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ABSTRACT

Among numerous factors that contribute to honey bee colony losses and problems in
beekeeping, pesticides and Nosema ceranae have been often reported. In contrast to
insecticides, whose effects on bees have been widely studied, fungicides did not attract
considerable attention. Prochloraz, an imidazole fungicide widely used in agriculture,
was detected in honey and pollen stored inside hives and has been already proven to
alter immune gene expression of honey bees at different developmental stages. The aim
of this study was to simulate the realistic conditions of migratory beekeeping, where
colonies, both uninfected and infected with N. ceranae, are frequently transported to
the vicinity of crop fields treated with prochloraz. We investigated the combined effect
of prochloraz and N. ceranae on honey bees that faced fungicide during the larval
stage through food consumption and microsporidium infection afterwards. The most
pronounced changes in gene expression were observed in newly emerged Nosema-free
bees originating from colonies previously contaminated with prochloraz. As exclusively
upregulation was registered, prochloraz alone most likely acts as a challenge that
induces activation of immune pathways in newly emerged bees. The combination of
both stressors (prochloraz and Nosema infection) exerted the greatest effect on six-
day-old honey bees. Among ten genes with significantly altered expression, half were
upregulated and half downregulated. N. ceranae as a sole stressor had the weakest
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pathogens, parasites, pests, exposure to pesticides, loss of forage and incorrect beekeeping
practices) underlies honey bee colony losses (Goulson et al., 20155 Neumann ¢ Carreck,
2010; VanEngelsdorp & Meixner, 2010).

Pesticides used in agriculture indirectly contribute to colony collapses and bee declines
by increasing negative effects of diseases and/or parasites (Sanchez-Bayo & Goka, 2014).
The most common flowering crops protection products found in bees and bee products are
fungicides (Johnson et al., 2013; Mullin et al., 2010). Prochloraz is an imidazole fungicide
with an ergosterol-biosynthesis inhibiting (EBI) function that is widely used (Vinggaard et
al., 2006) and found in honey and pollen stored inside hives (Lambert et al., 2013). Previous
studies have shown that prochloraz, used alone and in combination with coumaphos,
inhibited the detoxification activity of cytochrome P450 (Johnson et al., 2006) and altered
immune gene expression in honey bees (Cizelj et al., 2016).

Nosema ceranae is highly prevalent endoparasite (Stevanovic et al., 2011; Vejnovic et al.,
2017) that infects the midgut of adult honey bees (Fries, 2010), but it has been detected in
other tissues (Chen et al., 2009; Copley ¢ Jabaji, 20125 Gisder et al., 2010) and haemolymph
(Glavinic et al., 2014) as well. It is considered a serious threat to beekeeping industry
(Simeunovic et al., 2014a), especially in some regions where dramatic colony losses were
clearly attributed exclusively to N. ceranae infections (Higes et al., 2008; Higes et al., 2009;
Martin-Hernandez et al., 2007). N. ceranae and synergistic factors were reported as the
cause of severe losses of honey bee colonies (Bacandritsos et al., 2010; Bromenshenk et al.,
2010). N. ceranae was found to suppress the honey bee immune response (Antunez et
al., 2009; Chaimanee et al., 2012), but stronger negative effects on bees were induced by
N. ceranae infection in combination with exposure to pesticides (Aufauvre et al., 2012;
Aufauvre et al., 2014; Vidau et al., 2011).

The aim of this study was to investigate the effects of fungicide consumption during
the larval stage and microsporidium infection three days after emergence of adult honey
bees. In a combination of field and laboratory experiment we tested our hypothesis that
prochloraz from the environment may reach the larvae and disturb the immune response
of newly emerged bees boosting the negative impact of Noserna infection that bees are faced
with during the adult life. Our experimental approach assessed the most realistic situation
of beekeeping in warmer climates, where colonies are moved to agricultural regions during
the main season so their brood is exposed to agricultural pesticides, including prochloraz
and majority of colonies are infected with N. ceranae (Bacandritsos et al., 2010; Higes et al.,
2013; Stevanovic et al., 2016; Stevanovic et al., 2013).

