fed for 6 d and then starved (treatment
F6), etc. (up to 18 d of initial feeding) (Fig. 1B). Food, when provided, consisted of a piece
of mussel meat (Perna canaliculus) changed daily. Mussels are a good food source for early
juveniles of Panulirus in laboratory conditions, at least during the first four weeks after
the molt to JI (e.g., P. cygnus: Glencross et al., 2001; P. ornatus: Smith, Williams & Irvin,
2005; P. interruptus: Diaz-Iglesias et al., 2011). Three-day periods were used to optimize
the use of experimental individuals (which are difficult to obtain in large numbers) given
that, in the laboratory, the average intermolt period of well-fed JIs of P. argus varied
between 17 d and 31 d depending on water temperature (Lellis ¢ Russell, 1990), whereas
the maximal starvation time for JIs of P. cygnus from which recovery was observed was 22
d (Limbourn et al., 2008). Therefore, JIs of P. argus were expected to endure relatively long
starvation periods.

For each individual, the first experimental day was one day after molting to JI (Limbourn
et al., 2008). The influence of the initial starvation periods (in the PNR experiments) or the
initial feeding periods (in the PRS experiments) was measured as percent mortality and
the average duration of the JI stage of individuals that molted to JII (intermolt period). For
the PNR and PRS experiments, duration of stage JI in days (logarithmically transformed
to increase homogeneity of variance) was separately subjected to a factorial ANOVA with
season and treatment as fixed factors. Starvation tolerance was quantified as the median
point-of-no-return (PNRs() and point-of-reserve-saturation (PRSsg). PNRs is the time
when 50% of initially starved JIs lost the capability to recover, even after subsequent
feeding, and died without molting to JII; PRSs is the time when 50% of initially fed JIs
attained the capability to develop through the rest of the molting cycle using internally
stored energy reserves (Anger ¢ Dawirs, 1981). PNRsy and PRSs were estimated by fitting
sigmoidal dose—response curves of cumulative mortality to the time of initial starvation or
feeding, respectively (Paschke et al., 2004; Gutow et al., 2007; Bas, Spivak & Anger, 2008).
Each index was compared between seasons (warm versus cold).
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Figure 1 Experimental Design of PNR and PRS. Design of (A) point-of-no-return (PNR; initial starva-
tion, followed by feeding) and (B) point-of-reserve-saturation (PRS; initial feeding, followed by starva-
tion) experiments. FC, continuously fed control; SC, continuously starved control; S3-S18, no. of days of
starvation, followed by continuous feeding; F3—F18, no. of days of feeding, followed by continuous starva-
tion. Initial number of Panulirus argus pueruli per treatment, FC and SC groups, n = 20.

RESULTS

Throughout the text, results are reported as mean £ 95% CI unless otherwise stated.
Statistical results were considered as significant at p < 0.05.

Point-of-no-return (PNR)

In the PNR experiments, water temperature differed significantly between the warm
(29.79 £ 0.07 °C) and cold seasons (25.63 =£ 0.12 °C) (176 = 28.65, p < 0.001). The
duration of stage JI in continuously fed individuals (i.e., the FC) was longer in the
cold season (24.5 £ 3.6 d, n =17) than in the warm season (18.2 & 1.3 d, n =20)
(t35 = 3.44, p < 0.001). In general, the duration of stage JI was significantly affected by
season (F; 143 = 68.04, p < 0.001) and treatment (F5 143 =22.32, p < 0.001) but not by the
interaction term (Fs 143 = 0.37, p=10.87); i.e., it increased with the duration of the initial
period of starvation in both seasons but was longer for each period in the cold season
(Fig. 2). Overall, mortality of JIs increased with number of initial days of starvation, but
tended to be higher in a few treatments of the cold season experiment (FC, S3, S6, S12)
than in the same treatments of the warm season experiment. The PNR5y was 12.1 &£ 1.2
d in the warm season and 9.5 & 2.1 d in the cold season (Fig. 3), a significant difference
(Fi12 =7.924, p=0.015).

Point-of-reserve-saturation (PRS5,)
In the PRS experiments, water temperature differed significantly between the cold season
(26.20 £ 0.12 °C) and the warm season (29.54 £ 0.07 °C) (t,35 = 24.23, p < 0.001). The
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Figure 2 Intermolt period in PNR experiments. Intermolt period (days) between JI and JII stages of
Panulirus argus subjected to different periods of starvation followed by continuous feeding in experiments
to determine the point-of-no-return. Red columns, warm season, June—October 2012; blue columns, cold
season, January—April 2013. Results from treatments with two survivors or fewer were omitted. Error bars,
95% CI.

duration of stage JI in individuals from the FC was significantly longer in the cold season
(25.7 £2.3d, n=20) than in the warm season (16.3 £ 1.3 d, n=20) (133 = 7.05, p < 0.001).
Opverall, the duration of stage JI was significantly affected by season (F; 1,0 = 37.9,p < 0.001)
and treatment (F4 159 = 8.71, p < 0.001), but the interaction term was also significant
(Fs,119 =3.76, p < 0.001), indicating that the intermolt period in the different treatments
did not follow the same pattern in both seasons (Fig. 4). In particular, the intermolt period
was significantly longer in treatments F15 and F18 and in the FC of the cold season than
in the same treatments of the warm season (Fig. 4).

