
Linked within-host and between-host
models and data for infectious diseases:
a systematic review
Lauren M. Childs1, Fadoua El Moustaid2,3, Zachary Gajewski2,3,4,
Sarah Kadelka1, Ryan Nikin-Beers1,5, John W. Smith, Jr4,
Melody Walker1 and Leah R. Johnson2,3,4,6

1Department of Mathematics, Virginia Polytechnic Institute and State University (Virginia Tech),
Blacksburg, VA, USA

2Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia
Tech), Blacksburg, VA, USA

3 Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech),
Blacksburg, VA, USA

4 Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech),
Blacksburg, VA, USA

5 Department of Mathematics, University of Florida, Gainesville, FL, USA
6Computational Modeling and Data Analytics, Virginia Polytechnic Institute and State University
(Virginia Tech), Blacksburg, VA, USA

ABSTRACT
The observed dynamics of infectious diseases are driven by processes across
multiple scales. Here we focus on two: within-host, that is, how an infection
progresses inside a single individual (for instance viral and immune dynamics), and
between-host, that is, how the infection is transmitted between multiple individuals
of a host population. The dynamics of each of these may be influenced by the
other, particularly across evolutionary time. Thus understanding each of these
scales, and the links between them, is necessary for a holistic understanding of the
spread of infectious diseases. One approach to combining these scales is through
mathematical modeling. We conducted a systematic review of the published
literature on multi-scale mathematical models of disease transmission (as defined
by combining within-host and between-host scales) to determine the extent to
which mathematical models are being used to understand across-scale
transmission, and the extent to which these models are being confronted with data.
Following the PRISMA guidelines for systematic reviews, we identified 24 of 197
qualifying papers across 30 years that include both linked models at the within
and between host scales and that used data to parameterize/calibrate models. We find
that the approach that incorporates both modeling with data is under-utilized, if
increasing. This highlights the need for better communication and collaboration
between modelers and empiricists to build well-calibrated models that both improve
understanding and may be used for prediction.
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INTRODUCTION
In the study of biological systems, phenomena are often observed at multiple scales—from
sub-cellular to entire populations. Here, we focus on the between-host scale and
the within-host scale, given their frequent appearance as a dichotomy in the study of
infectious disease (Mideo, Alizon & Day, 2008; Handel & Rohani, 2015;Willem et al., 2017).
The between-host scale may include how a disease spreads among organisms in a
population, while the within-host scale may include intra-cellular or inter-cellular
interactions with an invading pathogen. Since biological systems often do not exhibit a
clear separation of temporal or spatial scales, there has been increased interest in recent
years in how interactions at one scale can affect interactions at the other (Handel &
Rohani, 2015; Alizon, Luciani & Regoes, 2011; Mideo et al., 2013; Theys et al., 2018;
Dorratoltaj et al., 2017).

Mathematical and computational modeling, which has a rich history of application
to the dynamics of ecological systems and infectious diseases, has been used to study
phenomena at both within-host and between-host scales (as well as other scales as
is reviewed in Garira (2017)). At the between-host scale, classic compartmental models,
like the SIR model, which represents the interactions between susceptible individuals S,
infected individuals I, and recovered individuals R, have been used to predict the
spread of infectious diseases between individuals in a population (Kermack & McKendrick,
1991, 1927; Anderson &May, 1992). At the within-host scale, models such as the TIVmodel
of viral dynamics, which represents the interactions between target cells T, infected cells I,
and virus V, have been used to understand viral load within hosts (Perelson et al., 1996;
Nowak & May, 2000).

To understand the outcomes produced by the interactions in and between different
scales, a multi-scale model that links the scales may be constructed. For example, an SIR
model may be used to describe the spread of a viral disease in a population. If the
transmission rate between hosts is dependent on the outcome of the viral load from a TIV
model (since higher viral loads often are associated with higher disease transmission,
e.g., Nguyen et al. (2013)), the models at the between-host scale and the within-host scale
depend on one another, and are thus considered linked. These models can be diverse
in their structure and formulation (Garira, 2017; Garira, Mathebula & Netshikweta, 2014).
To be clear, multi-scale models encompass a wide range of possibilities, as reviewed in
(Garira, 2017). Here, we focus on the within-host and between-host scales for infectious
diseases.

