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ABSTRACT
Future demands for increased food production are expected to have severe impacts on
prairie biodiversity and ecosystem integrity. Prairie avifauna of North America have
experienced drastic population declines, prompting numerous conservation efforts,
which have been informedprimarily by small-scale studies.We applied a large-scale per-
spective that integrates scale dependency in avian responses by analyzing observations
of 20 prairie bird species (17 grassland obligates and three sagebrush obligate species)
from 2009–2012 in the western prairie region of the United States. We employed a
multi-species model approach to examine the relationship of land ownership, habitat,
and latitude to landscape-scale species richness. Our findings suggest that patterns and
processes influencing avian assemblages at the focal-scale (e.g., inference at the sampling
unit) may not function at the landscape-scale (e.g., inference amongst sampling units).
Individual species responses to land ownership, habitat and latitude were highly
variable. The broad spatial extent of our study demonstrates the need to include lands
in private ownership to assess biodiversity and the importance of maintaining habitat
diversity to support avian assemblages. Lastly, focal-scale information can document
species presence within a study area, but landscape-scale information provides an
essential complement to inform conservation actions and policies by placing local
biodiversity in the context of an entire region, landscape or ecosystem.
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INTRODUCTION
Global loss of biological diversity is occurring at unprecedented rates across numerous
taxa and habitats with serious repercussions for ecosystem health and human well-being.
Biodiversity loss can alter key ecological processes, affect ecosystem productivity and
stability, and impact societally-valuable ecosystem services (Hooper et al., 2005; Tilman,
Reich & Knops, 2006; Cardinale et al., 2012). While the specific factors leading to species
extinctions are numerous and complex, the primary driver over the last century is human-
caused land use change (Vitousek et al., 1997). Finding solutions to conserve declining
populations is one of the most important tasks currently facing ecologists, land managers,
and policymakers.

Temperate grasslands and shrublands (hereafter prairies) have undergone extensive
conversion because of their global value for human food production. Prairies remain some
of theworld’s least protected habitats (Hoekstra et al., 2005) andwithin thewestern regionof
North America are among the most imperiled ecosystems (Samson & Knopf, 1994; Knick et
al., 2003). Over the last two centuries, replacement of native grazers with domestic livestock,
fire suppression, agricultural expansion, and infrastructure development have profoundly
impacted North American prairies. These impacts influence ecological processes and
functions important to wildlife, such as resource selection, community interactions
and reproductive performance (Samson & Knopf, 1994), resulting in declines in species
diversity and ecosystem health. Land alteration for agricultural, residential, and industrial
needs is linked to land ownership patterns (Lovett-Doust et al., 2003) but only a few
studies have considered the association of land ownership to differences in biodiversity
(e.g., Lovett-Doust & Kuntz, 2001; Lovett-Doust et al., 2003; Ortega-Huerta & Kral, 2007).
Patterns of biodiversity on private prairie lands are particularly relevant to conservation
planning and policy-making decisions, as a growing global demand for food production
will disproportionately be met in privately-owned prairie landscapes.

Some of the most dramatic and consistent declines in prairie wildlife have been
documented in the avifauna. In North America, prairie birds have undergone greater
declines than any other avian assemblage (Knopf, 1994; Knick et al., 2003; Askins et al.,
2007). Numerous studies on prairie avifauna habitat associations have been undertaken at
local sites (Knick et al., 2003; Askins et al., 2007). These analyses identify factors influencing
populations locally, and these findings are incorporated into larger-scale conservation
and management plans. The consequences of focal-scale conservation efforts are largely
unknown but may include unmet conservation goals resulting from failed integration of
ecosystem patterns and processes, especially in fragmented landscapes (Hobbs & Norton,
1996) such as prairies (Baudron & Giller, 2014). The importance of scale in the resolution
of geographic patterns observed by species has long been recognized (Johnson, 1980). We
refer to scale as the geographic space where focal-scale is the area represented by each data
point and landscape-scale is inference to which the entire set of sampling units applies
(Rahbek, 2005). A large-scale perspective is essential to identify avian habitat use patterns
to best inform conservation efforts.
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We seek to examine the hypothesis that landscape-scale characteristics of vegetation,
land tenure, and latitude drive the richness of prairie avifauna occurrence. We predict
that areas containing high percentages of grassland habitats will have higher diversity of
grassland species and areas with high percentages of sagebrush habitats will have higher
diversity of sagebrush species. Privately-owned lands are under greater economic pressure
than public lands in satisfying human needs for goods and services (Daily, 1997; Vitousek
et al., 1997). Thus, we predict that lands in public ownership will support higher diversity
than lands in private ownership (e.g., agriculture and private lands). Lastly, studies on
latitudinal gradients in species richness supports a near-universal pattern of an increasing
richness from polar to equatorial regions (MacArthur & Wilson, 1963; Hawkins & Porter,
2001; Hillebrand, 2004). We predict a similar relationship between latitude and prairie
avifauna species richness.

