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ABSTRACT
Since rainfall data series often contain zero values and thus follow a delta-lognormal
distribution, the coefficient of variation is often used to illustrate the dispersion
of rainfall in a number of areas and so is an important tool in statistical inference for a
rainfall data series. Therefore, the aim in this paper is to establish new confidence
intervals for a single coefficient of variation for delta-lognormal distributions
using Bayesian methods based on the independent Jeffreys’, the Jeffreys’ Rule, and
the uniform priors compared with the fiducial generalized confidence interval.
The Bayesian methods are constructed with either equitailed confidence intervals or
the highest posterior density interval. The performance of the proposed confidence
intervals was evaluated using coverage probabilities and expected lengths via
Monte Carlo simulations. The results indicate that the Bayesian equitailed confidence
interval based on the independent Jeffreys’ prior outperformed the other methods.
Rainfall data recorded in national parks in July 2015 and in precipitation stations
in August 2018 in Nan province, Thailand are used to illustrate the efficacy of the
proposed methods using a real-life dataset.

Subjects Statistics, Computational Science, Natural Resource Management, Environmental
Impacts
Keywords Bayesian method, Fiducial generalized confidence interval, Highest posterior density,
Coverage probability, Delta-lognormal distribution, Coefficient of variation

INTRODUCTION
Presently, the effects of global climate change caused by many factors, both natural and
man-made (such as fuel burning, burning forests, deforestation, and oil drilling), are
continuous. Such factors directly enhance natural changes such as the greenhouse effect
and cause changes in precipitation, sea level, and the polar vortex. Thailand is a country
that has been affected, as has been seen in the past few years. Especially in the north
of Thailand, a lot of deforestation has caused flooding because there are insufficient trees
to absorb water due to heavy rain. Subsequently, many organizations, both governmental
and from the private sector, are interested in finding ways to mitigate the damage from
such events, and thus a study on measuring the dispersion of rainfall in areas with the
potential risk of flooding has become necessary. In statistics, the measurement of the
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coefficient of variation of rainfall data can illustrate the dispersion of rainfall and also
predict the precipitation in each area as well. However, rainfall data are often zero-inflated,
especially during the winter to summer months (October to May in Thailand; Thai
Meteorological Department, 2015). Thus, the rainfall dataset follows a combination of two
distributions: lognormal and binomial. Therefore, rainfall data follows a delta-lognormal
distribution, as has been reported by many researchers (Fukuchi, 1988; Shimizu, 1993;
Yue, 2000; Kong et al., 2012).

In many scientific studies, the data consist of positive right-skewed observations with an
excess of exact zeros, and Aitchison (1955) determined that the distribution of this data
is delta-lognormal, which has subsequently been used in other studies: for instance, the
diagnostic charge data in Callahan, Kesterson & Tierney (1997) study (Zhou & Tu, 2000;
Li, Zhou & Tian, 2013), fisheries data from a trawler survey carried out by the National
Institute of Water and Atmospheric Research in New Zealand (Fletcher, 2008; Wu &
Hsieh, 2014), household expenditure explored by the Ministry of Food in 1950 (Aitchison,
1955), and the concentration of airborne chlorine measured at an industrial site in the
US (Owen & DeRouen, 1980; Tian & Wu, 2006).

To solve the problems when dealing with delta-lognormally distributed data, statistical
inference is used which constructs confidence intervals for the parameters of interest, and
in the past two decades, many researchers have investigated this. Kvanli, Shen & Deng
(1998) constructed a confidence interval based on the likelihood ratio test approach for the
population mean when there are many zeros in the data. Zhou & Tu (2000) proposed
three different interval estimation procedures comprising a percentile-t bootstrap interval
based on sufficient statistics and two likelihood-based confidence intervals for the mean
of diagnostic test charge data containing zeros. Chen & Zhou (2006) introduced confidence
intervals based on a true generalized pivotal (GP) method, an approximate GP method,
a signed log-likelihood ratio (SLLR), and a modified SLLR for the ratio or difference
between two means of lognormal populations with zeros. Tian & Wu (2006) constructed
confidence intervals for the mean of lognormal data with excess zeros using an adjusted
SLLR via an SLLR approach and a bootstrap approach. Fletcher (2008) used three
methods, namely Aitchison’s estimator, a modification of Cox’s method for lognormal
distributions, and a profile-likelihood interval to construct confidence intervals for the
mean of a delta-lognormal distribution. Buntao & Niwitpong (2013) presented two
confidence intervals: the concept of the GP approach (GPA) and the method of variance
estimate recovery (MOVER) for the ratio of coefficients of variation of delta-lognormal
distributions. Li, Zhou & Tian (2013) proposed two methods for the mean based on
an approximate GP quantity and fiducial quantity of lognormal data with excess zeros.
Wu & Hsieh (2014) established confidence intervals with Aitchison’s method, a modified
Land’s method, the profile-likelihood interval, and the generalized confidence interval
(GCI) for the mean of a delta-lognormal distribution. Maneerat, Niwitpong & Niwitpong
(2018) introduced GCI, MOVER based on the variance stabilizing transformation (VST),
the Wilson score interval, and Jeffreys’ method to construct confidence intervals for
the mean of a delta-lognormal distribution.
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The coefficient of variation is another interesting parameter defined as the ratio of the
standard deviation to the mean. It is useful to describe the dispersion of data and can be
used to compare the degree of variation between two or more datasets with different
measurement units. The coefficient of variation is used in several fields, such as medical
science, meteorology, agriculture and economics (Kim, Lee & Choi, 2005; Gulhar et al.,
2012; Tian, 2005). Recently, several researchers have considered various approaches
to construct confidence intervals for coefficients of variation. For example, Wong &
Wu (2002), Tian (2005), Mahmoudvand & Hassani (2009), Donner & Zou (2012), and
Wongkhao, Niwitpong & Niwitpong (2015) established confidence intervals for the
coefficient of variation for a normal distribution. After that, Van Zyl & Van Der Merwe
(2017) proposed a Bayesian control chart for the common coefficient of variation for
a normal distribution. In studies on two-parameter exponential distributions, Sangnawakij &
Niwitpong (2017) used three methods, namely MOVER, GCI, and the asymptotic
confidence interval, to establish confidence intervals for a single coefficient of variation
and the difference between coefficients of variation, and Thangjai & Niwitpong (2017)
presented confidence intervals based on an adjusted MOVER, GCI, and a large
sample method for weighted coefficients of variation.