MATERIAL AND METHODS

Field experiment

The experimental apiary was situated at Faculty of Veterinary medicine (FVM), University
of Belgrade, Serbia. Healthy colonies headed by sister queens (Apis mellifera) without
clinical signs of brood and adult bee disease were chosen for the experiment. The first
colony was treated with prochloraz and was placed far away from the apiary to prevent
chance of drifting. The second colony served as control. Honey reserves were completely
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Table 1 Experimental design and description of experimental groups.

Sampling® Prochloraz non-treated groups Prochloraz treated groups
Non-infected N. ceranae infected Non-infected N. ceranae infected
bees (C) bees’ (CN) bees (P) bees’ (PN)

day 0 Co* / PO /

day 6 C6 CN6 P6 PN6

day 9 C9 CN9Y P9 PN9

day 15 C15 CN15 P15 PN15

Notes.

2Number of days after emergence; on each sampling day seven honey bees were collected for qPCR gene expression analysis.

PInfection with N. ceranae was performed on 3rd day after honey bees emergence.

“Experimental group designation.

dSamples were not collected.
removed from colonies. Each day during the whole month, treatment colony was fed with
200 ml of sugar syrup with prochloraz (Sigma, Darmstadt, Germany) in concentration
10 pg/kg, while the control received pure sugar syrup. Additionally, to affect honey bee
larvae, pollen (bee bread) was contaminated by spraying with prochloraz dissolved in sugar
syrup (in concentration 10 pg/kg). Prochloraz concentration used was in range detected
in contaminated honey and pollen stored inside hives (Lambert et al., 2013).

Laboratory experiment

A month after the first day of prochloraz treatment, one frame with sealed brood (prior to
emergence) from treated and one from control colony were transferred to the Laboratory
for Animal Genetics (at FVM, in close vicinity of the apiary). Frames with brood were kept
in separated incubators (at 34 4 1 °C) until bee emergence. At the time of emergence seven
bees from each frame were collected for gene expression analysis, representing zero-day
samples (CO and P0). Newly emerged worker bees were removed from both frames and
confined to cages designed by Glavinic et al. (2017). Each experimental group (Control,
Prochloraz, Nosema, Prochloraz and Nosema) contained three cages with 30 bees per cage.
One of three cages in each group was reserved for sampling on day six, second cage for day
nine, and last one for day 15, as shown in Table 1.

Fresh N. ceranae spore suspension with a minimum spore viability of 99% (assessed
with 4% trypan blue) was mixed with 50% sucrose solution to obtain the inoculum with
a final concentration of 1.000.000 spores/mL. Bees in six cages (groups CN6, CN9, CN15,
PN6, PN9, and PN15) were infected on the third day after emergence as described by Fries
et al. (2013). Other non-infected cages were fed with pure 50% sucrose solution. In all
cages food was consumed readily without regurgitation.

RNA isolation and cDNA synthesis

For gene expression analysis, seven bees from each group were collected on each sampling
day (0, 6, 9 and 15 days after emergence). Each individual honey bee was placed in sterile
1.5 mL polypropylene microtube (Eppendorf) with 200 nL of lysis buffer (Zymo Research,
Irvine, CA, USA) and homogenized with sterile disposable microtube pestles (VWR,
San Francisco, CA, USA). The total RNA was isolated from individual sample using the
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Quick-RNA MiniPrep Kit (Zymo Research). Following to manufacturer’s instructions of
Quick-RNA MiniPrep Kit the samples have passed through DNase treatment in order to
remove any contaminating DNA. The extracted RNA was immediately used to generate
cDNAs using the RevertAid™ First Strand cDNA Synthesis Kit (Fermentas, Waltham,
MA, USA).