Here, we assess how land ownership, habitat, and latitude influence prairie bird
distributions across the western prairie region of the US. Our study differs from previous
work by deriving estimates of species richness while accounting for imperfect detection.
Other studies note the difficulties in comparing richness metrics spatially (Hurlbert &
Haskell, 2003) and temporally (White & Hurlbert, 2010) because of variation in survey effort
(one of many factors influencing detection probability). We use methods that explicitly
partition heterogeneity from detection such that ecological inference is unbiased. This
model-based approach estimates the occurrence probability of all species in a community
by linking multiple single-species occurrence models into a single model, thus improving
inferences on all species, especially those that are rare or observed infrequently (Zipkin et
al., 2010). Our multi-species model improves precision of estimates for individual species
while simultaneously examining associations of entire community assemblages (Royle &
Dorazio, 2008; Dewan & Zipkin, 2010; Kéry, 2010; Zipkin, Dewan & Royle, 2009; Zipkin et
al., 2010; Karanth et al., 2014). This robust characterization of the patterns and associations
of prairie bird communities across a large geographic region provides powerful inference
to inform local and regional conservation and management policies and initiatives.

MATERIALS & METHODS
Study area
The study area is approximately 140,000,000 ha within the prairie landscape of the
western United States defined by the Great Plains and North American Deserts ecoregions
(Commission for Environmental Cooperation (CEC), 1997; Fig. 1). This landscape is
comprised of seven western US states and six Bird Conservation Regions (BCRs)—distinct
ecological regions with similar biotic and abiotic characteristics and natural resource
management issues (US North American Bird Conservation Initiative (US NACBI), 2000).
Management of the lands within the study area is by private landowners (51.6%), US
Department of Interior—Bureau of Land Management (BLM; 22.2%) and other federal
agencies (e.g., US Department of Agriculture—Forest Service (USFS; 16.5%)), Native
American tribes (2.8%), and US states’ management agencies (3.1%; Table 1).
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Figure 1 Map of the region in the western United States surveyed for prairie avifauna from 2009–2012
in relation to the Great Plains and North American Deserts ecoregions (lower left) and Bird Conserva-
tion Regions (in color). Circles represent the centroid of 1 km2 sampling plots (n= 413) that contained 16
point count stations evenly-spaced at 250 m.

Sampling: design-based
The bird data consisted of point count surveys collected from 2009–2012 as part of a
regional, multi-agency landbird monitoring collaboration, the Integrated Monitoring in
Bird Conservation Regions (IMBCR) project. This design-based program covers all land
area within themonitoring landscape, regardless of land ownership, habitat, or other factors
(e.g., roads, terrain). Bird surveys were conducted across areas designated by fixed attributes
such as ownership boundaries, state boundaries or BCR boundaries (White et al., 2012),
hereafter referred to as strata. Within each stratum, grid-scale sampling plots were selected
using a generalized random tessellation stratified sample, a spatially-balanced sampling
algorithm (Stevens & Olsen, 2004; Theobald et al., 2007). Each sampling plot measured
1 km2 in area (Fig. 1) and contained 16 bird point count stations evenly spaced at 250 m
to form a 4 × 4 grid of points. Each 1 km2 sampling plot represented the grid-scale, while
a single point count station within a given plot represented the point-scale. Observers
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Table 1 Environmental covariates used to distinguish avian responses at the focal-scale from
landscape-scale population responses of grassland and sagebrush obligate avian species. Covariates
were calculated at each sampling plot, 1 km2 square containing 16 evenly-spaced point count stations, and
summed across a total of 413 sampling plots surveyed for avian species from 2009–2012.