There have been studies on other skewed distributions, such as the one by Fletcher
(2008) who presented three methods: Aitchison’s estimator (the classical method),
a modification of Cox’s method for the lognormal, and a profile-likelihood interval, to
construct confidence intervals for the mean of a delta-lognormal distribution. Fletcher
suggested that Cox’s method and profile-likelihood interval, which are the modified
methods, are well performed to construct the confidence intervals for the mean of a
delta-lognormal distribution. While Aitchison’s estimator tend to have too low an upper
limit. Therefore, Fletcher not recommend the Aitchison’s estimator. Buntao &
Niwitpong (2012) revealed the GPA and a closed-form method of variance estimation for
coefficients of variation for both lognormal and delta-lognormal distributions. Harvey &
Van Der Merwe (2012) constructed confidence intervals for means and variances of
lognormal and bivariate lognormal distributions using a Bayesian method. Niwitpong
(2013) presented a new confidence interval for the coefficient of variation of a lognormal
distribution with restricted parameters. D’Cunha & Rao (2014) offered a Bayes confidence
interval for the mean of a lognormal distribution and compared it with the maximum
likelihood estimator method. Sangnawakij, Niwitpong & Niwitpong (2015) proposed
MOVER with Score and Wald interval methods to construct confidence intervals for the
ratio of coefficients of variation of gamma distributions. Rao & D’Cunha (2016) presented
Bayesian confidence intervals for the median of a lognormal distribution and compared
it with the confidence interval obtained from a Monte Carlo simulation. Recently,
Yosboonruang, Niwitpong & Niwitpong (2018) constructed confidence intervals for the
coefficient of variation of a delta-lognormal distribution based on a modified Fletcher
method using the concept of Fletcher (2008), and the GCI. The modified Fletcher, based on
its variance, is the basic method to construct the confidence interval. Although this method
failed in term of the coverage probability and the expected length, it is used to compare
with the GCI. Moreover, they proposed methods including the fiducial generalized
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confidence interval (FGCI) and MOVER based on the VST, the Wilson score, and Jeffreys’
method to establish the confidence intervals for the coefficient of variation of three parameters
of a delta-lognormal distribution, of which FGCI is recommended for constructing
confidence intervals (Yosboonruang, Niwitpong & Niwitpong, 2019). In addition, they
extended this study to construct confidence intervals for the coefficient of variation.

The goal of this study is to propose new confidence intervals using Bayesian methods
and comparing them with FGCI proposed by Yosboonruang, Niwitpong & Niwitpong
(2019) for a single coefficient of variation of a delta-lognormal distribution. The methods
and theories to establish the confidence intervals are described in section “Methods”.
Next, a simulation study and results are presented in section “Results”, and then the
proposed methods are applied to the real-world datasets, as detailed in “An empirical
study”. The last two sections contain discussion and conclusions on the study.

METHODS
Let V ¼ V1;V2; . . . ;Vnð Þ be a positive random variable from a lognormal distribution with
parameters m and s2, denoted as LN m;s2ð Þ. The probability density function ofVi is given by

f vi;m;s
2

� � ¼ 1

vis
ffiffiffiffiffiffi
2p

p exp � 1
2s2

ln við Þ � m½ �2
� �

; vi > 0

0 ; otherwise:

8<
: (1)

Suppose that the population of interest contains both zero and non-zero observed
values, denoted by n(0) and n(1), respectively, where n ¼ n(0) + n(1). The zero observations
follow a binomial distribution, n 0ð Þ � Bin n; d0ð Þ, where d′¼ 1 - d is the probability of zero
observations, and the non-zero observations follow a lognormal distribution, thus
resulting in a delta-lognormal distribution. Let X ¼ X1;X2; :::;Xnð Þ be a random sample
from a delta-lognormal distribution, denoted by D d0;m;s2ð Þ. The distribution function of
a delta-lognormal population presented by Tian & Wu (2006) can be derived as

G xi; d
0;m;s2

� � ¼ d0 ; x ¼ 0
d0 þ dF xi;m;s2ð Þ ; x > 0;

�
(2)

where F xi;m;s2ð Þ is the lognormal cumulative distribution function. Let

Yi ¼ ln Xið Þ � N m;s2ð Þ for Xi > 0. Aitchison (1955) described the respective population
mean and variance of X as

E Xð Þ ¼ mX ¼ d exp mþ s2

2

� �
(3)

and

Var Xð Þ ¼ s2
X ¼ d exp 2mþ s2

� �
exp s2

� �� d
	 


: (4)

The minimum variance unbiased estimator of mX was expressed by Aitchison (1955); the
estimator of mX is given by

m̂X ¼ d̂ exp m̂ð Þcn 1ð Þ
ŝ2

2

� �
; (5)

Yosboonruang et al. (2019), PeerJ, DOI 10.7717/peerj.7344 4/21

http://dx.doi.org/10.7717/peerj.7344
https://peerj.com/


where d̂ ¼ n 1ð Þ
n , m̂ ¼ 1

n 1ð Þ

Pn 1ð Þ
i¼1 ln xið Þ, and ŝ2 ¼ 1

n 1ð Þ�1

Pn 1ð Þ
i¼1 ln xið Þ � m̂½ �2, then the coefficient

of variation of X can be expressed as

CV Xð Þ ¼ h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp s2ð Þ

d
� 1

r
: (6)

The methods to construct the confidence intervals for h are proposed in the
following section.