Real-time qPCR

Primer pairs for 19 examined genes (15 immune related genes, two detoxification genes,
and two housekeeping genes) were those reported in Gregorc et al. (2012), Tesovnik et al.
(2017), and Evans (2006) (Table 2). For quantitative real-time PCR (RT g-PCR), 10 pL
reactions were prepared, containing 5 pL of Fast Start Universal SYBR Green Master
(ROX) (Roche Diagnostics GmbH, Germany), 250 nM of forward and reverse primer,
DEPC treated water and 1uL of cDNA (5 ng per reaction). Amplification of targeted
molecules was performed with ViiA7 (Applied Biosystems, Foster City, USA) and analysed
with QuantStudio™ Real-Time PCR Software. For the experimental run the following
cycle profile was used: denaturation step at 95 °C for 10 min, and 40 cycles at 95 °C for 20
s, 20 s at Tm of each primer pair and 72 °C for 20 s, followed by dissociation curve step at
95 °C for 15 s, 60 s at Tm of each primer pair and 95 °C for 15 s, when temperature was
gradually rising from Tm to 95 °C by 0.5 °C increments per cycle. Reactions for RT q-PCR
were carried out in 384-well plates (MicroAmp®; Life Technologies). Each run contained
three no-template controls and test samples preformed in duplicates. Gene expression
was analysed for 15 immune-related genes and two detoxification genes. We tested the
set of candidate normalization genes (actin and RPS5) as possible housekeeping genes. A
geNorm algorithm-based analysis (Vandesompele et al., 2002) indicated RPS5 as the most
suitable housekeeping gene. Gene expression values of non-treated group were used for
gene expression calibration. For each gene the level of gene expression was calculated using
the method described by Pfaffl (2001), where the relative expression ratio between treated
and non-treated group is based on PCR efficiency. These results were then visualized on
a heatmap illustrating expression of genes as a consequence of different treatments. The
significance was indicated according to the statistics described below.

All collected samples were also tested for the most common honey bee pathogens
using RT q-PCR as described above (Table 2). Tested samples were positive only for N.
ceranae and Deformed wing virus (DWV) and its RNA loads were evaluated by comparing
threshold cycle (Cq) values between treatment groups (Badaoui et al., 2017; Cizelj et al.,
2016; Zheng et al., 2015).

Statistical analysis

All statistical analyses and plotting were performed using R software version 3.5.1 (R Core
Team, 2017) with relevant libraries (Ismeans, moments, ggplot2) (Komsta ¢ Novomestky,
2015; Lenth, 2016; Wickham, 2009). Relative expression levels of studied genes were
normalized with housekeeping gene RPS5. Delta Cq (ACq) between housekeeping gene
Cq values and target genes Cq values were calculated. To analyze the effects of Noserma
infection, prochloraz treatment and interaction of both treatments on gene expression,
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Table 2 Primers used in this study.

Targets/Locus Gene description Sequences of primers used in qPCR Efficiency R?
gene ID (%)
Pathogen targets

A. apis Ascosphaera apis 28S large F: TCTGGCGGCCGGTTAAAGGCTTC NA NA
AY004344 subunit ribosomal RNA gene R: GTTTCAAGACGGGCCACAAAC

A. woodi Acarapis externus isolate B4E5 F: TCAATTTCAGCCTTTTATTCAAGA NA NA
HQ243442.1 cytochrome oxidase subunit I R: AAAACATAATGAAAATGAGCTACAA

ABPV Acute bee paralysis virus isolate F: ACCGACAAAGGGTATGATGC NA NA
HM?228893.1 GFflab R: CTTGAGTTTGCGGTGTTCCT

BQCV Black queen cell virus F: TTTAGAGCGAATTCGGAAACA NA NA
HQ655494.1 R: GGCGTACCGATAAAGATGGA