Measures Description Values

Land ownership % Hectares
Public

Bureau of Land Management 22.2 9212.22
US Forest Service 16.5 6824.82
Bureau of Indian Affairs 2.8 1154.18
State Managed Land 3.1 1277.89
Other Federal (e.g., Dept. of Defense) 2.3 939.85
National Park Service 1.0 396.28
US Fish and Wildlife Service 0.6 263.91

Total Public 48.4 20069.16
Private 51.6 21403.72

Habitat % Hectares
Grassland

Mixed Grass Prairie 27.1 11680.41
Shortgrass Prairie 12.2 5154.50
Sand Prairie/Sandhill Steppe 6.2 2690.87
Montane and Foothill Shrubland and Grassland 1.1 654.96

Total Grassland 46.6 20180.74
Sagebrush

Sagebrush Shrubland 21.2 10042.34
Steppe and Semi-desert Scrub Shrub 3.7 2277.88

Total Sagebrush 25.9 12320.22
Other (e.g., Wetlands and Open Water) 28.5 13776.35

Latitude (NAD83) Degree Decimal
Average 42.69
Minimum 36.93
Maximum 48.95

conducted a 6-min survey at each point count beginning 30 min prior to sunrise and
concluding prior to 11 AM (local time) once per year. For every bird visually detected,
the species, horizontal distance to the detected bird and minute interval were recorded;
however, we truncated data into detection/non-detection data. We overlaid land cover
data from the USGS National Gap Analysis Program (US Geological Survey, Gap Analysis
Program (US GAP), 2011) in ArcGIS 10 to select sampling plots containing prairie habitats
(<30% Forested & Woodland; n= 413 sampling plots) for use in the analysis.

Guild delineation
Patterns of prairie bird occurrence and habitat associations can be examined at various
levels, ranging from the individual species to the species assemblage. The guild concept
is one way of classifying species assemblages; however, ‘‘guild’’ is a term that lacks
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Table 2 Coefficient estimates (with 95% credible intervals) for covariate influence on occupancy prairie birds frommulti-species model. Co-
variates summarize the proportion of public ownership (Public), grassland (Grass) or sagebrush cover type (Sage), and the latitude of 1 km2 sam-
pling plots. Estimates reflect data with scaled predictors (µ= 0, σ = 1). Each species was identified as belonging to a grassland (G) or sagebrush (S)
guild.

Species Public Grass Sage Latitude Int

Baird’s Sparrow (G) 0.07 (−0.26, 0.4) 0.42 (0, 0.84) −0.08 (−0.68, 0.49) 2.24 (1.68, 2.86) −4.63 (−5.47,−3.88)
Bobolink (G) −0.25 (−0.52, 0.01) 0.34 (0.04, 0.65) −0.65 (−1.18,−0.17) 1.4 (1.07, 1.75) −3.41 (−3.86,−2.99)
Cassin’s Sparrow (G) −0.11 (−0.37, 0.14) 0.39 (0.15, 0.64) −1.7 (−3.12,−0.72) −2.51 (−3.02,−2.05) −4.43 (−5.39,−3.68)
Chestnut-collared
Longspur (G)

0.06 (−0.19, 0.31) 0.96 (0.61, 1.32) −0.08 (−0.49, 0.32) 2.17 (1.76, 2.61) −3.66 (−4.2,−3.16)

Dickcissel (G) 0.31 (−0.07, 0.7) −0.45 (−0.92, 0) −1.65 (−2.79,−0.75) 0.15 (−0.29, 0.57) −4.56 (−5.34,−3.92)
Grasshopper Sparrow
(G)

0.29 (0.14, 0.44) 0.7 (0.53, 0.87) −0.6 (−0.81,−0.4) 0.74 (0.59, 0.9) −0.35 (−0.5,−0.2)

Horned Lark (G) −0.22 (−0.37,−0.08) 0.49 (0.33, 0.65) 0.19 (0.03, 0.34) −0.05 (−0.19, 0.09) 0.84 (0.7, 0.98)
Lark Bunting (G) −0.4 (−0.54,−0.26) 0.85 (0.69, 1.01) 0.32 (0.17, 0.48) 0.06 (−0.08, 0.2) −0.31 (−0.44,−0.17)
Long-billed Curlew (G) −0.19 (−0.47, 0.08) −0.3 (−0.65, 0.03) −0.12 (−0.48, 0.24) 1.34 (1.01, 1.7) −3.07 (−3.52,−2.67)
Marbled Godwit (G) −0.22 (−0.56, 0.11) 0.02 (−0.39, 0.44) −0.54 (−1.08,−0.04) 2.79 (2.16, 3.52) −5.02 (−6,−4.19)
McCown’s
Longspur (G)

