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ABSTRACT

Phytochemicals produced by plants, including at flowers, function in protection against
plant diseases, and have a long history of use against trypanosomatid infection. Floral
nectar and pollen, the sole food sources for many species of insect pollinators, contain
phytochemicals that have been shown to reduce trypanosomatid infection in bumble
and honey bees when fed as isolated compounds. Nectar and pollen, however, consist
of phytochemical mixtures, which can have greater antimicrobial activity than do
single compounds. This study tested the hypothesis that pollen extracts would inhibit
parasite growth. Extracts of six different pollens were tested for direct inhibitory activity
against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi.
Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen
extracts contained high concentrations of sugars, mainly the monosaccharides glucose
and fructose. Experimental manipulations of growth media showed that supplemental
monosaccharides (glucose and fructose) increased maximum cell density, while a
common floral phytochemical (caffeic acid) with inhibitory activity against other
trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results
indicate that, although pollen is essential for bees and other pollinators, pollen may
promote growth of intestinal parasites that are uninhibited by pollen phytochemicals
and, as a result, can benefit from the nutrients that pollen provides.

Subjects Ecology, Entomology, Parasitology, Plant Science, Infectious Diseases

Keywords Bombus, Plant secondary metabolites, Parasite, Pollinator decline, Crithidia, Nutrient
limitation, Antitrypanosomal, Tritrophic interactions, HPLC, Proline

INTRODUCTION

Plants provide nutrients that sustain the growth and reproduction of many animal species,
but also contain antimicrobial phytochemicals that may counteract infection in plant-
eating animals (De Roode et al., 2013). Insect pollinators such as bumble bees, whose diets
consist exclusively of phytochemical-rich nectar and pollen, are important for agricultural
production. However, like honey bees, bumble bees are threatened by parasite-related
decline (Goulson et al., 2015). Because bumble bees have abundant natural access to
phytochemicals, antimicrobials from flowers could provide a natural source of medicinal
compounds that could counteract infection in pollinator populations.
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Trypanosomatids are parasites that, in addition to afflicting over 12 million humans,
infect and decrease fitness of many species of insects (Maslov et al., 2013). For example,
the newly described Jaenimonas drosophilae increases mortality of pupae and decreases
fecundity of adult Drosophila melanogaster (Hamilton et al., 2015). Trypanosomatid
infection can also be pervasive in populations of wild and managed bees (Shykoff ¢
Schmid-Hempel, 1991; Schwarz et al., 2015). With spread of parasites facilitated by use
of shared flowers (Durrer ¢ Schmid-Hempel, 1994; Graystock, Goulson ¢» Hughes, 2015),
infection in some areas may exceed 80% in bumble bees (Shykoff ¢ Schinid-Hempel, 1991;
Gillespie, 20105 Popp, Erler & Lattorff, 2012) and 90% in honey bees (Rurnckel et al., 2011).
Correlative evidence implicates trypanosomatid infection as a factor in honey bee colony
loss. In Belgian honey bees, infection with Lotmaria passim (formerly named and reported
as Crithidia mellificae (Schwarz et al., 2015)) was correlated with colony death (Ravoet et
al., 2013). In the United States, Lotmaria passim infection intensity was over six-fold higher
in hives that suffered from Colony Collapse Disorder than in hives that did not collapse
(Cornman et al., 2012). In bumble bees, Crithidia bombi infection is similarly detrimental
for individuals and colonies. Infection increased the rate of death in starved workers (Brown,
Schmid-Hempel ¢ Schmid-Hempel, 2003), provoked potentially costly immune responses
(Sadd & Barribeau, 2013), altered foraging behavior and learning (Gegear, Otterstatter ¢
Thomson, 2005), and decreased colony fitness (Shykoff ¢~ Schmid-Hempel, 1991).

Phytochemicals have well-known antimicrobial properties that inhibit infection not only
in plants (Bennett & Wallsgrove, 1994; Huang et al., 2012), but also in animals that consume
phytochemical-rich plant materials (Karban ¢» English-Loeb, 1997; Singer, Mace ¢» Bernays,
2009; De Roode et al., 2013). Plant-based therapeutics have a long history of traditional
use against trypanosomatid infection, and recent studies have confirmed the inhibitory
activity of both plant extracts and isolated phytochemicals against trypanosomatid cell
cultures (Merschjohann & Steverding, 20065 Santoro et al., 2007a; Wink, 2012). Similarly,
phytochemicals may have medicinal effects in bees infected with the trypanosomatid
C. bombi (Manson, Otterstatter ¢ Thomson, 2010; Baracchi, Brown ¢ Chittka, 2015;
Richardson et al., 2015; Biller et al., 2015), such that nectar and pollen of phytochemical-
rich wildflowers and crops could provide medicinal resources for pollinators.