The Bayesian confidence interval for a single coefficient of variation
If a delta-lognormal distribution has three unknown parameters d0;m;s2ð Þ, then the joint
likelihood function is given by

L d0;m;s2jx� � / d0ð Þn 0ð Þdn 1ð Þ
Yn 1ð Þ

i¼1

1ffiffiffiffiffi
s2

p exp � 1
2s2

ln xið Þ � m½ �2
� �

: (7)

Therefore, the Fisher information matrix of the unknown parameters d0;m;s2ð Þ per unit
observation is written as

I d0;m;s2
� � ¼

n
d0d

0 0

0 nd
s2 0

0 0
nd

2 s2ð Þ2

2
66664

3
77775: (8)

In the following section, the Bayesian confidence interval is constructed upon three
priors: the independent Jeffreys, Jeffreys’ rule, and uniform.

The Bayesian confidence interval using the independent Jeffreys’ prior
Jeffreys’ prior is defined as p hð Þ / ffiffiffiffiffiffiffiffiffiffiffi

I hð Þj jp
, where I hð Þ is a Fisher information matrix.

It is a non-informative prior distribution used in Bayesian parameter estimation and is
very useful because it has the notable property of invariance under the reparameterization
of h (Jeffreys, 1946).

The independent Jeffreys’ prior is a non-informative prior under the concept of
establishing the product of Jeffreys’ prior for each parameter while imposing staticity on
the others (Rubio & Liseo, 2014).

For a binomial distribution, the parameter of interest is the probability d′, then the
Jeffreys’ invariant prior for a binomial parameter is given by

p d0ð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffi
I d0ð Þj j

p
/ d0ð Þ�1

2d�
1
2;

(9)

which is Beta 1=2; 1=2ð Þ (Bolstad & Curran, 2017). Subsequently, the posterior
distribution of d′ is in the form

p d0jn 0ð Þ
� � / d0ð Þn 0ð Þ�1

2 dn 1ð Þ�1
2; (10)
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which is a beta distribution Beta n 0ð Þ þ 1=2; n 1ð Þ þ 1=2
� �

. Similarly, the independent
Jeffreys’ prior for a lognormal distribution is p s2ð Þ / s�2. Therefore, the prior
distribution for a delta-lognormal distribution can be expressed as

p d0;s2
� � / s�2 d0ð Þ�1

2 d�
1
2: (11)

The joint posterior density function is clearly defined as

p d0; s2jxð Þ ¼ 1

Beta n 0ð Þ þ 1
2 ; n 1ð Þ þ 1

2

� � d0ð Þn 0ð Þ�1
2 dn 1ð Þ�1

2 � 1ffiffiffiffiffiffi
2p

p
sffiffiffiffiffiffi
n 1ð Þ

p
exp � 1

2 s2

n 1ð Þ

m� m̂ð Þ2
" #

�
n 1ð Þ � 1
� �

ŝ2

2

� �n 1ð Þ�1

2

�
n 1ð Þ � 1

2

� � s2ð Þ�1�
n 1ð Þ � 1
� �

2 exp � n 1ð Þ � 1
� �

ŝ2

2s2

� �
;

(12)

where m̂ ¼ 1
n 1ð Þ

Pn 1ð Þ
i¼1 ln xið Þ and ŝ2 ¼ 1

n 1ð Þ�1

Pn 1ð Þ
i¼1 ln xið Þ � m̂½ �2. Since d′ and s2 are

independent, then the posterior distributions of d′ and s2 are a beta and an inverse gamma
distribution, respectively, as follows:

d0jx � Beta n 0ð Þ þ 1
2
; n 1ð Þ þ 1

2

� �
(13)

and

p s2jx� � ¼
n 1ð Þ�1ð Þŝ2

2

� �n 1ð Þ�1

2

�
n 1ð Þ�1

2


 � s2
� ��1�

n 1ð Þ�1ð Þ
2 exp � n 1ð Þ � 1

� �
ŝ2

2s2

� �
: (14)

To construct the Bayesian confidence interval, d and s2 in Eq. (6) are substituted by d′ | x
and s2 | x defined in Eqs. (13) and (14), respectively. Therefore, the 100 1� að Þ%
two-sided confidence interval for the coefficient of variation based on the independent
Jeffreys’ prior Bayesian is obtained by

CIB:indjh ¼ LB:indjh ;UB:indj
h

h i
; (15)

where LB:indjh and UB:indj
h are the lower and upper bounds of the 100 1� að Þ% equitailed

confidence interval and the highest posterior density (HPD) interval of h, respectively.
The HPD interval is an interval in the domain of a posterior probability distribution

which gives the narrowest length of the interval (Hyndman, 1995; Yau & Campbell, 2019).
It represents the most credible points which cover most of the distribution. In addition, each
point inside the interval has a higher probability density than those outside it.

The Bayesian confidence interval using the Jeffreys’ Rule prior
As mentioned previously, the Jeffreys’ Rule prior is obtained from the square root of the
determinant of the Fisher informationmatrix. This prior is appropriate for a single parameter.
The Jeffreys’ Rule prior has the rule that the prior is invariant (the valuable property)
(Lee, 2012), which is imposed as p s2ð Þ / s�3. From Harvey & Van Der Merwe (2012),
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the Jeffreys’ Rule prior for d′ in a binomial distribution is p d0ð Þ / d0ð Þ�1
2 d

1
2. It is easy to

find the Jeffreys’ Rule prior for the delta-lognormal distribution, which is defined as

p d0;s2
� � / s�3 d0ð Þ�1

2 d
1
2: (16)

Subsequently, the joint posterior density is given by

p d0;s2jxð Þ ¼ 1

Beta n 0ð Þ þ 1
2 ; n 1ð Þ þ 3

2

� � d0ð Þn 0ð Þ�1
2 dn 1ð Þþ1

2 � 1ffiffiffiffiffiffi
2p

p
sffiffiffiffiffiffi
n 1ð Þ

p
exp � 1

2 s2

n 1ð Þ

m� m̂ð Þ2
" #

�
n 1ð Þŝ2

2

� �n 1ð Þ
2

�
n 1ð Þ
2


 � s2ð Þ�1�n 1ð Þ
2 exp � n 1ð Þŝ2

2s2

� �
;