Thinking about the implications across scales is important but is also challenging as
the relationships are often complex, nonlinear and, therefore, un-intuitive. Previously,
theoretical models of multi-scale phenomena have been reviewed (Mideo, Alizon & Day,
2008; Reiner et al., 2013; Dorratoltaj et al., 2017; Murillo, Murillo & Perelson, 2013;
Severins, 2012). Repeated themes of these works and others over the past two decades
have included: the need for more data (Alizon & Van Baalen, 2008; Alizon, Luciani &
Regoes, 2011; Handel & Rohani, 2015; Lavine, Poss & Grenfell, 2008; Pollitt et al., 2011);
the challenge of integrating scales (Frost et al., 2015; Perelson et al., 1996;
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Handel & Rohani, 2015;Mideo et al., 2013); and the role of heterogeneity (Lavine, Poss &
Grenfell, 2008; VanderWaal & Ezenwa, 2016). Furthermore, there was an emphasis
on the role of particular quantities such as within-host trade-offs (Martinez-Bakker &
Helm, 2015; Pollitt et al., 2011) and immune response factors (Graham et al., 2007;
Hawley & Altizer, 2011).

Of the 22 reviews found by our search, two were themselves systematic reviews
(Dorratoltaj et al., 2017;Willem et al., 2017). The former had a narrow focus on multi-scale
models of HIV infections in humans (and returned nine papers), while the latter examined
all individual-based models (IBMs) of infectious disease (698 in total) from 2006 to
2015. Of the remainder of reviews, several focused mainly on biological aspects of
multi-scale dynamics (Dolan, Whitfield & Andino, 2018; Forrester, Gutiérrez & Coffey, 2016;
Pimenoff et al., 2018; Wilks et al., 2012), or were more methodologically based (Kao, 2010;
Willem et al., 2017). Two recent works (Dorratoltaj et al., 2017; Theys et al., 2018)
focus specifically on multi-scale models of HIV infections of humans. In particular,
Dorratoltaj et al. (2017) only returned nine papers, a relatively low number, that is, similar
to our own study. However, they actually found three papers that did not appear in our
search (Saenz & Bonhoeffer, 2013; Metzger, Lloyd-Smith & Weinberger, 2011; Yeghiazarian,
Cumberland& Yang, 2013). As we required within- and between-host components as well as
data, none of these three papers match our criteria, and thus it is unremarkable that we did
not find these papers through our search.

In this review, we aim to illuminate the state of the field joining experimental data with
mathematical and computational models that bridge within-host and between-host
scales. By doing so in a systematic manner we expect to identify potential gaps in
understanding and methodology. Thus, we examine papers that incorporate models that
contain linked within-host and between-host model components as well as explicitly utilize
data. While we have related an example that involves the linking of two compartmental
models in the context of a viral disease, we do not restrict our search to only compartmental
models or to models of viral disease. We find 24 papers which contain both (i) the
within-host and between-host scales and their connection and (ii) data. In “Survey
Methodology,” we describe how we searched for and chose papers. In “Results,” we
explain trends of the models in the papers we selected. We then conclude in
“Discussion” with some overall thoughts on the current literature using multi-scale
models with data.

SURVEY METHODOLOGY
To perform our systematic review we followed the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) guidelines (Moher et al., 2009). PRISMA is a
standard protocol for conducting a systematic review or a meta-analysis. The flowchart
showing our procedures are presented in Fig. 1A.

We searched “All Databases” on Web of Science using the search terms (within-host�

OR in-host-model� OR among-host-model�) AND (between-host� OR nested-model� OR
cross-scale-model�) AND (pathogen� OR parasite�) AND (transmi�) for papers published
up to December 31, 2018. Terms combined within parentheses with “OR” require at least
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one of these terms while the “AND” between terms in parentheses requires something
from each group of terms. Terms that end in a � indicate that any form of the ending of the
word would be acceptable. For example, “transmi�” would return papers with transmit
or transmission. We note that this search type accesses the “title,” “abstract,” “author
keywords,” and “keywords plus.” If the search terms are not found in these locations, the
papers will not be returned from the search.