To date, all studies on the medicinal effects of phytochemicals on bees have tested single
compounds. However, plants contain mixtures of phytochemicals that can have synergistic
effects against both insects (Berenbaum ¢ Neal, 1985; Berenbaum, Nitao & Zangerl, 1991)
and microbes (Fewell ¢ Roddick, 1993), including C. bombi (Palmer-Young et al., 2017).
The defensive compounds in phytochemical-rich plants, such as milkweed (Danaus spp.)
(Gowler et al., 2015), can also counteract pathogens of plant-eating insects and other
animals (De Roode et al., 2013). In a mouse model of Plasmodium falciparum malaria,
crude Artemisia annua plant extract had a stronger medicinal effect than did equivalent
amounts of purified artemisinin (Elfawal et al., 2012). Artemisia spp. extracts can also
have inhibitory effects against trypanosomatids, such as the C. bombi relative Leishmania
major, where the effects of crude plant extracts and phytochemically complex essential oils
can have greater inhibitory activity than do individual compounds (Efferth et al., 2011).
Similarly, essential oil from Thymus vulgaris plants was a more powerful inhibitor of
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Trypanosoma cruzi growth than was the purified main constituent thymol (Santoro et al.,
2007b). Together, these studies suggest that the phytochemical mixtures found in natural
plant materials may be more effective inhibitors of parasites than are isolated chemicals.

Pollen and nectar consumed by bees contain diverse phytochemicals (Dobson ¢
Bergstrom, 2000; Adler, 2001; Jakubska et al., 2005). For example, over 100 compounds
were found in the nectar of a single orchid species (Jakubska et al., 2005), and bumble bees
forage from a variety of floral species throughout the growing season (Goulson ¢ Darvill,
2004; Heinrich, 2004; Vaudo et al., 2015). Pollen contains particularly high phytochemical
concentrations that can exceed those in nectar by several orders of magnitude (Detzel ¢
Wink, 1993; London-Shafir, Shafir & Eisikowitch, 2003; Palmer-Young et al., 2016). Hence,
pollen could be expected to have particularly strong effects on parasites that are susceptible
to inhibition by phytochemicals. However, studies in bees have found that, even though
pollen consumption increased expression of immune genes (Brunner, Schmid-Hempel
¢ Barribeau, 2014), dietary pollen increased C. bombi infection intensity (Logan, Ruiz-
Gonzilez & Brown, 2005; Conroy et al., 2016) in Bombus terrestris and B. impatiens. One
hypothesis to explain the positive effects of pollen was that nutrients in pollen promote
parasite growth. Pollen is rich in carbohydrates, proteins, and other nutrients that are
essential for bee reproduction (Roulston ¢ Cane, 2000), but these nutrients could also
benefit parasites that can tolerate high phytochemical concentrations (Palmer-Young et al.,
2016).

To test the alternative hypotheses that (a) pollen phytochemicals inhibit parasites and
(b) pollen nutrients benefit parasites, we tested the direct effects of six pollens, a nectar
phytochemical with demonstrated effects against trypanosomatids, and monosaccharides
on C. bombi growth in cell culture.

MATERIALS AND METHODS

Overview

Three experiments were conducted to elucidate the effects of pollen extracts on in vitro
growth of C. bombi cell cultures. Experiments evaluated the effects of (1) extracts of single
pollens, (2) extracts of mixed pollens, and (3) specific chemicals (sugar and the floral
phytochemical caffeic acid) in order to better understand the mechanisms by which pollen
extracts affected growth. In addition, the pollen extracts were chemically analyzed by HPLC
to determine sugar content.

Parasite culturing

Crithidia bombi is a flagellated trypanosomatid parasite that infects bumble bees (Lipa ¢
Triggiani, 1988; Schmid-Hempel ¢ Tognazzo, 2010). Phylogenetic analyses (Schwarz et al.,
2015) showed that C. bombi belongs to one of four clades in the subfamily Leishmaniinae,
which is one of roughly 12 trypanosomatid subfamilies (Maslov et al., 2013). The clade
of C. bombi also includes the honey bee parasites C mellificae and L. passim as well as
Leptomonas spp.. Other clades within the Leishmaniinae include the Leishmania spp.
human parasites and the mosquito-infecting model organism Crithidia fasciculata (Schwarz
etal., 2015).
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Crithidia bombi was isolated in 2013 by Ben Sadd from feces of wild Bombus impatiens
near Normal, IL by flow cytometry (Salathé et al., 2012) and kept frozen at —80 °C until
several weeks before the experiments. Thereafter, cells were grown at 27 °C in 50 cm?
tissue culture flasks and transferred to fresh media every 3—4 days. No special permits
were required for the collection. Cultures are available upon request, provided appropriate
documentation and permissions are supplied. The growth medium was composed of a
tryptose-liver broth (containing 2.2 mM glucose) supplemented with B vitamins, haemin,
and 10% heat-inactivated fetal bovine serum. In addition, the medium contained 10 mM
fructose and 2.5 mM free proline (Salathé et al., 2012).