DWV Deformed wing virus isolate F: GAGATTGAAGCGCATGAACA 99.3 0.981
AY292384.1 R: TGAATTCAGTGTCGCCCATA

IAPV Israel acute paralysis virus of F: GCGGAGAATATAAGGCTCAG NA NA
EU224279 bees R: CTTGCAAGATAAGAAAGGGGG

KBV Kashmir bee virus F: TGAACGTCGACCTATTGAAAAA NA NA
AY275710.1 R: TCGATTTTCCATCAAATGAGC

P. larvae Paenibacillus larvae F: CGGGAGATGAGAAAACCAAT NA NA
DQ811780.1 R: CCGCAATCGTAAGCTGGTAT
Housekeeping genes

Actin Actin - cytoskeletal structural F: TTGTATGCCAACACTGTCCTTT 98.1 0.996
GB44311 protein R: TGGCGCGATGATCTTAATTT

RPS5 Ribosomal protein S5a F: AATTATTTGGTCGCTGGAATTG 101.0 0.989
GB11132 R: TAACGTCCAGCAGAATGTGGTA
Immune related genes

Abaecin Abaecin, antimicrobial peptide F: CAGCATTCGCATACGTACCA 104.3 0.992
GB18323 R: GACCAGGAAACGTTGGAAAC

Basket JNK MAP kinase F: AGGAGAACGTGGACATTTGG 96.7 0.992
GB56012 R: AATCCGATGGAAACAGAACG

Cactus IkB transcription factor F: CCTGGACTGTCTGGATGGTT 98.8 0.979
GB19910 R: TGGCAAACCCTTTCTCAATC

Defensin-1 Defensin 1 F: TGCGCTGCTAACTGTCTCAG 101.0 0.983
GB41428 R: AATGGCACTTAACCGAAACG

Defensin-2 Defensin 2 F: GCAACTACCGCCTTTACGTC 96.4 0.992
GB10036 R: GGGTAACGTGCGACGTTTTA

Domeless Cytokine receptor; JAK-STAT F: TTGTGCTCCTGAAAATGCTG 104.1 0.997
GB16422 immune signalling pathway R: AACCTCCAAATCGCTCTGTG

Dorsal-1 NEFkB transcription factor F: AGAGATGGAACGCAGGAAAC 98.7 0.994
GB19537 orthologue R: TGACAGGATATAGGACGAGGTAA

Hopscotch JAK tyrosine kinase F: ATTCATGGCATCGTGAACAA 103.2 0.995
GB44594 R: CTGTGGTGGAGTTGTTGGTG

Kayak Fos, the Drosophila F: CGACAGATCCGCAGAGAAAG 98.0 0.988
GB12212 homologue of the mammalian R: CCTGTTGCAGCTGTTGTATC

proto-oncogene product c-Fos

Lys2 Lysozyme; immune system-end F: CCAAATTAACAGCGCCAAGT 102.4 0.994
GB15106 product R: GCAATTCTTCACCCAACCAT

(continued on next page)
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Table 2 (continued)

Targets/Locus Gene description Sequences of primers used in qPCR Efficiency R?

gene ID (%)

PGRPSC4300 Peptidoglycan recognition F: GAGGCTGGTACGACATTGGT 104.6 0.996

GB15371 protein S1 R: TTATAACCAGGTGCGTGTGC

Spaetzle Toll-binding cytokine-like F: TGCACAAATTGTTTTTCCTGA 101.1 0.973

GB15688 molecule R: GTCGTCCATGAAATCGATCC

Toll Toll-like receptor F: TAGAGTGGCGCATTGTCAAG 100.1 0.987

GB18520 R: ATCGCAATTTGTCCCAAAAC

Detoxification

related genes

PKA-C1 cAMP-dependent protein F: TCCATTTTTGGTCTCCTTGC 98.1 0.998
kinase 1 R: GTAAAAGCGCGAATGTGGTT