Based on these search terms, we obtained 225 results (Fig. 1A). We initially eliminated
29 search results, which included duplicates and other results that were not papers.
Further, there was one paper that could not be obtained in English (Verenini, 1983); only
an Italian version was found. This left us with 195 papers, which we initially screened
based on the abstract. Two additional papers were suggested during the review process
(Smith & Mideo, 2017; Greenspoon, Banton & Mideo, 2018), for which the abstracts were
screened, and the papers were ultimately excluded. These two papers are included in our
presentation of data but do not appear in the survey methodology as they were not
recovered by the search.

In the initial abstract screening phase, two randomly assigned people (i.e., two of LMC,
FEM, ZG, SK, RNB, MW, or LRJ) separately categorized each of the 195 papers into three
categories based on whether it appeared to include a linked model with data based
purely on the abstract: “Yes,” “Maybe,” and “No.” A linked model was defined as a
mathematical model that includes at least two scales, within-host and between-host, as well
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non-papers removed
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Figure 1 Schematic of survey methodology. (A) PRISMA flowchart showing the inclusion of papers. “Non-papers” refers to database entries that
were figures or codes. (B) Schematic of the screening and evaluation questions used. Dashed lines indicate links between questions that were
conditional, that is, answering the second question/box depended on the answers to the earlier question. For example, details on the study properties
(Q2.1–Q2.7) and questions from the final screening stage (Q3.1–Q3.3) were only collected for the 195 papers that were retained following the
abstract screening stage. Questions in boxes 4–8 were completed for all 24 papers that remained following the final screening stage. Questions are
found in Text S1; Responses are found in Tables S1–S8; References to all included papers are found in Text S2; References to all excluded papers are
found in Text S3; All recorded data can be found in our Supplemental Data Sets. Full-size DOI: 10.7717/peerj.7057/fig-1
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as some explicit link between the scales. The abstract was labeled as follows: “Yes” if it
appeared to describe both a linked model with data; “Maybe” if it either (i) clearly
described a linked model but was unclear on data, or (ii) clearly referred to data, but was
unclear if the included model was linked; “No” if it did not meet any of the above criteria,
was obviously a review, or obviously outside the scope of our review. A set of study
properties (Fig. 1B, Q2.1–Q2.7) were also collected for each of 158 papers at the abstract
screening stage including the focal host species, other mentioned species, the type of
infection, and the main results of the paper. Study properties were not recorded for the other
37 papers as they were either review papers not out of scope (19) or deemed out of scope
(18). The total number of papers for which we recorded the study properties is 160.
This includes the two additional papers that were suggested during the review process.
If an abstract was labeled with two “Yes” or with one “Yes” and one “Maybe,” we
retained the paper for full paper screening; if an abstract was labeled with two “No” we
excluded the paper from screening. If an abstract was labeled with one “Yes” and one
“No,” we reviewed the abstract collectively to relabel it to two “Yes,” two “No,”
or one “Maybe.” If an abstract was labeled with one “Maybe” and one “No,” the person
who labeled “Maybe” was assigned to skim the paper to decide if the paper should be kept
or eliminated. If an abstract was labeled with two “Maybe,” a third randomly chosen
person was assigned to skim the paper to decide whether it should be kept or eliminated.
A record was kept if it appeared to have a linked model and/or data, but still was unclear
if it had both; the paper was excluded otherwise. Once this process was completed,
we kept 62 papers for further screening, and excluded 133 papers based on the abstracts.
The reason for exclusion (lacking data, lacking a model, lacking a within-host component,
lacking a between-host component, review, or another reason, which needed to be
described) was recorded for all 133 papers excluded at this stage (Fig. 1B, Q3.2–Q3.3).
Although there may have been multiple reasons to exclude papers, only one reason was
recorded.