Pollen and phytochemical treatments

Six types of bee-collected pollen—buckwheat (Fagopyrum esculentum), lotus (Nelumbo
nucifera), poppy (Papaver somniferum), rapeseed (Brassica napus), sunflower (Helianthus
annuus), and tea (Camellia sinensis)—were obtained from Changge Huading Wax Industry
(Henan, China) in 2015. The pollens were stored at —20 °C and sorted to remove
heterogeneous granules. For extraction, 6 g of pollen was incubated for 24 h at room
temperature in constant darkness with 20 mL of 50% v/v aqueous methanol in a 50 mL
conical tube. The 50% methanol was used as a solvent due to its widespread application
in phytochemical extraction of pollen (Serra Bonvehi, Soliva Torrenté ¢ Centelles Lorente,
2001) and other plant tissues (Keindnen, Oldham ¢ Baldwin, 2001). Samples were shaken
at 180 rpm on a shaker table for the first 20 min of the extraction. After 24 h, tubes were
centrifuged (30 min, 2,700 g) and the supernatant removed, sterile-filtered, aliquoted,
and stored at —80 °C until use. The mixed-pollen extract consisted of equal volumes of
buckwheat, rapeseed, and sunflower extracts, which were combined immediately before
the experiment.

Caffeic acid was used as a representative phytochemical to evaluate possible negative and
positive effects of pollen constituents on C. bombi. This hydroxycinnamic acid is likely to
be widespread in bee diets, as it was the most widespread phytochemical in honey extracts,
with occurrence in all 14 tested types of Turkish honey (Can et al., 2015); cinnamic acids
and other phenolics are also abundant in pollen (Campos et al., 1997; Serra Bonvehi, Soliva
Torrentd & Centelles Lorente, 2001; Almaraz-Abarca et al., 2004). Caffeic acid inhibited
the trypanosomatids Leishmania donovani, Trypanosoma cruzi, and T. brucei (Tasdemir
et al., 2006; Grecco et al., 2014), which suggested that caffeic acid could inhibit C. bombi
as well. However, caffeic acid is also a powerful antioxidant, with ability to scavenge
reactive oxygen species that exceeds that of ascorbic acid and is comparable to that of
tocopherols (Chen ¢ Ho, 1997; Almaraz-Abarca et al., 2004). Antioxidant activity of caffeic
acid and other pollen components (Almaraz-Abarca et al., 2004) might protect Crithidia
bombi from stress incurred during the experiment, such as shaking and handling, and
in the wild, where parasites encounter temperature changes, osmotic shock, UV light,
and pro-oxidant enzymes of the bee immune system that may contribute to oxidative
stress (Sadd ¢ Barribeau, 2013; Vanaerschot et al., 2014). For experiments, caffeic acid
was dissolved to a concentration of 22.2 mM (4 mg mL™!) in 50% methanol and tested
at final concentrations of up to 1.85 mM. This concentration is more than 30-fold the
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levels that occur in most types of honey (Can et al., 2015) and 10-fold the mean cinnamic
acid concentration in pollen (Serra Bonvehi, Soliva Torrenté ¢ Centelles Lorente, 2001).
Therefore, the tested concentration range was likely to detect any direct effects against
trypanosomatids that could be attributed to phytochemical consumption by bees.