PKA-R1 cAMP-dependent F: GAAGCAATTATTCGGCAAGG 99.3 0.992

protein kinase type I
regulatory subunit

R: TCACCGAAACTTCCACCTTC

we used a linear model for fixed effects (Im function in R) for each of 17 genes and each
sampling group (0, 6, 9, 15 days after emergence) according to the following model (1):

Yiik = i+ N;+P; + N;P; +ejji (1)

where y;jx is ACq value, p is overall mean, N; is fixed effect of Nosema infection (i = yes,
no), P; is fixed effect of prochloraz treatment (j = yes, no) and e;j; is residual error. The
estimation of least squares means followed by Dunnett’s post hoc test was used for pairwise
comparisons among the treatment groups. The assumption of normal distribution was
tested and met via examination of the residuals (coefficients of skewness and kurtosis).
The gene expression data (ACq values) and the results of statistical analysis were then
graphically summarized using boxplots (Figs. | and 2) where treatments with statistically
significant effect on gene expression were marked with an asterisk. If there were no
significant differences among the groups according to post-hoc pairwise comparison test,
they share the same color. A p-value less than 0.05 was considered statistically significant.

RESULTS

Effects of larval prochloraz consumption on immune system gene
expression of adult honey bees

In response to consumption of prochloraz in larval developmental stage (group P) the
majority of genes involved in immune response were upregulated compared to control
group (group C) in newly emerged honey bees (day 0). The most upregulated genes
were the gene encoding cytokine receptor Domeless (4.39; p < 0.001), the gene encoding
pathogen recognition protein PGRP-SC 4300 (3.04; p < 0.01), antimicrobial peptide
(AMP) gene defensin-2 (2.95; p < 0.001), and the gene for the JAK tyrosine kinase hopscotch
(2.73; p < 0.001). Significant upregulation of gene expression was also noticed for genes
encoding Toll (1.88; p < 0.01), Dorsal-1 (1.17; p < 0.01), Kayak (0.80; p < 0.05) and AMP
Lysozyme-2 (0.88; p < 0.01). On day six after emergence genes basket (2.23; p < 0.05),
PGRPSC 4300 (1.68; p < 0.01), lysozyme-2 (1.58; p < 0.05) and defensin-2 (0.89; p < 0.05)
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Figure 1 Treatment depended statistical analysis box plot diagram for immune-related and detoxifi-
cation gene expression. Each box plot represents the ACq values measured for biological replicates for se-
lected treatment. Boxes marked with an asterisk show statistically significant effects of treatment on gene
expression when the p-value was equal or less than 0.05. If there were no significant differences among the
groups, they share the same color. Treatments are indicated in the scale at the bottom of the plots (Con-
trol, C; Nosema-infected, CN; Prochloraz-treated, P; Prochloraz treated and Nosema-infected, PN). Analy-
sis was undertaken with program R.

Full-size &l DOI: 10.7717/peer;j.6325/fig-1
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Antimicrobial peptides
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Figure 2 Treatment depended statistical analysis box plot diagram for gene expression of antimi-
crobial peptides. Each box plot represents the ACq values measured for biological replicates for selected
treatment. Boxes marked with an asterisk show statistically significant effects of treatment on gene ex-
pression when the p-value was equal or less than 0.05. If there were no significant differences among the
groups, they share the same color. Treatments are indicated in the scale at the bottom of the plots (Con-
trol, C; Nosema-infected, CN; Prochloraz-treated, P; Prochloraz treated and Nosema-infected, PN). Analy-
sis was undertaken with program R.

Full-size Gl DOI: 10.7717/peerj.6325/fig-2

were significantly upregulated in group P compared to group C. On 9th day in group P
(compared to group C), significant increase in expression of defensin-2 (0.61; p < 0.05)
and toll (0.82; p < 0.05) was noticed and on 15th day the hopscotch (0.72; p < 0.05) and toll
(0.50; p < 0.05) were significantly upregulated (Figs. 1-3).