Mortality of JIs decreased with increasing period of initial feeding, but was higher in
almost all treatments of the cold season than in those of the warm season. In both seasons,
all individuals in the SC and in treatments F3 and F6 succumbed. In both experiments,
with the exception of the fed control group, most JIs molted near the end of the initial
feeding period, with a maximum of 13 d between the end of the initial feeding period and
molting. The PRSsy was 13.1 £ 0.7 d in the cold season and 12.1 & 1.1 d in the warm
season (Fig. 5). These values did not differ significantly (F; ;, =3.603, p =0.082).

DISCUSSION

Temperature has an important effect on the physiology and ecology of ectotherms such as
spiny lobsters. For example, in Florida, USA, Witham (1973) reported that small juveniles
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Figure 3 Sigmoidal dose-response curves—PNR experiments. Sigmoidal dose-response curves fitted to
the mortality (%) of JIs of Panulirus argus subjected to a period of starvation before being fed. Triangles,
warm season, June—October 2012; circles, cold season, January—April 2013. PNRs, values: 12.1 + 1.2 d in
the warm season and 9.5 & 2.1 d in the cold season.

of Panulirus argus were intolerant of sustained temperatures below 15.6 °C or above
30.0 °C, and that lobsters held below 20 °C exhibited relatively little growth. In laboratory
experiments held in Cuba, oxygen consumption and metabolism of early benthic and older
juveniles of P. argus increased with temperature within the range of 19 to 30 °C (Brito
et al., 1991; Perera et al., 2007). Lellis ¢ Russell (1990) examined growth and survival of
postpueruli and early juveniles of P. argus at different temperatures and found that these
stages grew faster at 30 °C due to shorter intermolt periods and greater size increments
than at 24, 27, or 33 °C. In our study, mean water temperature during the PNR and PRS
experiments was 25.9 and 26.2 °C in the cold season, respectively, and 29.8 and 29.5 °C
in the warm season, respectively. In both types of experiment the duration of stage JI of
continuously fed individuals (FC) was significantly longer in the cold season than in the
warm season.

Limbourn et al. (2008) estimated the PNRs( of JIs of P. cygnus, a subtropical species, at
22 d, which is about twice the PNRs( estimated for the tropical P. argus in the present
study. Regardless, the resistance to starvation of JIs of P. argus is remarkable, considering
the energetic demand imposed on the non-feeding pueruli during their transit from
oceanic waters to the coast (e.g., Fitzgibbon, Jeffs & Battaglene, 2014). As previously found
by Limbourn et al. (2008) for P. cygnus, no JIs of P. argus were able to molt in complete
absence of food (SC). Dependence on exogenous food of JIs to complete development has
also been found in other decapods, even in some species with facultative lecithotrophic
postlarvae (Calado ef al., 2010). An exception is the red cherry shrimp, Neocaridina davidi,
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Figure 4 Intermolt period in PRS experiments. Intermolt period (days) between JI and JII stages of Pan-
ulirus argus subjected to different periods of feeding followed by continuous starvation in experiments to
determine the point-of-reserve-saturation. Blue columns, cold season, January—April 2014; red columns,
warm season, July—-November 2014. Results from treatments with two survivors or fewer were omitted.
Error bars, 95% CI.

in which JIs were able to molt even in complete absence of food, probably because this
species has a much abbreviated post-hatching development (Pantaledo et al., 2015). In our
two PNR experiments, the duration of stage JI increased with increasing period of initial
starvation. A delay in molting caused by lack of food has been documented in early life stages
of other marine and freshwater crustacean species (e.g., Anger ¢ Dawirs, 1981; Mikami,
Greenwood & Gillespie, 1995; Abrunhosa ¢ Kittaka, 1997; Stumpf et al., 2010; Calvo et al.,
2012) except N. davidi, in which the duration of stages JI and JIIT was not affected by the
duration of initial starvation periods (Pantaledo et al., 2015).