The addition of sugar to the medium was also tested for positive or negative effects on
growth. Bee-collected pollen, such as that used to create the extracts in this study, is rich
in sugars from nectar, which are added to the pollen by bees during collection (Roulston
¢ Cane, 2000). Previous experiments with C. bombi cell cultures showed that growth was
strongly inhibited when 20% of growth medium was replaced by sugar syrup (Cisarovsky
& Schmid-Hempel, 2014). However, many trypanosomatids prefer sugars to proline as
a carbon source (Lamour et al., 2005; Bringaud, Riviere & Coustou, 2006), which suggests
that addition of sugar to the tryptose- and liver-based growth medium (Salathé et al., 2012)
could enhance growth. To evaluate the effects of pure sugars relative to pollen extracts,
a 1.1 M sugar solution, consisting of equimolar amounts of glucose and fructose in 50%
methanol, was added to the growth medium at final concentrations of up to 93 mM. This
sugar concentration was chosen to slightly exceed the likely sugar concentration in the
pollen extracts, which was estimated a priori as ~500-660 mM. This estimate was based on
a sugar content of ~1.7-2.2 mol kg~! (~30-40% monosaccharides by weight in the pollen
(Todd & Bretherick, 1942; Herbert ¢ Shimanuki, 1978; Roulston ¢ Cane, 2000; Campos et
al., 2008)), with ~30% pollen in the extract. The sugar composition was chosen to reflect
the roughly equal amounts of glucose and fructose that have been found in nectar and
honey (London-Shafir, Shafir & Eisikowitch, 2003; Ohmenhaeuser et al., 2013). Although
pollen can contain sugars other than monosaccharides (Herbert ¢ Shimanuki, 1978),
monosaccharides were used because the bee intestine rapidly hydrolyzes disaccharides to
glucose and fructose (Nicolson, 1998), which likely leaves only monosaccharides in the distal
intestine where trypanosomatids become established (Lipa ¢ Triggiani, 1988; Schwarz et
al., 2015). The 1.1 M sugar solution was tested at up to 8.3% concentration by volume (93
mM monosaccharides in growth medium).

Experimental design

Each experiment tested the effects of treatments on growth of parasite cell cultures in
96-well microplates. The first experiment tested extracts of six different species of pollen.
The second experiment tested the effects of buckwheat, rapeseed, and sunflower pollen
extracts, individually and in a mixture that consisted of equal proportions of each of the
three extracts (i.e., one-third buckwheat, one-third rapeseed, and one-third sunflower
extract by volume). The third experiment tested the effects of added chemicals, which
included the common floral phytochemical caffeic acid and a sugar solution. This third
experiment included buckwheat pollen extract as a positive control to verify the effects of
pollen extracts observed in the previous two experiments.

To test the effects of pollen extracts, extract of each of the six pollens was dissolved
at six concentrations by two-fold serial dilution. Concentrations ranged from 0-5% (for
pollen extracts) or 0-8.3% (for chemical additions) final concentration by volume in
growth medium. Additional 50% methanol was added to samples of lesser concentrations
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to equalize methanol concentrations across samples. The inner 48 wells of a 96-well plate
were filled with 100 pL of treatment solution (at 2x final concentration) and 100 pL of
a suspension of C. bombi cells (10° cells wL =), to achieve an initial cell density of 500
cells pL~! (250 cells wL~! for chemical addition experiment). Outer wells were filled with
200 L sterile water to mitigate edge effects. Plates were sealed with laboratory film and
placed inside zippered sandwich bags to minimize evaporation. Samples were incubated
without shaking at 27 °C in a dark incubator. Growth was measured as optical density (630
nm) at 24 h intervals for 5 d by a spectrophotometer. Before each growth measurement,
plates were shaken on a microplate shaker (30 s, 1,000 rpm, 4 mm orbit) to homogenize
and resuspend the cells. In addition, immediately before each spectrophotometer reading,
the plate cover used during incubation was exchanged for a dry plate cover under sterile
conditions, to prevent condensation from interfering with optical density measurements.
Wells that contained treatment media without cells and were used to control for changes
in optical density independent of parasite growth. Experiments included n = 8 (for pollen
extracts) or n =5 (for chemical additions) replicate samples per treatment concentration,
plus the n =2 negative control wells of cell-free treatment medium. Final concentrations
of methanol were 2.5% (for pollen extracts) or 4.17% (for chemical additions) by volume.

Analysis

Because no extracts or chemicals fully inhibited growth, EC50 values could not be calculated.
Instead, we used linear regression to test for concentration-dependent changes in parasite
growth. Treatment concentration (in percent extract for pollen extracts and mM for
chemical additions) was used as the predictor variable. For the Caffeic acid + Sugar
treatment in the chemical additions experiment, mM sugar was used as the predictor, to
better compare the effects of sugar with versus without caffeic acid. Maximum optical
density at 630 nm, estimated using a model-free spline fit, (Kahm et al., 2010), was used
as the response variable. Separate models were fitted for each pollen extract or chemical.
P-values were adjusted with a Bonferroni correction to account for multiple tests within
each experiment. Graphs were produced with the R package ggplot2 (Wickham, 2009).