Effects of Nosema infection on gene expression of adult honey bees
The alterations in gene expression between Nosema-infected (group CN) and non-infected
(group C) adult honey bees were significant only in three cases: significant downregulation
of kayak gene (—2.02; p < 0.01) on day six after emergence and significant upregulation
of genes domeless and toll on 15th day (0.78; p < 0.05 and 0.70; p < 0.05, respectively)
(Figs. 1-3).

Effects of larval prochloraz consumption on gene expression of adult
honey bees infected with Nosema

In response to Nosema infection, the expression patterns of detoxification and immune-
related genes differed between adult honey bees experienced prochloraz treatment during
larval stage (group PN) and those from non-treated (group CN) colonies. The most
significant changes were noticed on 3rd day after Noserma infection (on day six after
emergence). The expression of gene kayak (1.97/—2.02), gene encoding AMPs Defensin-1
(2.34/—1.64) and gene PKA R1 (2.49/—1.03) was significantly higher in group PN than in

Glavinic et al. (2019), PeerJ, DOI 10.7717/peerj.6325 8/18


https://peerj.com
https://doi.org/10.7717/peerj.6325/fig-2
http://dx.doi.org/10.7717/peerj.6325

Peer

PGRPSC4300- | %

Spaetzle - - Log, value of relative
Toll pathway Toll- | expression ratio
Dorsal-1- % . x<-1
Cactus - . -1<x<-0.3
Domeless = | % . -0.3<x<-0.2
JAK/STAT pathway
Hopscotch = | % -02<x<0
Kayak-| % 0<x<0.1
INK pathway |
Basket = 01<x<04
Abaecin - 04<x<0.6
Antimicrobial Defensin-1- 06<x<12
peptldes Defensin-2 - | % x>1.2

Lysozyme-2- %
PKA-C1-

Detoxification |
PKA-R1 =

o @ @
o
% 0

9
O

Q

Figure 3 Heatmap immune-related genes in adult honey bee at different ages (0-, 6-, 9- and 15-days
after honey bee emergence). The colors indicate the average mRNA levels compared to average levels of
mRNA in control groups: blue indicate lower and yellow higher levels. Range log, value of relative ex-
pression ratio is indicated in the legend on the right. Each row corresponds to one gene transcript and
each column, to the expression profile of treatment. The gene names and corresponding pathway are indi-
cated on left side. Treatments are indicated in the scale at the bottom of the graph (Nosema-infected, CN;
Prochloraz-treated, P; Prochloraz treated and Nosema-infected, PN). Control group (C) was used for nor-
malization. Boxes marked with an asterisk show statistically significant effects of the treatment on gene ex-
pression, when p-value was equal or less than 0.05.

Full-size Gal DOI: 10.7717/peerj.6325/fig-3

group CN. Conversely, transcript levels of genes involved in JAK/STAT immune pathway
(domeless, —2.77/0.17 and hopscotch, —1.54/0.27), AMP gene defensin-2 (—1.34/0.40)
and genes involved in Toll immune pathway dorsal-1 (—1.21/0.20), toll (—1.01/0.34)
and PGRPSC 4300 (0.31/0.10) were significantly lower in PN than in CN group. On day
nine after emergence, the alternations in gene expression between prochloraz-treated and
non-treated honey bees infected with Noserma were not significant, and on 15th day only
the foll gene (0.42/0.70) was significantly downregulated (Fig. 3).

When gene expression levels of bees from PN group were compared to control bees
(C group), in six-day-old honey bees from group PN, five immune-related genes were
significantly downregulated: domeless (—2.77; p < 0.001), defensin-2 (—1.34; p < 0.001),
dorsal-1 (—1.21; p < 0.001), hopscotch (—1.54; p < 0.05) and #oll (—1.01; p < 0.001).
Conversely, the expression of detoxification gene PKA RI (2.49; p < 0.01) and AMPs gene
defensin-1 (2.34; p < 0.01) and kayak (1.97; p < 0.001) was increased. In 15-day-old honey
bees significant upregulation of only foll gene (0.42; p < 0.05) was recorded (Figs. | and 2).