−0.19 (−0.44, 0.05) 0.38 (0.1, 0.67) −0.46 (−0.92,−0.06) 0.37 (0.12, 0.63) −2.89 (−3.22,−2.59)

Mountain Plover (G) 0.11 (−0.27, 0.51) 0.43 (−0.14, 1.04) −0.63 (−1.57, 0.17) −0.88 (−1.66,−0.27) −3.59 (−4.31,−2.9)
Savannah Sparrow (G) −0.36 (−0.6,−0.13) −0.15 (−0.43, 0.11) −0.51 (−0.85,−0.18) 1.4 (1.12, 1.69) −2.81 (−3.15,−2.5)
Sprague’s Pipit (G) −0.15 (−0.54, 0.24) 0.69 (0.2, 1.2) 0.13 (−0.42, 0.66) 3.63 (2.7, 4.72) −6.81 (−8.49,−5.44)
Upland Sandpiper (G) 0.14 (−0.06, 0.35) 0.73 (0.47, 1) −0.07 (−0.34, 0.19) 1.38 (1.09, 1.71) −1.85 (−2.09,−1.62)
Vesper Sparrow (G) −0.1 (−0.25, 0.06) −0.02 (−0.19, 0.16) 0.96 (0.77, 1.16) 0.83 (0.66, 1) −0.24 (−0.39,−0.08)
Western Meadowlark
(G)

−0.26 (−0.5,−0.02) 0.98 (0.62, 1.38) −0.09 (−0.32, 0.13) 0.44 (0.18, 0.72) 2.99 (2.66, 3.38)

Brewer’s Sparrow (S) 0.02 (−0.14, 0.17) 0.08 (−0.1, 0.27) 1.06 (0.88, 1.25) 0.05 (−0.11, 0.21) −0.76 (−0.92,−0.61)
Sage Sparrow (S) 0.72 (0.41, 1.05) −1.33 (−2.31,−0.46) 0.81 (0.57, 1.05) −1.06 (−1.43,−0.69) −4.1 (−5.08,−3.24)
Sage Thrasher (S) 0.81 (0.54, 1.1) −1 (−1.46,−0.59) 0.67 (0.46, 0.89) −0.68 (−0.98,−0.4) −3.2 (−3.64,−2.79)

consistent definition in the literature (Verner, 1984; Szaro, 1986; Simberloff & Dayan,
1991). We defined a guild specifically as either grassland (n= 17 species; Vickery et al.,
1999) or sagebrush (n= 3 species; Paige & Ritter, 1999; Hanser & Knick, 2011) obligates
(Table 2). We explicitly chose obligates to reflect their specific habitat preferences as
opposed to generalists which reflect a different set of processes. The 20 species included in
our analyses are designated as a conservation priority (e.g., species petitioned for US federal
listing; US state-level species of concern; USFSManagement Indicator Species). We limited
our analyses to passerines and upland shorebirds (i.e., Charadridae) detected > 10 times
in > 1 year.

Environmental covariates
We examined the relationship of land ownership, habitat and latitude to regional species
richness of grassland and sagebrush obligate avifauna. For each of the 413 sampling
plots, we calculated the percent area covered by each type of land ownership (private
and public) and habitat (grassland, sagebrush, and other). Public ownership was defined
as lands managed by US federal or state agencies. We also included lands managed by
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North American tribes in the public ownership category, given collective management
strategies for many stakeholders. Private ownership included all lands not in public
ownership. Habitat was assessed by calculating the percentage of grassland and sagebrush
within each sampling plot was based on the National Vegetation Classification (NVC)
(i.e., Class/Subclass, Form) and the Ecological Systems Classification (US Geological Survey,
Gap Analysis Program (US GAP), 2011). Grassland was defined by four NVC Ecological
Systems: (1) mixed grass prairie, (2) shortgrass prairie, (3) sand prairie/sandhill steppe and,
(4) montane and foothill shrubland and grassland. Sagebrush was defined by two NVC
Ecological Systems: (1) sagebrush shrubland and (2) steppe and semi-desert scrub shrub.
Additional habitats in the sampling plot—cultivated cropland and pastures, wetland and
open water, forest and woodlands, and developed—were grouped as ‘other’ habitat. Lastly,
we used the centroid of each sampling plot to calculate latitude. The latitudinal gradient
theory of poleward biodiversity decline is one of the longest recognized (MacArthur &
Wilson, 1963), albeit not completely understood, patterns in ecology (Hillebrand, 2004;
Mittelbach et al., 2007; Salisbury et al., 2012). Studies conducted at multiple scales, onmany
taxa and across different biogeographic regions have proposed numerous explanations
for this gradient (Hillebrand, 2004; Mittelbach et al., 2007; Salisbury et al., 2012; Karanth
et al., 2014). Latitude functions as a surrogate for a suite of environmental factors, thus,
interlinking and confounding the distinct underlying hypotheses (Rahbek, 2005). Therefore,
using latitude as a predictor allowed us to make inference on covariates of interest, while
reducing the parameter space necessary to explain variation in avian occurrence.