We then conducted a final screening of the remaining 62 papers by having two
individuals (randomly assigned from the full author list) read through the full text of
each paper. During this step, a final determination was made for each paper whether to
keep it for further analysis or to exclude it. A paper was kept if it contained a linked
model with data; a paper was otherwise excluded. The reason for exclusion (lacking data,
lacking a model, lacking a within-host component, lacking a between-host component,
review, or another reason, which needed to be described) was recorded for all
38 papers excluded at this stage (Fig. 1B, Q3.2–Q3.3). In all, we included 24 papers
(Althouse & Hanley, 2015; Chaves, Kaneko & Pascual, 2009; Chen, Sanderson & Lanzas,
2013; Cooper & Heinemann, 2005; Day, Alizon & Mideo, 2011; Dennehy et al., 2006;
Dwyer, Levin & Buttel, 1990; Fryer et al., 2012; Giardina et al., 2017; Hall & Mideo, 2018;
Handel et al., 2013, Handel et al., 2014; Kennedy & Dwyer, 2018; Leclerc et al., 2014;
Lindberg et al., 2018; McKenzie & Bossert, 2005; Mideo et al., 2011; Reperant et al., 2012;
Stephenson et al., 2017; Takumi et al., 2010; Tuncer et al., 2016; Van Dorp, Van Boven &
De Boer, 2014; Volz, Romero-Severson & Leitner, 2017; Vrancken et al., 2014) in the
full analyses (Fig. 1A).
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For the papers that were included, we answered a detailed set of questions, which
described important aspects of the model (such as the transmission route), how the models
were linked, how the data was used in the model, etc. (Text S1; Fig. 1B, Q4–Q8).
We further characterized the journal in which each paper appeared as a general audience
journal, a specialized biological journal, a primarily mathematical/computational journal,
or a biology sub-discipline journal (Fig. S1).

RESULTS
Traits of included compared to excluded papers
Our search process (including suggestions in the review process) yielded 197 papers
published over the span of more than 30 years. While the earliest included paper was from
1990 (Dwyer, Levin & Buttel, 1990), the next papers that met our requirements were
published 15 years later (Cooper & Heinemann, 2005; McKenzie & Bossert, 2005). In the
interim, a few more papers were published, but interest in this general area grew quickly
starting in 2005. Both the number of papers loosely related to the topic (i.e., those
excluded) and papers meeting our criteria to include both models and data (i.e., those
included) increased in that time frame (Fig. 2A).

Papers spanned a variety of host species systems (Fig. S2). Infections of humans were,
not surprisingly, the most common in both the excluded (44/135) and included categories
(8/24), followed by non-human mammals (30 overall) and invertebrates (20 overall).
Although human infections were considered in the largest number of included papers
overall, the proportion of included papers when broken down by focal host species is
largest for non-human mammals (7/30) and approximately the same for invertebrates
(3/20) and humans (8/52). The most common reason for exclusion was a lack of data being
used with the model (64/135) followed by no model (37/135) (note, that only one reason
was recorded for each paper). That is, many papers explore within- to between-host
transmission either from a modeling or empirical perspective, but many fewer link the
models robustly to data. Recently, there have been a number of review papers on
multi-scale models with data, another common reason for exclusion (22/135).
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Traits of included papers
We considered whether the aim of each paper was primarily strategic (trying to
understand underlying dynamics) or primarily tactical (trying to make predictions)
(Nisbet & Gurney, 1982). Of the papers examined, most were classified as primarily
strategic and very few papers as primarily tactical. Only one paper was classified as both
strategic and tactical (Vrancken et al., 2014) (Table S4.2). Included papers were rarely
found in highly specialized non-mathematical journals (2/24), but were relatively equally
spread between mathematically focused journals, biology focused, and for a general
audience (Fig. S1).

Infection, host, and transmission categorization
We found that the majority of the papers and models focused on a single infection. Most
infection types were viral (12/24), with protozoa being the second most common (4/24).
The host species were predominately mammals (15/24), of which eight were human
hosts (Fig. 3A). Most papers modeled transmission as direct contact across infection types.
Half of those with protozoa infection type (2/4) and two thirds of those with bacterial
infection (2/3) were modeled by indirect contact. Of the papers which modeled viral
infections, all but two model direct transmission. In addition, there was one which was
indirect (Handel et al., 2014) and one with multiple modes of transmission (Handel et al.,
2013) (Fig. 3B).