(17)

where m̂ ¼ 1
n 1ð Þ

Pn 1ð Þ
i¼1 ln xið Þ and ŝ2 ¼ 1

n 1ð Þ�1

Pn 1ð Þ
i¼1 ln xið Þ � m̂½ �2. In addition, the posterior

density of d′ becomes

d0jx � Beta n 0ð Þ þ 1
2
; n 1ð Þ þ 3

2

� �
(18)

and the posterior distribution of s2 can be expressed as

p s2jx� � ¼
n 1ð Þŝ2

2

h in 1ð Þ
2

�
n 1ð Þ
2

� � s2
� ��1�n 1ð Þ

2 exp � n 1ð Þŝ2

2s2

� �
: (19)

Next, the confidence limit of h is constructed using d′ | x and s2 | x given by Eqs. (18) and
(19), respectively. Therefore, the 100 1� að Þ% equitailed confidence interval and HPD
interval for the coefficient of variation based on the Jeffreys’ Rule prior Bayesian are
obtained by

CIB:jruleh ¼ LB:jruleh ;UB:jrule
h

h i
; (20)

where LB:jruleh andUB:jrule
h are the lower and upper bounds of the confidence limit, respectively.

The Bayesian confidence interval using the uniform prior
The prior probability of the uniform prior is a constant function (Stone, 2013). This means
that the uniform prior gives equally likely a priori to all possible values (O’Reilly & Mars,
2015). The uniform prior for the binomial proportion is p d0ð Þ / 1 (Bolstad & Curran,
2017), that for s2 is p s2ð Þ / 1 (Kalkur & Rao, 2017), and that of a delta-lognormal
distribution is p d0;s2ð Þ / 1. The joint posterior density function can be expressed as

p d0;s2jxð Þ ¼ 1

Beta n 0ð Þ þ 1; n 1ð Þ þ 1
� � d0ð Þn 0ð Þdn 1ð Þ 1ffiffiffiffiffiffi

2p
p

sffiffiffiffiffiffi
n 1ð Þ

p
exp � 1

2 s2

n 1ð Þ
m� m̂ð Þ2

2
4

3
5

�
n 1ð Þ�2ð Þŝ2

2

� �n 1ð Þ�2

2

�
n 1ð Þ�2

2


 � s2
� ��1�

n 1ð Þ�2ð Þ
2 exp � n 1ð Þ � 2

� �
ŝ2

2s2

� �
;

(21)
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where m̂ ¼ 1
n 1ð Þ

Pn 1ð Þ
i¼1 ln xið Þ and ŝ2 ¼ 1

n 1ð Þ�1

Pn 1ð Þ
i¼1 ln xið Þ � m̂½ �2. By Eq. (21), the respective

posterior distributions of d′ and s2 are formed as

d0jx � Beta n 0ð Þ þ 1; n 1ð Þ þ 1
� �

(22)

and

p s2jx� � ¼
n 1ð Þ�2ð Þŝ2

2

� �n 1ð Þ�2

2

�
n 1ð Þ�2

2


 � s2
� ��1�

n 1ð Þ�2ð Þ
2 exp � n 1ð Þ � 2

� �
ŝ2

2s2

� �
; (23)

which are beta and inverse gamma distributions, respectively. From Eqs. (22) and (23),
the confidence limit for h can be established, and consequently, the 100 1� að Þ%
equitailed confidence interval and HPD interval for the coefficient of variation based on
the uniform prior Bayesian are as follows:

CIB:unih ¼ LB:unih ;UB:uni
h

h i
; (24)

where LB:unih and UB:uni
h are the lower and upper bounds of the confidence limit,

respectively.

The FGCI for a single coefficient of variation
The fiducial approach was first introduced by Fisher (1930), after which it has been used
to construct confidence limits by many researchers, such as Hannig, Abdel-Karim &
Iyer (2006), Hannig, Iyer & Patterson (2006), Hannig (2009), Hannig & Lee (2009), Li,
Zhou & Tian (2013), and Yosboonruang, Niwitpong & Niwitpong (2019). The concept
of FGCI uses the respective generalized fiducial quantities for d and s2 (Li, Zhou &
Tian, 2013):

Rd � 1
2
Beta n 1ð Þ; n 0ð Þ þ 1

� �þ 1
2
Beta n 1ð Þ þ 1; n 0ð Þ

� �
(25)

and

Rs2 ¼ n 1ð Þ � 1
� �

ŝ2

U
; (26)

Algorithm 1

Step 1: Generate xi, i = 1, 2, ..., n from a delta-lognormal distribution.

Step 2: Compute d̂ and ŝ2.

Step 3: Generate d′ | x, which is the beta distribution from Eqs. (13), (18), and (22).

Step 4: Generate s2 | x, which is the inverse gamma distribution from Eqs. (14), (19), and (23).

Step 5: Compute g by substituting d′ | x and s2 | x in Eq. (6).

Step 6: Repeat Steps 3–5 5,000 times and obtain an array of g.

Step 7: Compute the 95% equitailed confidence interval and HPD interval for g from Eqs. (15), (20), and (24). If L � g � U, then set cp = 1; else,
set cp = 0.

Step 8: Repeat Steps 1–7 15,000 times to compute the coverage probability and the expected length.
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where U � x2n 1ð Þ�1. Subsequently, the generalized fiducial quantity for h is

Rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp Rs2ð Þ

Rd
� 1

s
: (27)

Therefore, the 100 1� að Þ% generalized fiducial quantity interval for the coefficient of
variation is defined by

CIfgcih ¼ Rh a=2ð Þ;Rh 1� a=2ð Þ	 

; (28)

where Rh a=2ð Þ and Rh 1� a=2ð Þ are the 100 a=2ð Þ-th and 100 1� a=2ð Þ-th percentiles of
the distribution of Rh, respectively.