Analysis: model-based
We used a multi-species occupancy/richness hierarchical model as described by Dewan
& Zipkin (2010), Zipkin, Dewan & Royle (2009) and Zipkin et al. (2010) to estimate the
number of species within each guild present at each sampling plot.We combined individual
species occurrence models into a single model by assuming that species covariate effects
arise from a common distribution, allowing for more precise estimates of occupancy
(Zipkin, Dewan & Royle, 2009;Kéry, 2010). In the context of estimating occupancy/richness,
hierarchical models can distinguish absence from non-detection by incorporating models
that specify presence versus absence as one process and detection versus non-detection as
another process (Zipkin, Dewan & Royle, 2009).

For species-level models, we assumed that the the latent state of occurrence for a given
species zi, is a Bernoulli process where the probability that species i is present at sampling
plot j(zi,j = 1) is ψi,j (MacKenzie & Kendall, 2002). We modeled species (i) and site (j)
level heterogeneity in occurrence probabilities using a logit link function with relevant
covariates such that:

logit
(
ψij
)
=α0,i+α1iPUBLIC j+α2iGRASSj+α3iSAGE j+α4iLAT j+τi,

where α0 is the intercept and α1−α4 are the effects of the environmental covariates
on species i and τi is a random effect for species i. We used covariates on the percent
of grassland (GRASS) and sagebrush (SAGE) habitat along with public land ownership
(PUBLIC) and latitude (LAT).
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Because species are imperfectly detected during sampling (MacKenzie & Kendall, 2002),
we assumed that true occurrence, (zi,j = 1), is a latent process that is only partially
observable. If an observer detected species i at sampling plot j during point count k,
denoted x i,j,k = 1, then it can be determined that zi,j = 1. However, if a species is not
detected it could be that the species was either absent or undetected during sampling.

We assumed detection probability (pi) of species iwas unlikely to vary by land ownership.
However, landcover is likely to influence variation in species detectability through vegetative
structure and available habitat, so we included covariates for grassland and sagebrush cover
and included latitude to incorporate other unmeasured sources of variation in species
specific models:

logit
(
pi,j
)
=β0,i+b1,iGRASSj+b2,iSAGEj+b3,iLATITUDEj .

The species-specific occurrence anddetection probabilities are related by a community-level
hierarchical component that assumes each probability parameter (e.g., αiPUBLIC j) arises
from a common distribution. Model parameters were estimated using a Bayesian analysis
of the model with naive prior distributions for coefficients (Normal[µ= 0,σ 2

= 1,000])
and variance of random effects (Gamma[α = 0.1,β = 0.1]) as there was no previous
information on grassland bird occurrence at this spatial scale. We used JAGS (Plummer,
2003) using the R2jags package in R (R Development Core Team, 2013). We ran 4 Markov
chain Monte Carlo chains of 20,000 iterations each with the first 1,000 discarded
for burn-in. We used the Gelman–Rubin R statistic to assess chain convergence
(Gelman & Rubin, 1992).

To assess the fit of data to our model we conducted a posterior predictive check
by calculating a Bayesian p-value. Specifically, we calculated deviance for each MCMC
iteration (s) following methodology from Broms, Hooten & Fitzpatrick (2016). However,
we calculated deviance for each species using the observed,

D(s)
i =−2

J∑
j=1

log(xi,j |ψ
(s)
j ,p

(s)
j )

and predicted data (x̃i,j,k ∼Bern[zi,jpi,j,k];where zi,j ∼Bern[ψi,j]).