Model characteristics
The multi-scale models reviewed are composed of three parts: the within-host model, the
between-host model, and the linking mechanism. Although we only considered papers with
models including all of these three components, as well as data, the papers varied on the
focus of their results. Approximately two-thirds (15/24) of papers primarily investigated how
the within-host dynamics affect the between-host dynamics; only two papers focused on the
impact of the between-host dynamics on the within-host dynamics. The remaining third
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of the papers either examined both of the above directions of impact (i.e., how the
within-host and between-host dynamics effect each other) or the influence of within- or
between-host dynamics on another factor in their model (Table S4.3).

In the multi-scale models we considered, the within-host component and between-host
component were both modeled explicitly. We characterized each of the within-host and
between-host models used as either a deterministic model, a stochastic model, an IBM,
or a statistical model. In all cases, our categorization is based on the process/mechanism
portion of the model being considered. Deterministic models included any mechanistic/
process based model that did not include stochasticity in the process. For example, this
may include ordinary differential equation (ODE)/compartmental models. These models
may have been fit assuming a stochastic observation model overlaid on the dynamics.
Stochastic models include any model that includes stochasticity in the description of the
mechanism/process. Examples of this would include stochastic SIR models, or stochastic
differential equations, but not IBMs. Here, IBMs include any models in which individuals
or agents were modeled separately from each other and allowed to interact within a
simulated environment. This is in contrast to models that include data collected on
individuals and where these are used to parameterize models (we would refer to these as
“trait based”). IBMs as defined here may contain both deterministic and stochastic
components. These models are typically much more difficult to analyze and fit to data than
either of the other two flavors of mechanistic models, hence why we considered them
separately. Finally, statistical models are those that seek to fit a function to data without the
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function having an explicit link to a mechanism for what produces a pattern. This would
include all flavors of regression, and many machine-learning approaches.

Figure 4 shows the types of within-host and between-host models used in the included
papers. Most studies used the deterministic model type at least once, either for within-
or between-host models and sometimes for both. In the included papers, within-host
models were most commonly deterministic (11/24), followed by statistical (9/24),
individual-based (2/24), and stochastic (2/24). In contrast, for the between-host models,
the majority were deterministic (13/24), with a lower and more evenly distributed
representation of stochastic (5/24), individual based (3/24), and statistical (3/24). One study
used an IBM model type for both the within-host model and the between-host model
(Van Dorp, Van Boven & De Boer, 2014). In general, studies did not typically use the same
modeling approach for both the within- and between-host components. As for host type,
there was no evident correlation between model types and the focal host species used in the
model (Fig. S3).

Within- and between-host models can be linked in three different ways: within- to
between-, between- to within-, or bidirectionally. Regardless of the varied emphasis of the
results of the papers, as described above, we examined the formulation of the linking
mechanism of the model. Among the included papers, 12 of the studies linked the within-
host model to the between-host model while 12 linked bidirectionally—both within-host
to between-host and between-host to within-host (Table S5.5).

To link the within-host and between-host models, a linking mechanism was needed,
which we categorized either as a state or a trait. Linking via a state meant that an outcome of
the model was used; for example, the pathogen load at the within-host scale or the number of
infected individuals at the between-host scale. In contrast, a trait was a parameter of the
model; for example, the pathogen growth rate at the within-host scale or the transmission
rate at the between-host scale. The model framework was categorized in one of three ways:
linked only by states, only by traits, or by both traits and states. Furthermore, models
could also have multiple linking mechanisms. In the included papers, eleven studies used
state variables, four used trait variables, and nine used both (Table S5.6).
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Within-host models (Fig. 5A) are linked to the between-host models mostly via the
pathogen load, with more than half the papers using this linking mechanism (18/24).
Pathogen growth rate was the second most used trait to link the within- to between-host
model (5/24 papers). All other within-host linking mechanisms were used in two or fewer
papers. Between-host models were also linked into the within-host models (Fig. 5B) based on
primarily a single trait, the transmission rate (15/24). All other between-host linking
mechanisms were used in five papers or fewer.