RESULTS
To evaluate the performance of the proposed methods, their coverage probabilities and
expected lengths were estimated via Monte Carlo simulation using the R statistical
programming language (Venables & Smith, 2009). Normally, the best confidence intervals
are chosen from the coverage probability that is greater than or closest to the nominal
confidence level and has the shortest expected lengths. In the simulation study, sample size
n was set as 25, 50, 100, 200; m as 0; d as 0.2, 0.5, 0.8, 0.9; and s2 as 0.1, 0.5, 1.0, 2.0.
We eliminated the case of n = 25, d = 0.2 and s2 = 0.1, 0.5, 1.0, 2.0 because the expected
non-zero observations were less than 10 (see Fletcher, 2008; Wu & Hsieh, 2014). For all of
the simulations, the number of replications was set as 15,000, and 5,000 repetitions
were used for the Bayesian and FGCI methods; the nominal confidence level was 0.95.

The results in Table 1 show that the Bayesian method using the independent Jeffreys’
prior for the equitailed confidence interval outperformed the others because the
coverage probabilities were consistently greater than or close to the target in all cases.
In addition, for the equitailed confidence intervals, the coverage probabilities of the
Bayesian using the Jeffreys’ Rule prior were less than the nominal confidence level of 0.95
for some of the cases: n = 25, d = 0.5, s2 = 0.1, 2.0; n = 50, 100, d = 0.2, s2 = 0.1, 2.0;
and n = 200, d = 0.2, s2 = 0.1. For the Bayesian method using the uniform prior, the
coverage probabilities were close to 1 in a few cases when the sample sizes were less than
100 and had small variances together with high proportion of non-zero values. For the
method with HPD intervals, the coverage probabilities of the independent Jeffreys’ prior

Algorithm 2

Step 1: Generate xi, i = 1, 2, ..., n from a delta-lognormal distribution.

Step 2: Compute d̂ and ŝ2.

Step 3: Generate Beta n 1ð Þ; n 0ð Þ þ 1
� �

and Beta n 1ð Þ þ 1; n 0ð Þ
� �

.

Step 4: Compute Rd, Rs2, and Rg from Eqs. (25), (26), and (27), respectively.

Step 5: Repeat Steps 3–4 5,000 times and obtain an array of Rg.

Step 6: Compute the 95% confidence intervals for g from Eq. (28). If L � g � U, then set cp = 1; else,
set cp = 0.

Step 7: Repeat Steps 1–6 15,000 times to compute the coverage probability and the expected length.
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Table 1 The coverage probabilities of 95% two-sided confidence intervals for a single coefficient of variation with the delta-lognormal
distribution.

n d s2 Coverage probabilities

Equitailed confidence intervals HPD intervals FGCI

Independent
Jeffreys

Jeffreys’ Rule Uniform Independent
Jeffreys

Jeffreys’ Rule Uniform

25 0.5 0.1 0.9600 0.9397 0.9647 0.9413 0.9181 0.9475 0.8686

0.5 0.9718 0.9595 0.9763 0.9526 0.9308 0.9591 0.9415

1.0 0.9593 0.9481 0.9668 0.9381 0.9187 0.9461 0.9518

2.0 0.9521 0.9438 0.9608 0.9421 0.9309 0.9505 0.9523

0.8 0.1 0.9721 0.9657 0.9848 0.9539 0.9446 0.9746 0.9192

0.5 0.9677 0.9618 0.9733 0.9579 0.9498 0.9686 0.9541

1.0 0.9541 0.9487 0.9601 0.9499 0.9413 0.9589 0.9512

2.0 0.9533 0.9482 0.9583 0.9482 0.9407 0.9551 0.9506

0.9 0.1 0.9669 0.9610 0.9960 0.9439 0.9391 0.9865 0.9393

0.5 0.9607 0.9553 0.9683 0.9565 0.9500 0.9697 0.9559

1.0 0.9511 0.9463 0.9573 0.9521 0.9464 0.9618 0.9539

2.0 0.9524 0.9467 0.9563 0.9532 0.9475 0.9596 0.9481

50 0.2 0.1 0.9622 0.9349 0.9569 0.9384 0.9029 0.9289 0.8687

0.5 0.9741 0.9547 0.9729 0.9539 0.9269 0.9517 0.9403

1.0 0.9641 0.9477 0.9684 0.9449 0.9175 0.9477 0.9499

2.0 0.9553 0.9447 0.9641 0.9402 0.9203 0.9485 0.9491

0.5 0.1 0.9605 0.9476 0.9619 0.9471 0.9301 0.9504 0.8694

0.5 0.9669 0.9579 0.9689 0.9563 0.9435 0.9586 0.9356

1.0 0.9585 0.9521 0.9622 0.9446 0.9329 0.9490 0.9499

2.0 0.9534 0.9485 0.9575 0.9426 0.9346 0.9462 0.9537

0.8 0.1 0.9651 0.9600 0.9755 0.9508 0.9436 0.9659 0.9018

0.5 0.9623 0.9581 0.9671 0.9547 0.9486 0.9621 0.9495

1.0 0.9557 0.9523 0.9590 0.9467 0.9421 0.9527 0.9523

2.0 0.9551 0.9529 0.9574 0.9525 0.9488 0.9556 0.9487

0.9 0.1 0.9660 0.9640 0.9830 0.9515 0.9463 0.9720 0.9274

0.5 0.9581 0.9555 0.9623 0.9543 0.9509 0.9621 0.9537

1.0 0.9519 0.9496 0.9554 0.9474 0.9443 0.9535 0.9535

2.0 0.9507 0.9484 0.9537 0.9483 0.9450 0.9518 0.9501

100 0.2 0.1 0.9571 0.9355 0.9513 0.9406 0.9155 0.9325 0.8582

0.5 0.9673 0.9532 0.9655 0.9539 0.9350 0.9509 0.9288

1.0 0.9612 0.9519 0.9623 0.9433 0.9263 0.9430 0.9461

2.0 0.9511 0.9435 0.9563 0.9401 0.9279 0.9434 0.9491

0.5 0.1 0.9578 0.9462 0.9587 0.9473 0.9356 0.9487 0.8591

0.5 0.9605 0.9531 0.9621 0.9531 0.9432 0.9543 0.9315

1.0 0.9566 0.9532 0.9585 0.9433 0.9367 0.9455 0.9468

2.0 0.9546 0.9518 0.9559 0.9457 0.9412 0.9472 0.9516
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did not cover the target in most cases, especially for large sample sizes. Similarly, a few
cases with the Bayesian method using the uniform prior had coverage probabilities less
than the nominal confidence level when the sample sizes were large. Moreover, the
Bayesian method using the Jeffreys’ Rule prior had coverage probabilities of less than 0.95
in almost all cases. Last, the coverage probabilities with FGCI did not cover the nominal
confidence level when the variances were small for all sample sizes. In addition, when
considering the expected lengths of all methods which is shown in Table 2, these were wide
in cases of s2 = 2.0 and became narrower when the sample size increased, although they
corresponded with the coverage probabilities in almost all cases. Furthermore, the values
were similar for all of the methods. Moreover, the expected lengths of the interval when n =
50, d = 0.2, and s2 = 2.0 were very much larger than the other cases because the number of
expected non-zero observations was small together with a large variance. This case might