Effects of N. ceranae and prochloraz treatment on levels of Deformed
wing virus (DWV) RNA load

In Nosema-infected groups DWV RNA loads significantly increased on 6th and 9th day
after Nosema infection. Prochloraz larval treatment decreased DWV RNA loads in newly
emerged and nine-day-old honey bees and increased it on six-day-old honey bees. The
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most significant increase of DWV RNA loads was noticed in prochloraz affected and
Nosema-infected six-day-old honey bees (Fig. 4).

Effects of treatments on Nosema level

In both Nosema challenged groups, prochloraz-treated and non-treated, increase of Nosema
RNA level was evident on day six and 15 of the experiment. However, Nosema level was
higher in prochloraz-treated group (PN) than in prochloraz non-treated group (CN)
(Fig. 1).

DISCUSSION

In this study the effects of two stressors, fungicide (prochloraz) and endoparasite
(microsporidium N. ceranae), on adult honey bees were investigated for the first time.
By keeping 30 bees per cage until sampling we assured that their social life disturbance
could not have an effect on gene expression. The Noserna RNA level increased during
the experiment in both Nosema-infected groups (CN and PN) as in our previous study
(Glavinic et al., 2017). Tt is interesting that bees affected with both stressors (fungicide and
Nosema) had higher Nosema levels than those that were only Nosema-infected (Fig. 1). This
finding led us to suggest that prochloraz, being ingested by larvae via food, could reach the
gut of newly emerged bees and could intensify Nosema infection.

Unlike previous finding of host immune suppression by N. ceranae infection (Antunez
et al., 2009; Chaimanee et al., 2012; Glavinic et al., 2017), it seems that this study revealed
only weak reaction to this parasite as the sole stressor. Only the gene kayak involved in
JUN NH2-terminal kinase pathway was significantly downregulated (p < 0.01) in six-day-
old honey bees. In 15-day-old bees expression of genes domeless and toll was upregulated
(p < 0.05). Nevertheless, with the exception of abaecin and defensin- 1, genes analysed in this
study have not been monitored in previous investigations of Nosema influence (Antunez et
al., 2009; Chaimanee et al., 2012; Glavinic et al., 2017). Abaecin was not downregulated
in both this and our previous study (Antunez et al., 2009; Chaimanee et al., 2012;
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Glavinic et al., 2017), and defensin-1 was suppressed in this study but not significantly,
therefore no clear contrast was observed between current and other available data (Antunez
et al., 2009; Chaimanee et al., 2012; Glavinic et al., 2017).

The effect of prochloraz on honey bee immune-related genes was estimated simulating
the realistic field event of honey bee contamination (Lambert et al., 2013). As adult bees
subjected to contamination do not live long, we hypothesize that pesticide contamination
of honey bee colony has greater consequences for the honey bee brood, especially larvae
that possibly receive pesticide through feeding by nurse bees. The results revealed the most
pronounced changes in gene expression in newly emerged (Nosema-free) bees originating
from colonies previously contaminated with prochloraz. In bees sampled on the day of
emergence (day 0), we registered significant upregulation in eight genes out of 15 analysed,
with most upregulated genes involved in JAK/STAT pathway domeless and hopscotch
(p <0.001) (Fig. 1). Other upregulated genes were genes involved in Toll-related immune
pathway PGRP-SC 4300, toll and dorsal-1, genes encoding antimicrobial peptides (AMP)
Defensin-2 and Lysozyme-2 (p < 0.01) and gene encoding Kayak protein involved in JNK
pathway (p < 0.05). The results suggest that prochloraz consumed by adult nurse bees
reached the larvae and affected all important pathways and mechanisms in charge for the
honey bee self-defence in this early stage of new born bees. As exclusively upregulation
was registered, we could propose that prochloraz contamination acts as a challenge that
induces immune pathways activation in newly emerged bees. Although the reaction of
immune genes varied during time, significantly changed genes were always upregulated in
bees affected by prochloraz treatment. This data support findings in our previous study
(Cizelj et al., 2016).