Role and method of data incorporation
All papers that passed the screening criteria utilized data in at least one component: the
within-host component, the linking mechanism, or the between-host component. Our
threshold for data use for model fitting was quite high. We typically required that data be
explicitly fitted to some component of the model, for example, fitting the “state” of the
system (e.g., the number of observed infectious individuals in an SIR model) to case data.
However, one included paper did not explicitly fit data. Instead Kennedy & Dwyer (2018)
constructed sophisticated linked within and between host models for baculovirus in
gypsy moths and then compared the predictions of the calibrated model to newly obtained
experimental data in a validation step. Even among the relatively small sample of papers
that included data at all in these multi-scale models, most did not use it for more than one
scale of their model (Fig. 6A). While most of the included papers (22/24) used data at the
within-host scale, only seven papers used data at both the within-host and between-host
scales, of which only four also used data for the linking mechanism. Papers that included
data for both the linking mechanism and the between-host scale also included data for the
within-host scale.

Across all model scales, bottom-up, that is, fitting of traits, was utilized more than top-
down, that is, fitting of states, or other methods (Fig. 6B). Only one paper used a mixture of
bottom-up and top-down data fitting methods (maximum likelihood and least squares,
respectively) at different scales, although one paper did not specify explicitly how the data
was incorporated into the model (Cooper & Heinemann, 2005). For data fitting that

A B

0

5

10

15

20

Between Host Linking Mechanism Within Host

C
ou

nt Data Used?
No
Yes

0

5

10

Between Host Linking Mechanism Within Host

C
ou

nt

Bottom up or
 Top Down?

Both
Bottom up
Top down

Figure 6 Role of data in multi-scale modeling efforts. (A) Scale (within-host, linking, or between-host)
at which data was incorporated (orange) in the multi-scale models. Some models used data at more than
one level. (B) How the data was incorporated into the models: bottom-up, that is, fitting traits (orange);
top-down, that is, fitting states (blue) or both (gray). Full-size DOI: 10.7717/peerj.7057/fig-6

Childs et al. (2019), PeerJ, DOI 10.7717/peerj.7057 10/18

http://dx.doi.org/10.7717/peerj.7057/fig-6
http://dx.doi.org/10.7717/peerj.7057
https://peerj.com/


was bottom-up, the majority of papers (5/12 within-host, 3/7 linking mechanism) used
least-squares or maximum likelihood (6/12 within-host, 4/7 linking mechanism, 1/4
between-host). Bayesian inference, although a popular statistical method, was only used
three times in the included papers (Fig. 7). Only a single paper (Volz, Romero-Severson &
Leitner, 2017) recorded using multiple fitting methods at the same scale, and most papers
used the same fitting method across all scales.

There was a diversity of fitting methods used across scales (Fig. 7). Different fitting
methods could, and often were, used in the same papers for incorporation of data at different
scales. The least squares method was used most when fitting data at the within-host
scale, followed by maximum likelihood. Similarly, linking mechanisms primarily used least
squares and maximum likelihood to fit data. In contrast, between-host models were less
consistent. Across model components the category “Other” was mostly comprised of
qualitative fitting methods, or papers for which authors were imprecise about how they fit
the data, but it also included methods such as cubic-spline interpolation.

DISCUSSION
Our objective in this review was to determine how multi-scale infectious disease models,
focusing on within-host and between-host scales, are used when they directly incorporate
data. We focused on which host species are modeled, which pathogens are modeled, which
types of models are used, how the within-host and between-host dynamics are linked, and at
what scale data has been used. We found that it was most common for these models to
describe a human population, to model a viral disease, to use a deterministic model at either
of the two scales considered, to link the pathogen load at the within-host scale, to link the
transmission rate at the between-host scale, and to use data at the within-host scale. It was
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least common for these models to describe a plant, fish, reptile, or amphibian population, to
model a bacterial, macroparasite, or fungal infection, to use a stochastic model at either
of the two scales considered, to link host symptoms at the within-host scale, to link the host
recovery rate at the between-host scale, and to use data at the between-host scale.