Table 1 (continued).

n d s2 Coverage probabilities

Equitailed confidence intervals HPD intervals FGCI

Independent
Jeffreys

Jeffreys’ Rule Uniform Independent
Jeffreys

Jeffreys’ Rule Uniform

0.8 0.1 0.9603 0.9566 0.9694 0.9464 0.9413 0.9578 0.8845

0.5 0.9605 0.9580 0.9641 0.9461 0.9425 0.9508 0.9442

1.0 0.9533 0.9505 0.9544 0.9485 0.9473 0.9517 0.9514

2.0 0.9509 0.9499 0.9524 0.9476 0.9458 0.9499 0.9509

0.9 0.1 0.9657 0.9633 0.9768 0.9495 0.9461 0.9667 0.9065

0.5 0.9538 0.9533 0.9582 0.9544 0.9509 0.9601 0.9473

1.0 0.9534 0.9507 0.9539 0.9491 0.9475 0.9529 0.9491

2.0 0.9505 0.9493 0.9527 0.9498 0.9480 0.9509 0.9512

200 0.2 0.1 0.9565 0.9407 0.9513 0.9425 0.9263 0.9381 0.8541

0.5 0.9591 0.9473 0.9570 0.9485 0.9355 0.9461 0.9189

1.0 0.9577 0.9496 0.9577 0.9406 0.9281 0.9397 0.9423

2.0 0.9561 0.9515 0.9567 0.9399 0.9326 0.9417 0.9477

0.5 0.1 0.9564 0.9490 0.9573 0.9463 0.9389 0.9483 0.8567

0.5 0.9565 0.9517 0.9575 0.9507 0.9440 0.9508 0.9249

1.0 0.9555 0.9531 0.9560 0.9433 0.9397 0.9439 0.9438

2.0 0.9541 0.9521 0.9552 0.9445 0.9408 0.9461 0.9469

0.8 0.1 0.9575 0.9537 0.9625 0.9509 0.9454 0.9575 0.8771

0.5 0.9555 0.9531 0.9578 0.9506 0.9476 0.9536 0.9409

1.0 0.9517 0.9503 0.9523 0.9475 0.9465 0.9497 0.9503

2.0 0.9507 0.9500 0.9513 0.9464 0.9457 0.9473 0.9527

0.9 0.1 0.9603 0.9587 0.9693 0.9495 0.9465 0.9601 0.8949

0.5 0.9541 0.9527 0.9565 0.9482 0.9463 0.9505 0.9445

1.0 0.9523 0.9518 0.9531 0.9462 0.9444 0.9468 0.9480

2.0 0.9513 0.9513 0.9517 0.9514 0.9511 0.9523 0.9500
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Table 2 The expected lengths of 95% two-sided confidence intervals for a single coefficient of variation with the delta-lognormal distribution.