Chemical analyses

Sugar contents of each type of pollen extract were determined by HPLC (Alliance €2695
HPLC system, Waters Co., USA) coupled with an evaporative light scattering detector
(ELSD, Waters 2424; Waters, Milford, MA, USA). Extracts were separated on a COSMOSIL
Sugar-D column (4.6 mm L.D. x 250 mm length; Nacalai Tesque, Kyoto, Japan) at a
column temperature of 30 °C. The mobile phase was 80% acetonitrile and 20% methanol
throughout the run, with a flow rate of 0.9 mL min~!. Quantities of sugar were determined
based on external standard curves from analysis of pure solutions of aqueous fructose,
glucose, and sucrose. Each sample had a total run time of 30 min (including column
regeneration). Sugar contents are expressed as means of two (fructose and sucrose) or
three (glucose) technical replicates.
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Figure 1 Individual pollen extracts increased parasite growth. Extracts of six types of pollen were tested
at up to 5% concentration. Each panel (A-F) shows the maximum optical density (OD 630 nm) for para-
sites exposed to 50% methanol extracts of one of the six types of pollen. An additional 50% methanol was
added to samples of lesser concentrations to equalize methanol concentrations (2.5% by volume) across
samples. Points and error bars show means and standard errors for each concentration (n = 8). OD, opti-
cal density (630 nm). See Figs. S1-S3 for complete growth curves.

RESULTS

Extracts of each of the six pollens increased C. bombi growth, as measured by the maximum
cell density achieved during the 5 d incubation period (Fig. 1); the increase in growth was
significant in analysis by linear regression (Table 1). Relative to the pollen-free control,
addition of 5% extract of each pollen resulted in approximately 50% higher maximum
density. A mixture of buckwheat, rape, and sunflower extracts had effects that were similar
to those of the individual pollens in isolation (Fig. 2).

In HPLC analyses, pollen extracts were found to contain considerable amounts of sugar,
mainly the monosaccharides fructose and glucose (Fig. 3), with sucrose found in tea and
sunflower extracts, but in relatively small amounts. Total sugar content ranged from 192
mM in tea pollen extract to 789 mM in rape pollen extract.

In the test of specific additional chemicals, both the buckwheat pollen extract (positive
control) and addition of sugar solution resulted in increased growth (Fig. 4 and Table 1),
whereas the common floral phytochemical caffeic acid had only weakly inhibitory effects
at up to 1.85 mM (Fig. 4 and Table 1), which is an order of magnitude higher than any
concentration documented among different types of honey (Can et al., 2015). Additional
sugar had similar effects whether it included caffeic acid (coefficient = 0.0028 £ 0.00060
SE) or not (coefficient = 0.0034 £ 0.00024 SE, Table 1). Although a transient decrease in
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Table 1 Effects of pollen extracts and supplemental chemicals on growth. Estimates and p-values are
for linear regression after Bonferroni correction for multiple testing within each experiment. Coefficients
are expressed as change in maximum optical density per percent pollen extract (A, B, and C: Buckwheat)
or per mM chemical (C: Caffeic acid, Sugar, and Caffeic acid + Sugar).

Treatment Coefficient (8) Std. Error T p(T)
A. Single pollens
Buckwheat 0.037 0.0028 13.02 <0.001
Lotus 0.024 0.0021 11.21 <0.001
Poppy 0.034 0.0042 8.18 <0.001
Rape 0.032 0.0028 11.25 <0.001
Sunflower 0.021 0.0024 8.80 <0.001
Tea 0.032 0.0031 10.28 <0.001
B. Mixed Pollens
Buckwheat 0.025 0.0021 11.99 <0.001
Rape 0.036 0.0028 13.16 <0.001
Sunflower 0.033 0.0025 13.36 <0.001
Mix* 0.025 0.0016 15.08 <0.001
C. Chemical additions
Buckwheat 0.029 0.0030 9.95 <0.001
Caffeic acid —0.013 0.0068 —1.99 0.23
Sugar 0.0034 0.00024 13.84 <0.001
Caffeic acid + Sugar” 0.0028 0.00060 4.73 <0.001
Notes.

2Mix treatment consisted of equal proportions of buckwheat, rape, and sunflower extracts.
bCoefficient expressed as change in OD per mM sugar.

growth was found at intermediate caffeic acid concentrations (Fig. S3), the greatest growth
inhibition occurred at intermediate concentrations, suggesting that inhibition reflected
the position of the sample on the plate rather than the effects of the phytochemical. As
can be seen from the growth curves of the buckwheat, sugar, and caffeic acid + sugar
treatments, early growth was often poor in the samples of intermediate concentration
that were incubated in the center of the plate. We attribute this effect to toxicity of the
methanol, which would have dissipated relatively slowly from the samples in the center of
the plate as compared to the samples at the periphery. In previous tests of three different
C. bombi strains, including the IL13.2 strain used here (Palmer-Young et al., 2016), only
weak effects of caffeic acid occurred at concentrations up to 1.39 mM (Fig. S4). None of
the tested concentrations resulted in >50% growth inhibition, which precluded estimation
of an EC50 concentration.