D̃(s)
i =−2

J∑
j=1

log(x̃i,j |ψ
(s)
j ,p

(s)
j ).

We calculated a Bayesian p-value as the proportion of MCMC samples in which observed
deviance was greater than that calculated using predicted data for each species. Generally, a
model has poor fit to the data if the p-value is >0.95 or <0.05 (Broms, Hooten & Fitzpatrick,
2015).

Lastly, we developed a predictive map of occurrence across the study area by applying
species-specific coefficient estimates to spatial covariate layers. Individual species
occurrence predictions were summed across cells to generate single a spatial prediction of
species richness.
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RESULTS
Within our 413 sampling plots, a total of 36,308 observations of the 20 prairie bird
species were recorded over the four years. Species in our grassland guild dominated our
observations (89.6%—32,537 of 36,308 observations). Western meadowlark (Sturnella
neglecta) was the species observed most often, while mountain plover (Charadrius
montanus) was the least observed. Brewer’s sparrow (Spizella breweri) comprised 61.1%
(2,303 of 3,771 observations) of the sagebrush guild observations. Grassland comprised
43.3% of the total habitat within the 413 sampling plots, sagebrush made up 26.6% of
the habitat, and the remaining 29.8% was classified as ‘‘other’’ habitat (Table 1). Land
ownership by public agencies and private landowners was similar: 48.4% and 51.6%
respectively (Table 1). The latitudinal gradient based on the centroid of each sample plot
ranged from 36.93◦ to 48.95◦ (Table 1).

Our measures of environmental associations—land ownership, habitat, and latitude
- were important in predicting occupancy for most species (Table 2). Species in the
sagebrush guild showed a strong association with the percentage of sagebrush habitat in
the plot. Several grassland guild species were positively associated with sagebrush habitat
(Table 2). Associations with land ownership were more equivocal than habitat and were
mixed among positive and negative for the individual species (Table 2). Land ownershipwas
important in explaining variation in occupancy for 35% of species studies, suggesting that
sampling both ownerships is important for understanding patterns of avian occurrence.
Most species were positively associated with latitude. Two sagebrush obligates, sage sparrow
(Artemisiospiza nevadensis) and sage thrasher (Oreoscoptes montanus), and two grassland
species, Cassin’s sparrow (Peucaea cassinii) andmountain plover, were negatively associated
with latitude. Grassland or sagebrush landcover were important predictors for detection
probability across nearly all species (18/20), though direction andmagnitude of coefficients
varied by species (Table 3), underscoring the importance of modeling heterogeneity in the
observation process.

Nineteen of 20 species had a Bayesian p-value’s with adequate model fit, while only the
horned lark produced a p-value suggesting the model did not adequately represent the
data (p= 0.01; Table 3). Predicted species richness was highest in the northern portion of
our study area and declined to the south (Fig. 2), ranging from approximately two to eight
species. Twelve of 20 species were significantly and positively associated with latitude while
only 4 species demonstrated significant negative associations (Table 2).

DISCUSSION
Effective conservation planning requires population-level information at the scale of
land management that occurs across vast extents (e.g., >10,000 km2) and often over
long time periods (e.g., multiples years via BLM landscape approach, USFS land and
resource management plans, State Wildlife Action Plans). Yet often lacking are large-scale
monitoring programs that employ a consistent methodology and a probabilistic-sampling
design necessary for robust inference at regional scales. The IMBCR program provides
a large-scale dataset that adheres to design and survey principles allowing for unbiased
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Table 3 Coefficient estimates (and 95% credible intervals) for covariate model on detection probability in multi-species occupancy model. Co-
variates included the proportion of grassland (Grass) and sagebrush (Sage) landcover and latitude within 1 km2 sampling plots. Total number of ob-
servation (Obs) for each species is also included as well as Bayesian p-values for each species.