n d s2 Expected lengths

Equitailed confidence intervals HPD intervals FGCI

Independent
Jeffreys

Jeffreys’ Rule Uniform Independent
Jeffreys

Jeffreys’ Rule Uniform

25 0.5 0.1 0.7297 0.6901 0.7259 0.7126 0.6750 0.7087 0.5254

0.5 1.5150 1.4019 1.6064 1.3664 1.2766 1.4273 1.3969

1.0 4.2513 3.8066 4.7342 3.2613 2.9912 3.5216 4.1004

2.0 33.7300 27.5715 42.9352 17.2204 14.9908 19.8622 32.8632

0.8 0.1 0.4319 0.4176 0.4390 0.4222 0.4084 0.4296 0.3280

0.5 0.8803 0.8469 0.9149 0.8168 0.7885 0.8457 0.8324

1.0 2.1046 2.0054 2.2163 1.7993 1.7294 1.8798 2.0750

2.0 9.4926 8.8318 10.2578 6.9057 6.5518 7.3427 9.4872

0.9 0.1 0.3346 0.3248 0.3518 0.3232 0.3139 0.3410 0.2710

0.5 0.7577 0.7342 0.7880 0.7082 0.6881 0.7346 0.7376

1.0 1.7631 1.6978 1.8460 1.5534 1.5049 1.6173 1.7591

2.0 7.4883 7.0855 7.9907 5.8011 5.5645 6.1147 7.4510

50 0.2 0.1 1.3339 1.2287 1.3061 1.2863 1.1889 1.2586 0.9404

0.5 3.0407 2.6749 3.3153 2.5845 2.3218 2.7216 2.7064

1.0 10.4439 8.5127 12.8712 6.8066 5.8704 7.6676 9.7812

2.0 218.3340 123.9037 409.4769 77.4546 55.6155 141.4522 517.7059

0.5 0.1 0.5278 0.5128 0.5246 0.5204 0.5059 0.5174 0.3787

0.5 0.9170 0.8878 0.9311 0.8739 0.8476 0.8849 0.8188

1.0 2.0182 1.9446 2.0759 1.8142 1.7545 1.8557 1.9373

2.0 7.8105 7.4368 8.1546 6.3278 6.0759 6.5403 7.9104

0.8 0.1 0.3063 0.3012 0.3082 0.3023 0.2972 0.3043 0.2298

0.5 0.5519 0.5429 0.5603 0.5349 0.5265 0.5427 0.5203

1.0 1.1725 1.1514 1.1951 1.0952 1.0773 1.1143 1.1529

2.0 3.9949 3.9093 4.0925 3.5027 3.4371 3.5760 3.9755

0.9 0.1 0.2436 0.2400 0.2491 0.2390 0.2355 0.2447 0.1923

0.5 0.4867 0.4799 0.4948 0.4717 0.4655 0.4793 0.4729

1.0 1.0405 1.0248 1.0588 0.9804 0.9674 0.9971 1.7590

2.0 3.4585 3.3987 3.5352 3.0534 3.0069 3.1113 3.4754

100 0.2 0.1 0.9341 0.8971 0.9200 0.9190 0.8829 0.9050 0.6628

0.5 1.6376 1.5617 1.6550 1.5542 1.4859 1.5640 1.4196

1.0 3.7403 3.5325 3.8579 3.2758 3.1139 3.3492 3.5025

2.0 16.4708 15.2363 17.4752 12.4579 11.7196 12.9891 15.9392

0.5 0.1 0.3774 0.3719 0.3760 0.3738 0.3685 0.3725 0.2712

0.5 0.6066 0.5975 0.6096 0.5957 0.5871 0.5986 0.5354

1.0 1.2286 1.2092 1.2409 1.1698 1.1521 1.1801 1.1719

2.0 3.9868 3.9149 4.0450 3.6197 3.5622 3.6637 3.9565
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have affected the parameter estimation, thus it is possible that the efficacy of the confidence
intervals constructed from it was not very good.

An empirical study
Ananthakrishnan & Soman (1989) studied a daily rainfall data series focusing on the
normalized rainfall curve (NRC). They found that the NRC is uniquely determined by the
coefficient of variation of the rainfall series. To verify the effectiveness of the proposed
confidence intervals, we used two examples of rainfall datasets from Nan province,
Thailand as follows.

Example 1
The rainfall data was collected in July 2015 for national parks in Nan province, Thailand:
Doi Phu Kha, Mae Charim, Nanthaburi, Tham Sa Koen, Sri Nan, Khun Sathan, and
Doi Pha Klong recorded by the Protected Area Regional Office 13 Phrae, Thailand. For this

Table 2 (continued).

n d s2 Expected lengths

Equitailed confidence intervals HPD intervals FGCI

Independent
Jeffreys

Jeffreys’ Rule Uniform Independent
Jeffreys

Jeffreys’ Rule Uniform

0.8 0.1 0.2190 0.2172 0.2196 0.2171 0.2153 0.2177 0.1633

0.5 0.3732 0.3703 0.3758 0.3664 0.3637 0.3689 0.3487

1.0 0.7565 0.7502 0.7625 0.7330 0.7274 0.7388 0.7426

2.0 2.3285 2.3082 2.3515 2.1759 2.1582 2.1948 2.3232

0.9 0.1 0.1743 0.1729 0.1761 0.1723 0.1710 0.1742 0.1358

0.5 0.3296 0.3275 0.3322 0.3236 0.3216 0.3262 0.3182

1.0 0.6764 0.6720 0.6817 0.6560 0.6521 0.6612 0.6717

2.0 2.0505 2.0360 2.0685 1.9451 1.9328 1.9618 2.0511

200 0.2 0.1 0.6714 0.6576 0.6658 0.6638 0.6502 0.6582 0.4777

0.5 1.0731 1.0499 1.0742 1.0478 1.0255 1.0481 0.9122

1.0 2.1624 2.1109 2.1802 2.0517 2.0062 2.0653 2.0429

2.0 7.4107 7.2073 7.5181 6.5125 6.3549 6.5886 7.2846

0.5 0.1 0.2704 0.2684 0.2699 0.2685 0.2666 0.2680 0.1946

0.5 0.4194 0.4163 0.4202 0.4154 0.4123 0.4161 0.3676

1.0 0.8190 0.8128 0.8224 0.7971 0.7910 0.8001 0.7794

2.0 2.4764 2.4567 2.4900 2.3551 2.3375 2.3669 2.4492

0.8 0.1 0.1566 0.1559 0.1568 0.1557 0.1550 0.1558 0.1163

0.5 0.2587 0.2577 0.2595 0.2562 0.2552 0.2569 0.2415

1.0 0.5145 0.5127 0.5166 0.5055 0.5036 0.5073 0.5045

2.0 1.5141 1.5085 1.5205 1.4683 1.4623 1.4744 1.5080

0.9 0.1 0.1247 0.1243 0.1254 0.1238 0.1233 0.1244 0.0965

0.5 0.2283 0.2276 0.2292 0.2260 0.2254 0.2268 0.2200

1.0 0.4617 0.4602 0.4635 0.4521 0.4508 0.4539 0.4557

2.0 1.3467 1.3423 1.3523 1.3067 1.3028 1.3121 1.3467

Yosboonruang et al. (2019), PeerJ, DOI 10.7717/peerj.7344 13/21

http://dx.doi.org/10.7717/peerj.7344
https://peerj.com/


data series, there were 217 rainfall measurements, of which 117 were positive, showing
a right-skewed distribution. The density of this data is presented in Fig. 1. Next, the
minimum Akaike information criterion (AIC) was first to test the distribution of the
positive rainfall data. The results in Table 3 reveal that the AIC value of the lognormal
distribution was smallest, thus the distribution of this positive data series was the lognormal
distribution. To validate the AIC test, a normal Q–Q plot for log-transformation data series
is shown in Fig. 2. The distribution of zero values in this rainfall series coincided with
the method mentioned in the “Methods” section for a binomial distribution. Therefore,
a delta-lognormal distribution was appropriate for these data. Next, summary statistics were
computed: n = 217, d̂ ¼ 0:5392, m̂ ¼ 2:4762, ŝ2 ¼ 0:9381, and CV = 1.9337. Finally,
the 95% confidence intervals for h were calculated, as reported in Table 4. These results
correspond with those from the simulation study when the sample size was large in that the
coverage probabilities of the Bayesian methods (equitailed confidence intervals) were greater
than the target. This indicates that the Bayesian method using the Jeffreys’ Rule prior is
appropriate to construct a confidence interval for this rainfall data due to it having the
shortest expected length compared to the other methods. The estimated coefficient of
variation in Table 4 means that the variability of the rainfall was rather high. This indicates

Figure 1 The density of rainfall data in July 2015 for national parks in Nan province, Thailand.
Full-size DOI: 10.7717/peerj.7344/fig-1

Table 3 AIC results to check the distributions of positive rainfall values in July 2015 for national
parks in Nan province, Thailand.