In the PRS experiments, the few individuals that molted to JII in treatments F9 and F12
did so near the end of the feeding period, and no individuals molted after 13 d of starvation
despite having been previously fed, resulting in an apparent increase in duration of stage
JI with duration of initial feeding period. This result contrasts with the results of the PNR
experiments, in which seven individuals from treatments S15 and S18 of the warm season
experiment and eight from treatments S15 and S18 of the cold season experiment were able
to molt. The higher tolerance to starvation of individuals from the PNR experiments may
be due to a suspension of the molting cycle, i.e., an arrest of development in the intermolt
stage (stage C in Drach’s molt classification system) of individuals subjected to initial
starvation, with a subsequent shift to premolt stage (stage D) with further feeding (Anger,
1987). However, in PRS experiments, if individuals reach the premolt stage during the
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Figure 5 Sigmoidal dose-response curves—PRS experiments. Sigmoidal dose-response curves fitted to
the mortality (%) of JIs of Panulirus argus allowed periods of feeding before being starved. Circles, cold
season, January—April 2014; triangles, warm season, July-November 2014. PRSs, values: 13.1 £ 0.7 d in
the cold season and 12.1 £ 1.1 d in the warm season.

period of initial feeding and then are subjected to continuous starvation, an unsuccessful
attempt to molt will lead to death because an arrest of development in premolt is not
possible (Anger, 2001).

The PRS occurs during the transition between late intermolt (stage C,) and early premolt
(stage Dy), which is also known as the “Dy threshold,” a critical period for crustaceans
in terms of nutritional requirements (Anger, 1987; Anger, 2001). The Dy threshold has
been confirmed in early life stages of decapod crustaceans from different families, e.g.,
Crangonidae (Paschke et al., 2004), Diogenidae (Harms, 1992), Majidae (Figueiredo et al.,
2008; Guerao et al., 2012), and Portunidae (Harms et al., 1990). In our study, results of both
PRS experiments, with high mortality rates in individuals subjected to treatments F3, F6 and
F9, and shorter intermolt periods and higher mortality rates than in PNR experiments, as
well as the similarity in PRSs, values between seasons (unlike in PNRs values), suggest that
feeding in P. argus JIs is more important near the PRS (or Dy threshold) than immediately
after molting to the first-stage juvenile.

Although PRSs( values did not differ with season, the ratio of the PRS to the total
duration of stage JI in individuals from the FC was higher during the warm season (74%)
than in the cold season (51%). Therefore, despite the significantly longer duration of stage
JLin the cold season, the PRS was reached earlier than in the warm season. A similar pattern
was observed in the zoea I of the shrimp Crangon crangon, in which the ratio of the PRS
to the stage duration was 32% in the summer and 23% in the winter (Paschke et al., 2004).
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However, the PRS represents about one-third of the total intermolt time in the early phases
of many crustaceans, including C. crangon, the zoeae I and II of the spider crab Hyas
araneus (Anger ¢ Dawirs, 1981), the zoeae I of the intertidal crab Neohelice granulata (Bas,
Spivak & Anger, 2008), the phyllosoma I of Panulirus cygnus (Liddy, Phillips & Maguire,
2003), and stage JIII of the crayfish Cherax quadricarinatus (Stumpf et al., 2010).

The ratio of the PNR to the total duration of the JI stage of individuals from the FC was
66% in the warm season and 39% in the cold season. Therefore, JIs of P. argus would appear
to be more resistant to starvation during the warm season. This result, although consistent
with the optimum temperature of ~30 °C for development of this stage (Lellis ¢ Russell,
1990), may seem counterintuitive given that metabolic and growth rates increase with
temperature (Anger, 2001). However, a longer PNR5¢ during the warm season may reflect
a reduction in the metabolic responses of JIs as a compensatory physiological mechanism,
as has been documented in other crustaceans (e.g., Litopenaeus setiferus: Sanchez et al.,
2002). Alternatively, it may reflect an enhanced ability of JIs to sequester and store reserves
at higher temperatures, as suggested by Smith, Kenway ¢ Hall (2010) for phyllosomata of
tropical spiny lobsters (P. ornatus and P. homarus), which exhibited a greater tolerance to
starvation (longer PNRs5() than phyllosomata of temperate spiny lobsters.

Despite the commercial importance of P. argus, the present study is the first to address
resistance to starvation in the early benthic juveniles of this species after they have undergone
a protracted lecithotrophic stage that may lead to their return to coastal waters from
distances of up to tens of kilometers offshore. However, as P. argus juveniles tolerate a
wider temperature range across their geographic distribution than those recorded in the
present study, further studies subjecting JIs to different experimental temperatures are
needed to examine how more extreme temperatures would affect the PNR and PRS of this
tropical species. Also importantly, measures of reserve substances utilization and storage
by both fed and starved JIs should be considered in future studies (e.g., Simon et al., 2015).
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