Species Obs Grass Sage Latitude Intercept Bayesian
p-value

Baird’s Sparrrow 277 0.52 (0.33, 0.73) −0.57 (−0.98,−0.2) 0.14 (−0.16, 0.45) −1.3 (−1.79,−0.81) 0.44
Bobolink 457 0.43 (0.25, 0.62) −0.48 (−0.85,−0.15) −0.01 (−0.37, 0.36) −0.62 (−1.07,−0.19) 0.59
Cassin’s Sparrow 1,010 −0.11 (−0.22, 0) −0.01 (−0.74, 0.67) −0.82 (−1.05,−0.6) −1.03 (−1.58,−0.51) 0.45
Chestnut-collared
Longspur

789 0.84 (0.67, 1.02) 0.08 (−0.13, 0.29) 0.12 (−0.09, 0.33) −0.76 (−1.08,−0.45) 0.25

Dickcissel 132 −0.48 (−0.9,−0.09) −0.17 (−0.88, 0.51) 0.48 (−0.15, 1.18) −0.16 (−0.73, 0.4) 0.48
Grasshopper Sparrow 3,097 0.12 (0.05, 0.2) −0.44 (−0.54,−0.34) 0.37 (0.3, 0.44) −0.2 (−0.28,−0.13) 0.37
Horned Lark 6,067 −0.12 (−0.17,−0.06) −0.31 (−0.36,−0.26) −0.15 (−0.19,−0.1) 0.53 (0.48, 0.57) 0.01
Lark Bunting 3,972 −0.14 (−0.21,−0.07) 0 (−0.08, 0.08) −0.14 (−0.2,−0.07) 0.5 (0.44, 0.57) 0.08
Long-billed Curlew 253 −0.18 (−0.4, 0.04) −0.25 (−0.51, 0) 0.08 (−0.11, 0.28) −1.78 (−2.08,−1.49) 0.27
Marbled Godwit 204 0.17 (−0.06, 0.39) 0.11 (−0.21, 0.4) −0.43 (−0.9, 0.01) −0.81 (−1.5,−0.09) 0.28
McCown’s Longspur 422 0.14 (−0.01, 0.29) 0.23 (0.04, 0.41) 0.31 (0.18, 0.44) −0.43 (−0.6,−0.26) 0.28
Mountain Plover 52 −0.46 (−1.03, 0.09) −0.16 (−0.92, 0.56) 0.32 (−0.22, 0.91) −2.38 (−2.99,−1.84) 0.44
Savannah Sparrow 512 −0.38 (−0.52,−0.25) −0.33 (−0.51,−0.16) 0.1 (−0.03, 0.23) −0.87 (−1.06,−0.68) 0.30
Sprague’s Pipit 211 0.13 (−0.08, 0.34) 0.25 (0.01, 0.5) 0.56 (0.09, 1.08) −1.69 (−2.54,−0.94) 0.50
Upland Sandpiper 953 −0.21 (−0.36,−0.06) −0.24 (−0.4,−0.09) −0.64 (−0.86,−0.41) −0.52 (−0.71,−0.33) 0.20
Vesper Sparrow 3,018 −0.11 (−0.19,−0.04) 0.24 (0.18, 0.31) 0.47 (0.4, 0.54) −0.62 (−0.7,−0.54) 0.17
Western Meadowlark 11,111 0.36 (0.3, 0.42) 0.11 (0.06, 0.17) 0.28 (0.23, 0.33) 1.58 (1.53, 1.63) 0.44
Brewer’s Sparrow 2,303 −0.2 (−0.46, 0.05) −0.01 (−0.11, 0.08) −0.43 (−0.65,−0.23) −0.64 (−0.9,−0.39) 0.27
Sage Sparrow 712 −2.18 (−3.08,−1.35) −0.04 (−0.15, 0.07) −0.39 (−0.85, 0.05) −2.16 (−3.04,−1.35) 0.36
Sage Thrasher 756 −0.22 (−0.32,−0.12) 0.37 (0.3, 0.44) −0.01 (−0.09, 0.06) −0.53 (−0.61,−0.45) 0.11

estimation of critical state variables (e.g., occupancy) that transcends ecotype and political
boundaries. In particular, multiple surveys within randomly-sampled grids allows for an
explicitmodel-based treatment of the observation process which often confounds ecological
data. This study exemplifies how these data can provide community-level inference across
broad scales for use in the ecology and management of prairie birds.