Densities Normal Lognormal Cauchy Exponential

AIC 978.4592 906.9903 971.7420 908.4876
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that the rainfall fluctuated, which would have affected the water levels in the area and there
could have been flooding, which would have affected agricultural productivity in the area.

Example 2
To investigate variation in rainfall, a rainfall dataset reported by the Upper Northern
Region Irrigation Hydrology Center, Bureau of Water Management and Hydrology Royal
Irrigation Department Thailand for August 2018 comprising eight precipitation stations
in Nan province, Thailand (Muang, Thawangpha, Thung Chang, Pua, Song Khwae,
Santisuk, Chaloem Phra Kiat, and Chiang Klang) was used. There were 248 observed
values comprising 91 zero values and 157 positive values; the density of this rainfall data is
shown in Fig. 3. The positive values follow a lognormal distribution, as indicated by the

Figure 2 The normal Q–Q plot of log-transformed for positive rainfall data in July 2015 for national
parks in Nan province, Thailand. Full-size DOI: 10.7717/peerj.7344/fig-2

Table 4 The 95% confidence intervals for a single coefficient of variation of rainfall data in July 2015
for national parks in Nan province, Thailand.

Methods Confidence intervals for η Length of
intervals

Lower Upper

Bayesian: The independent Jeffreys (Equitailed) 1.6570 2.3579 0.7009

Bayesian: The Jeffreys’ Rule (Equitailed) 1.6610 2.3460 0.6850

Bayesian: The uniform (Equitailed) 1.6646 2.3560 0.6914

Bayesian: The independent Jeffreys (HPD) 1.6314 2.3166 0.6852

Bayesian: The Jeffreys’ Rule (HPD) 1.6424 2.3170 0.6746

Bayesian: The uniform (HPD) 1.6549 2.3345 0.6796

FGCI 1.6788 2.3294 0.6506
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minimum AIC in Table 5 and a normal Q–Q plot of the log-transformed data displayed in
Fig. 4. In addition, the zero values have a binomial distribution (as discussed by Aitchison
(1955)), thus the overall distribution is delta-lognormal. The summary statistics were
n = 248, d̂ ¼ 0:6331, m̂ ¼ 1:5822, ŝ2 ¼ 2:2598, and CV = 3.7595.

The results in Table 6 report the 95% confidence intervals for h. The results of the
methods to construct the confidence intervals are in accordance with those in the
simulation study for the case of a large sample size. The Bayesian method based on the
Jeffreys’ Rule prior (equitailed confidence intervals) had the shortest expected length.
The coefficient of variation estimation in Table 6 indicates that the rainfall of this area was
highly volatile, which affected the water level of the Nan River. Moreover, there might have
been flooding in some of the areas due to high rainfall.

DISCUSSION
Our findings reveal that the Bayesian method using the independent Jeffreys’ prior to
construct the equitailed confidence intervals performed well for all cases due to the
coverage probabilities being consistently greater than or close to the nominal confidence
level while the expected lengths were mostly no different from the other methods.

Figure 3 The density of rainfall data in August 2018 from eight precipitation stations in Nan
province, Thailand. Full-size DOI: 10.7717/peerj.7344/fig-3

Table 5 AIC results to check the distributions of positive rainfall values in August 2018 from eight
precipitation stations in Nan province, Thailand.

Densities Normal Lognormal Cauchy Exponential

AIC 1,596.0140 1,073.3380 1,196.0190 1,186.0920
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Moreover, underestimation occurred for a few of the cases when applying the Bayesian
methods based on the Jeffreys’ Rule prior (equitailed), the independence Jeffreys’ prior
(HPD), and the uniform prior (HPD), and it appeared in almost all cases of the Jeffreys’
Rule prior (HPD). In contrast, overestimation occurred in a few cases of applying the
Bayesian method based on the uniform prior (equitailed) when the sample size was less
than 100 together with a small variance and high proportion of non-zero values.

CONCLUSIONS
We proposed the construction of confidence intervals for a single coefficient of variation of
a delta-lognormal distribution using Bayesian methods and compared them with FGCI.

Table 6 The 95% confidence intervals for a single coefficient of variation of rainfall data in August
2018 from eight precipitation stations in Nan province, Thailand.

Methods Confidence intervals for η Length of
intervals

Lower Upper

Bayesian: The independent Jeffreys (Equitailed) 2.9429 5.1996 2.2567

Bayesian: The Jeffreys’ Rule (Equitailed) 2.9536 5.1211 2.1675

Bayesian: The uniform (Equitailed) 2.9784 5.2196 2.2412

Bayesian: The independent Jeffreys (HPD) 2.7824 4.9280 2.1456

Bayesian: The Jeffreys’ Rule (HPD) 2.8144 4.9014 2.0870

Bayesian: The uniform (HPD) 2.8704 5.0156 2.1452

FGCI 2.9795 5.1291 2.1496

Figure 4 The normal Q–Q plot of log-transformed for positive rainfall data in August 2018 from
eight precipitation stations in Nan province, Thailand. Full-size DOI: 10.7717/peerj.7344/fig-4
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The Bayesian methods, which are based on the independent Jeffreys’ prior, the Jeffreys’
Rule prior, and the uniform prior, were constructed under equitailed confidence
intervals or HPD intervals. The performance of the confidence intervals was assessed
using the coverage probability and expected length through Monte Carlo simulations.
The simulation studies showed that the Bayesian equitailed confidence intervals based on
the independent Jeffreys’ prior is recommended as a confidence interval for a single
coefficient of variation. Future researchers may also be extended to the case of the
coefficients of variation function.
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