DISCUSSION

These experiments indicate that pollen extracts can increase growth of an intestinal parasite,
and that the growth-promoting effects of pollen extracts can be reproduced by addition
of similar amounts of a sugar solution. Pollen phytochemicals appear to be insufficient
to stop growth of C. bombi, and moreover, pollen appears to contain substances that
improve trypanosomatid growth. This result is consistent with previous experiments that
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Figure 2 Mixed and individual pollen extracts each increased growth. The treatments consisted of ex-
tracts of (A—C) individual pollens and (D) a mixture (“mix”) of equal proportions of buckwheat, rape-
seed, and sunflower pollen. Each panel represents a different pollen extract. An additional 50% methanol
was added to samples of lesser concentrations to equalize methanol concentrations (2.5% by volume)
across samples. Points and error bars show means and standard errors for each concentration (n=38).

showed a decrease in infection intensity in bees deprived of pollen; our results suggest a
mechanism by which pollen may directly promote trypanosomatid infection. The positive
effects of pollen nutrients on C. bombi, a hindgut trypanosomatid, suggests the potential
for facilitation of nutrient-limited hindgut parasites by midgut parasites that interfere with
nutrient absorption. In addition, the high phytochemical tolerance of C. bombi relative to
that of bloodstream trypanosomatids invites further study on adaptation to phytochemicals
in different trypanosomatid species, and variation in tolerance across life stages.

Phytochemical insensitivity

Crithidia bombi growth was not inhibited by any of the pollen extracts. This was
unexpected in the context of current literature on bumble bee-Crithidia interactions,
which has suggested that phytochemical ingestion can reduce C. bombi infection (Marnson,
Otterstatter & Thomson, 2010; Baracchi, Brown ¢ Chittka, 2015; Richardson et al., 2015).
On the contrary, growth was increased by addition of pollen extracts. Similarly, growth of
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Figure 3 Sugar composition of pollen extracts. Gray bars represent fructose; orange bars represent glu-
cose; blue bars represent sucrose. Concentrations were determined by HPLC with refractive index detec-
tor. Bars show mean of technical replicates (2 for fructose and sucrose, 3 for glucose).
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Figure 4 A floral phytochemical had weak effects on growth, whereas supplemental sugar increased
growth. Each panel shows the growth curve for parasites exposed to one of the chemical treatments. (A)
Buckwheat pollen extract was used as a positive control to confirm increased growth in the presence of
pollen extract. (B) The sugar treatment consisted of equimolar amounts of glucose and fructose; both (B)
caffeic acids and (C) sugars were dissolved in 50% methanol. (D) In the caffeic acid + sugar treatment,
concentrations are shown for caffeic acid (top line) and sugars (bottom line). Additional 50% methanol
was added to samples of lesser chemical or extract concentrations to equalize methanol concentrations

(4.17% by volume) across samples. Points and error bars show means and standard errors for each con-
centration (n=>5).

C. bombi in the present study was only weakly inhibited (<50% decrease in maximum OD,
Fig. 3) by caffeic acid at concentrations of over 1.8 mM. From an ecological perspective,
the 1.8 mM concentration is 6-fold greater than the concentration found in pollen (0.3
mM (Saric et al., 2009)) and 12-fold greater than the 0.15 mM (26.8 ppm) maximum
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concentration found in any type of honey, including the Quercus spp. honey from bees
that foraged on oak tree sap (Can et al., 2015). No other type of honey exceeded 0.05 mM
(8.8 ppm (Can et al., 2015)). Hence, it appears that C. bombi is little inhibited by naturally
occurring concentrations of caffeic acid or other compounds that may have been present in
the six different pollen extracts. The insensitivity of C. bombi to naturally occurring levels
of hydroxycinnamic acids is consistent with previous results (Palmer-Young et al., 2016).