The effect of both stressors (prochloraz and Nosema) was most pronounced on
six-day-old honey bees (three days after Nosema infection) in which ten genes had
significantly changed expression. Five genes were upregulated with the greatest increase
of expression recorded in Kayak (p < 0.001), followed by Defensin-1 and detoxification
related gene PKA-RI (p < 0.01), abaecin and PGRPSC-4300 (p < 0.05). Among five
genes that were downregulated, the decrease at level p < 0.001 was evidenced in
four (defensin-2, domeless, dorsal-1 and toll), and only one gene (hopscotch) had the
decrease at level p < 0.05. In contrast, significant increase in the expression of the
same genes (p < 0.001 for domeless and hopscotch; p < 0.01 for defensin-2 and dorsal-

1) was recorded in six-day-old bees challenged by prochloraz. It is interesting that
no gene was significantly affected by the combination of prochloraz and Nosema
infection in nine-day-old bees, while in 15-day-old bees only toll gene was significantly
upregulated compared to control (p < 0.05). In the oldest bees significant upregulation
(p < 0.05) of the toll gene was also induced by prochloraz treatment or Nosema
infection alone. However, extremely opposite reaction of the same gene (significant
downregulation at level p < 0.001) was recorded in six-day-old bees challenged with both
prochloraz and Nosema infection. The absence of significant changes in expression of
majority genes by both stressors on day 15 is possible when fungicide treatment and
parasite infection (Fig. 1) have synergistic negative effect on honey bee health. But this
synergism has not been proven on transcription level of immune genes we monitored.
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Elucidation of the mechanism that underlies the observed finding is required, particularly
because of already proven negative effects of Noserna and pesticide combinations
(Alaux et al., 2010; Aufauvre et al., 2012; Aufauvre et al., 2014; Vidau et al., 2011).

The colonies used in this study were positive for DWV, which is expected since the
presence of this virus was previously reported in majority of Serbian honey bee colonies
(Simeunovic et al., 2014b; Cirkovic et al., 2018). The synergistic effect between DWV and
N. ceranae was investigated before (Costa et al., 2011; Doublet et al., 2015; Martin et al.,
2013) but no consistent conclusion was made. In our study significant increase of DWV
loads on 6th and 9th day after Nosema infection was recorded similar as in study of Zheng
et al. (2015). Furthermore, the highest DWV load was noticed in prochloraz-challenged
Nosema-infected six-day-old honey bees (Fig. 3). Prochloraz stimulating influence on
DWYV was noticed also in non-infected six-day-old honey bee while in non-infected newly
emerged and non-infected nine-day-old honey bees, prochloraz decreased DWV loads. The
stimulating effect of pesticide on DWV was noticed also in our previous study (Tesovnik et
al,, 2017).

CONCLUSIONS

Opverall, the results of this study confirm our hypothesis that honey bee food contamination
with prochloraz presents the threat to the next generation of bees. Although we did not
investigate how much larvae are contaminated, its contamination could be more important
as they are affected in sensitive stage of development. The worst consequences could be
presumed for colonies contaminated with prochloraz during late summer as their larvae
develop into winter bees responsible for colony survival till spring. This scenario is likely to
happen when beekeepers migrate their hives to sunflower forage that is in many regions the
last in the season, so the bees are wintered on sunflower food. As sunflower fields are most
likely contaminated with agricultural pesticides, there is great probability of sunflower
contamination and consequently the brood intended to produce the population of winter
bees. However, further investigations are required to reveal how the transcriptional
disturbances in bee larvae during late summer influence winter survival of the colony.
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