We chose a guild approach here to broaden our inference across species as well as
space. The guild approach complements single-species approaches of analyzing data from
the IMBCR program (Pavlacky et al., 2012). Analyses of guilds provide information on
factors influencing species richness while single-species analyses can look more deeply at
habitat relationships for target species. Guilds also have the potential to better reflect the
level to which ecosystem services remain intact. At the species level, habitat associations
influencing the probability of occupancy varied, though a few general patterns emerged.
First, sagebrush guild birds are more directly associated with sagebrush habitats. The
absence of sagebrush habitat led to low probabilities of occupancy for those species, similar
to others’ findings (Knick et al., 2003; Donnelly et al., 2016). On the other hand, grassland
obligates showed broader vegetative associations, evidenced by a negative association of
grasslands for one species (dickcissel) and equivocal relationships for five species (Table 2).
This finding may reflect a broader range of habitats, including our definition of grassland
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Figure 2 Predicted species richness of 17 grassland and three sagebrush-obligate birds across the
study area incorporating six US Bird Conservation Regions and seven states. The spectrum of coloring
follows dark green representing higher species richness to dark brown representing lower species richness.

and sagebrush habitat, that can provide the ecological resources required by grassland
obligates. Whereas sagebrush guild species may exclusively require sagebrush habitat.

The variation in the strength of habitat associations between avian guilds may have
important management implications. For example, an association with sagebrush habitat
was significantly positive for vesper sparrow (Pooecetes gramineus), a species considered
to be a grassland obligate (Vickery et al., 1999) that had no significant association with
grassland in the study. Thus, conservation efforts targeting sagebrush habitat may not only
have positive effects for sagebrush obligates, but also for vesper sparrows and, to a lesser
extent, horned larks (Eremophila alpestris) and lark buntings (Calamospiza melanocorys).
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Second, more species in the grassland guild tended to be associated with more northern
latitudes. Only two grassland species, the Cassin’s sparrow (Peucaea cassinii) and mountain
plover, and two sagebrush were strongly associated with more southern latitudes. Patterns
in species occupancy as a function of land ownership were highly variable, as evidenced
by varying coefficient estimates. This variability is likely driven by a number of factors.
For instance, on public lands, land uses vary with different administrative mandates
(e.g., federal agency multiple use mandates) or land designations (e.g., wilderness). On
private lands, there is greater diversity in the types of land use (e.g., including multiple
types of agricultural production) than on public lands. Thus, effective conservation
strategiesmust transcend land tenure to confer community-level benefits. Future analyses of
IMBCR data, or similarly robust sampling efforts, could evaluate associations between bird
occupancy and ownership in finer categories, such as specific agency or tribal jurisdiction,
or by land designation.

The area of highest richness in grassland and sagebrush obligate birds considered in
this study was the most poleward region, northern Montana and western North Dakota, a
landscapewhich is seeing continued large-scale land conversion for oil and gas development
and agricultural tillage. Map-based predictions of species richness offer a spatially-explicit
targeting tool for conservation in light of expanding land conversion. In particular, maps
used in concert with science-based products for the anticipated growth of agriculture and
energy development (Copeland et al., 2009) offer a template for conservation planning to
avoid and minimize major known stressors to prairie birds. Whereas biological planning
often relies on small-scale studies of focal species, science from the IMBCR offers a
community-level product at the scale of management plans.

Our finding of increasing species richness with latitude provide an interesting contrast to
results from most studies on latitudinal-diversity gradients. Only a few other studies have
found a similar reverse relationship between avian species richness and latitude (Rabenold,
1979; Karanth et al., 2014). One explanation for this pattern is that we explicitly examined
grassland- and sagebrush-obligate bird species during the breeding season. These species are
inextricably linked to the existence of relatively predictable pulses of primary production
and arthropod biomass in a relatively short growing season in more northern regions
(Rabenold, 1979). Such predictable, superabundant food could permit the coexistence of
similar species (Wiens, 1974). Additional mechanisms leading to our study’s disparity with
the latitudinal biodiversity gradient theory are likely abiotic factors, such as soil moisture
(Hillebrand, 2004; Mittelbach et al., 2007), and warrant further consideration.

Examining biological diversity at the landscape-scale provides insights not available from
focal-scale studies. The larger spatial extent of these studies demonstrates the importance
of habitat diversity in maintaining complete guilds of species, while delineating areas of
high co-occurrence of prairie birds. Focal-scale analyses can document what is present in
a study area, but landscape-scale studies place local biodiversity in the context of an entire
region, or perhaps breeding range, while simultaneously highlighting the value of local
areas.
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