The phytochemical tolerance observed here is greater than that found in some
bloodstream-form trypanosomatids, but not unprecedented for trypanosomatid life stages
found in insects. Concentrations needed for 50% growth inhibition (EC50) ranged from
0.006 to 0.31 mM (1.1-56 ppm) caffeic acid in bloodstream forms of L. donovani, T. brucei,
and T. cruzi, (Tasdemir et al., 2006; Grecco et al., 2014). However, tolerance can be much
higher in other trypanosomatid species and life stages. Leishmania promastigotes, the stage
found in the insect gut, retained viability at concentrations comparable to those tested in our
study, with inhibitory concentrations of 1.05 mM for Leishmania amazonensis and >2.78
mM for L. braziliensis (Passero et al., 2011). Similarly, caffeic acid EC50 was only 3.9-6.1
nM for intracellular bloodstream amastigotes of four tested Leishmania spp., but >2800 nM
(2.8 wM) for promastigotes, the stage found in the insect gut; the same trend was observed
for seven other compounds (Radtke et al., 2003). The higher phytochemical tolerance
of extracellular, promastigote Leishmania relative to bloodstream-form, intracellular
amastigotes was confirmed in other studies (Kolodziej & Kiderlen, 2005). These differences
in sensitivity may reflect different levels of exposure to phytochemicals during different life
stages, or costs of resistance in bloodstream forms. More study is needed to understand
the basis of differential resistance across life stages and species, which could be relevant to
development of drug resistance.

Commensurate with its evolutionary history of chronic phytochemical exposure in
the bee gut, C. bombi appears to be well adapted to phytochemicals, including those that
are toxic to other trypanosomatids and even those initially shown to reduce infection
intensity. For example, C. bombi exhibited EC50 values for several phenolics that were
orders of magnitude higher than those reported for other trypanosomatid species (Palmier-
Young et al., 2016), and infection was robust to thymol, anabasine, and nicotine under
controlled conditions (Biller et al., 2015; Thorburn et al., 2015). Although the present study
did not address possible host-mediated effects of phytochemicals on infection, such as
phytochemical-induced stimulation of immune responses (Borchers et al., 1997; Mao,
Schuler & Berenbaum, 2013) or changes in gut kinetics (Tadmor-Melamed et al., 2004)
that have been observed in other species and could alter trypanosomatid attachment to
the gut wall (Schwarz et al., 2015), the fact that none of the six pollens inhibited growth
demonstrates that C. bombi is robust to many of the phytochemicals in the diet of its hosts.

Many trypanosomatids complete their life cycle in two hosts, which may include insects,
mammals, and plants (Maslov et al., 2013). It would be intriguing to use the comparative
method to test whether evolutionary history is predictive of phytochemical tolerance. To
accomplish this, future studies could compare phytochemical tolerance of species that
occupy niches with different levels of phytochemical exposure. In order of decreasing
intensity of phytochemical exposure, these could include (a) species that utilize plants as
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hosts, (b) those that are gut parasites of herbivores, and (c) species and life stages that
live in the blood and are transmitted by blood-feeding insects. Trypanosomatids with
an evolutionary history of phytochemical exposure would be expected to have higher
phytochemical tolerance than those that encounter phytochemicals only occasionally or
indirectly.

Increase in growth was reproduced by addition of sugar

The growth-promoting properties of the pollen extracts may be attributable to their
constituent nutrients, in particular monosaccharides, and possibly amino acids. Pollen
collected by corbiculate bees, such as bumble bees, is moistened with nectar, which renders
it sufficiently sticky to be carried in the bee’s corbicula (pollen basket) (Roulston ¢» Cane,
2000). Thus, bee-collected pollen contains considerable amounts of carbohydrate, including
up to 40% sugars by weight (Todd ¢ Bretherick, 1942; Roulston ¢ Cane, 2000). Although
the osmolarity of very high (~20% w/v, unspecified composition) sugar concentrations
can kill C. bombi as well as other microbes (Cisarovsky ¢ Schimid-Hempel, 2014), the effects
found in this study indicate that addition of sugar at low concentrations is beneficial for
trypanosomatid growth.

The monosaccharides added to the growth medium would have increased the sugar
content of growth medium several-fold, providing up to 93 mM monosaccharides in
addition to the 12.2 mM in the base medium (10 mM from fructose + 2.2 mM from
glucose in liver broth (Salathé et al., 2012)). This additional sugar may have increased
the quality of the media for C. bombi energy production. Insect and bloodstream-form
trypanosomatids can use glucose as a carbon source (Mazet et al., 2013). Although proline
is the normal carbon source for trypanosomatids in insect guts where glucose is scarce
(Bringaud, Riviere & Coustou, 2006), proline metabolism is dramatically reduced in the
presence of glucose, which suggests that glucose is a preferred energy source (Lamour et
al., 2005). The trypanosomatids that infect bees, which consume carbohydrate-rich diets,
may be particularly adapted to use of carbohydrates. In a genomic comparison between
Leishmania major and the honey bee gut parasite Lotmaria passim (n.b. Originally reported
as C. mellificae), genes related to carbohydrate metabolism were enriched in the bee parasite
compared to its bloodborne relative (Rurnckel, DeRisi ¢ Flenniken, 2014). Genomic studies
may reveal whether carbohydrate metabolism is also well developed in C. bombi, which is
a close relative of L. passim (Schwarz et al., 2015).