We speculate on the reasons for these outcomes. As human disease has tangible
consequences directly impacting the wider population, it is unsurprising that the primary
host species to examine these multi-scale interactions was found to be humans. However,
the importance of other species both economically and ecologically leaves the door
open for further study of these interactions. The dominance of viral disease as the focal
pathogen likely results from the rich history of mathematical modeling in viral disease as well
as their prominence in the human community. In choosing which type of model to use,
deterministic models do not include the mathematical and computational complication
of stochasticity, making them often easier to simulate and analyze than stochastic or IBMs.
Further, explicitly linking the within-host and between-host scales is challenging. Many
studies defaulted to the standard assumption that a higher pathogen load often correlates
with a higher chance of disease transmission, making pathogen load the simplest way to link
the within-host and between-host scales. Other linking mechanisms are often difficult to
model because there may not be an obvious relationship in how two elements at different
scales affect one another. The incorporation of data was primarily at the within-host
scale, perhaps stemming from the fact that some of these relationships can be obtained
through laboratory-based research. In contrast, between-host data may often require
large-scale resources and monitoring.

We were quite surprised that our search yielded only 24 papers that included both
across-scale modeling and substantial use of data. It is possible that our particular search
terms may have been overly restrictive. For instance, the search term “pathogen” may
be less likely to be used to describe infectious macro-parasites (e.g., worms). Nonetheless,
our relatively small included set indicates that there is considerable scope for further work
to be done in the area of data-rich multi-scale modeling of infectious diseases. Given
the specific results of our review, we propose that future research could productively focus
on (i) exploring alternative linking mechanisms and (ii) incorporating more and varied
data at all scales.

Most studies we reviewed appeared to use the simplest assumption to link the
within-host and between-host scales, namely, linking the pathogen load at the within-host
scale to the transmission rate at the between-host scale. While this assumption may be
appropriate for some diseases, there are other potential mechanisms that could be used to
provide links between scales, separately or perhaps in addition to pathogen load. For
example, these could include how host immunity affects the transmission rate or how
pathogen load affects the pathogen virulence among the population. The possibility of
using immune factors to link multi-scale models has been raised as a potential simplifying
method (Graham et al., 2007; Hawley & Altizer, 2011). Within-host data on antibodies,
when available, could be used as a measure of host immunity. Such simplifications,
however, raise the question of which immune components are sufficient. Another
major barrier, particularly in wild populations, is the lack of validated assays (Hawley &
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Altizer, 2011). Accounting for these interactions could produce models that make
complementary or potentially divergent predictions of transmission outcomes, and in turn
be used to elucidate the effects different treatments have on disease spread.

The lack of data was the major reason that our search only uncovered 24 papers
(Fig. 2C). Thus, a major gap in bridging within-host infection dynamics and between-host
transmission is the existence and incorporation of data. This appears not to have improved
significantly since similar observations in 2008 (Alizon & Van Baalen, 2008) and in 2015
(Handel & Rohani, 2015). Although there are cases where appropriate data for a model
does not currently exist and must be collected in a new experiment, a greater effort
should be put forth to work with and incorporate existing data sets. This is especially true
at the population level, where data are particularly difficult and expensive to collect. Far
more of the papers we examined included data at the within-host scale (Fig. 6A), likely
due to the accessibility and scale of data that can be collected in a lab setting. Along with
more data overall, the incorporation of more varied data at a variety of scales will enhance
the utility of multi-scale disease modeling.

CONCLUSION
Important results about disease spread can be gleaned from modeling the interactions at
both the within-host and between-host scales. While current research has mainly focused
on simple assumptions, we believe that including additional complexities in future
models may help to better explain observations from the field. Multi-scale modeling
provides a great opportunity for empiricists and theorists to work together, and to
contribute to the understanding of the drivers, treatments, and control of infectious
disease.
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