The stimulatory effect of sugar on C. bombi growth raises the question of possible
facilitation of hindgut trypanosomatid infections by co-occurring infections that impair
nutrient absorption, such as Nosema ceranae and Nosema apis. Nosema spp. have been
implicated in collapse of honey bee colonies (Higes et al., 2009; Cornman et al., 2012) and
may infect bumble bees as well (Graystock et al., 2013). Field studies have found positive
correlations between Nosema apis and trypanosomatid infections in honey bees (Cornman
et al., 2012), which provides suggestive evidence for positive effects of Nosema spp. on gut
trypanosomatids. The present study suggests a mechanism by which Nosema infection
could contribute to trypanosomatid infection via negative effects on sugar absorption in
bees. Healthy bees and other nectivorous insects have an excellent ability to digest and
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absorb sugars from nectar (Nicolson, 1998), which may explain why there was no effect
of dietary sugar concentration on infection intensity in B. impatiens (Conroy et al., 2016) .
However, gut infection by microsporidians can disrupt the midgut epithelium (Higes et al.,
2008). Injury to midgut tissue may decrease absorption of sugar in hosts, as suggested by
the decreased hemolymph sugar concentrations and increased hunger observed in Noserma-
infected bees (Mayack ¢ Naug, 2009). As a result of Noserma induced malabsorption, more
sugar may reach the hindgut, and thereby increase the supply growth-limiting carbohydrate
to trypanosomatids. To test whether Nosema related malabsorption facilitates infection by
trypanosomatids, future experiments could test the effects of microsporidian infection on
fecal carbohydrate content and trypanosomatid infection intensity.

Although pollens differed considerably in sugar content, each extract had similar
effects on growth. This suggests that, in addition to sugars, pollen may contain additional
substances that promote C. bombi growth. One such substance may be proline, which is the
normal carbon source for trypanosomatids in insect guts where glucose is scarce (Bringaud,
Riviere ¢ Coustou, 2006). Proline has many functions in plants, including regulation of
osmolarity and resistance to abiotic stress (Verbruggen ¢» Hermans, 2008), and is the most
abundant amino acid in pollen. For example, pollen of nine Asteraceae species contained
85—420 mmol kg_1 free proline (Mondal, Parui & Mandal, 1998); another study found
173 mM kg-1 free proline in Spanish bee pollens (Params et al., 2006). A proline content
of 200 mmol kg~! in pollen would correspond to approximately 60 mM proline in the
pollen extract and 3 mM additional proline in samples treated with 5% pollen extract. This
would roughly double the 2.5 mM proline in the base growth medium (Salathé et al., 2012).
Although we were not able to conduct an amino acid analysis, which requires a special
type of HPLC column, proline is generally agreed to be found in all pollens (De Simnone et
al., 1980) as the dominant amino acid, composing 15-69% of total amino acids (Yang et
al., 2013). More study is needed to determine which, if any, additional pollen compounds
alter trypanosomatid growth in vitro and in vivo.

Pollen in pollinator communities

Pollen, like nectar, is an indispensable source of nutrients for bees and other pollinators that
supports insect immunity (Brunner, Schmid-Hempel ¢ Barribeau, 2014), survival (Conroy
et al., 2016), and reproduction (Vaudo et al., 2015). However, pollen may nourish parasites
as well as hosts. Although phytochemicals may reduce growth of some microbes, parasites
of phytophagous animals are likely adapted to the phytochemicals and concentrations
found in the diets of their hosts. Moreover, in coevolved obligate parasites such as Crithidia
and other trypanosomatids (Maslov et al., 2013), there may be substantial overlap in the
nutrient requirements of parasites and hosts. Shared nutritional requirements, and the
increased fitness of parasites in well-nourished hosts, may result in tradeoffs between
starvation of parasites and starvation of hosts, and may explain the utility of anorexia
as a defense against parasites in some taxa (Parker et al., 2011). The results found here
exemplify the trade-offs between host health and defense, underline the difficulty of
eradicating well-adapted parasites without compromising host fitness, and suggest that
natural selection may act across all levels of tritrophic interactions.
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