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ABSTRACT
Recent discussions in the sport and exercise science community have focused on
the appropriate use and reporting of effect sizes. Sport and exercise scientists often
analyze repeated-measures data, from which mean differences are reported. To aid
the interpretation of these data, standardized mean differences (SMD) are commonly
reported as a description of effect size. In this manuscript, we hope to alleviate some
confusion. First, we provide a philosophical framework for conceptualizing SMDs;
that is, by dichotomizing them into two groups: magnitude-based and signal-to-noise
SMDs. Second, we describe the statistical properties of SMDs and their implications.
Finally, we provide high-level recommendations for how sport and exercise scientists
can thoughtfully report raw effect sizes, SMDs, or other effect sizes for their own studies.
This conceptual framework provides sport and exercise scientists with the background
necessary to make and justify their choice of an SMD.

Subjects Anatomy and Physiology, Kinesiology, Statistics
Keywords Appiled statistics, Standardized effect size, Standardized mean difference, Sport
science, Exercise science

INTRODUCTION
Effect sizes are a family of descriptive statistics used to communicate the magnitude or
strength of a quantitative research finding. Many forms of effect sizes exist, ranging from
mean raw values to correlation coefficients. In sport and exercise science, a standardized
mean difference (SMD) is commonly reported in studies that observe changes from pre- to
post-intervention, and for which unitsmay vary from study-to-study (e.g., muscle thickness
vs. cross-sectional area vs. volume). Put simply, an SMD is any mean difference or change
score that is divided, hence standardized, by a standard deviation or combination of
standard deviations. Thus, even among SMDs, there exist multiple calculative approaches
(Lakens, 2013; Baguley, 2009). A scientist must therefore decide which SMD is most
appropriate to report for their particular study, or if to report one at all. In this manuscript,
wewill exclusively be focusing on SMDcalculations for studies involving repeated-measures
since this is a common feature of sport and exercise science studies; other study designs
(i.e., between-subjects) have already been extensively covered elsewhere (Baguley, 2009;
Kelley & Preacher, 2012; Hedges, 2008).
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Different forms of SMDs communicate unique information and have distinct statistical
properties. Yet, some authors in sport and exercise science have staunchly advocated for
specific SMD calculations, and in doing so, outright rebuke other approaches (Dankel &
Loenneke, 2018). While we appreciate that previous discussions of effect sizes have brought
this important topic to the forefront, we wish to expand on their work by providing a
deeper philosophical and mathematical discussion of SMD choice. In doing so, we suggest
that the choice of an SMD should be based on the objective of each study and therefore
is likely to vary from study-to-study. Scientists should have the intellectual freedom to
choose whatever statistics are needed to appropriately answer their question. Importantly,
this freedom should not be encroached on by broad recommendations that ignore the
objectives of an individual scientist. To facilitate these reporting decisions, it is imperative
to understand what to report and why.

In this paper, we broadly focus on three things to consider when reporting an SMD.
First, before choosing an SMD, a scientist must decide if one is necessary.Whenmaking this
decision, it is prudent to consider arguments for and against reporting SMDs, in addition
to why one should be reported. Second, we broadly categorize repeated-measures SMDs
into two categories: signal-to-noise and magnitude-based SMDs. This dichotomy provides
scientists with a philosophical framework for choosing an SMD. Third, we describe the
statistical properties of SMDs, which we believe scientists should try to understand if they
are to report them. We relate these perspectives to previous discussions of SMDs, make
general recommendations, and conclude by urging scientists to think carefully about what
effect sizes they are reporting and why.

SHOULD I REPORT A STANDARDIZED MEAN
DIFFERENCE?
Before reporting an SMD—or any statistic for that matter—a researcher should first ask
themselves whether it is necessary or informative. When answering this, one may wish
to consider arguments both for and against SMDs, in addition to field standards. Here,
we briefly detail these arguments, in addition to SMD reporting within sport and exercise
science.

Proponents and opponents of standardized effect sizes
Opponents
Although SMDs may be useful in some contexts, they are far from a panacea. Arguments
against the use of SMDs, including those by prominent statisticians, are not uncommon.
These arguments should be considered when choosing whether or not to report an SMD.
In particular, the evidentiary value of reporting an SMDmust be considered relative to the
strength of the general arguments against SMDs. Below, we have briefly summarized some
of the major arguments against the use of SMDs.

As far back as 1969, the use of standardized effect sizes—and by proxy, SMDs—has
been heavily criticized. The eminent statistician John Tukey stated that ‘‘only bad reasons
seem to come to mind’’ for using correlation coefficients instead of unstandardized
regression coefficients to interpret data. To put it simply, scientists should not assume
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that standardized effect sizes will make comparisons meaningful (Tukey, 1969). This same
logic can also be applied to qualitative benchmarks (e.g., Cohen’s d = 0.2 is ‘‘small’’); we
believe it is likely that Cohen would also argue against the broad implementation of these
arbitrary benchmarks in all areas of research. Similar arguments against the misuse of
standardized effect sizes have been echoed elsewhere (Lenth, 2001; Kelley & Preacher, 2012;
Baguley, 2009; Robinson et al., 2003).

Others have outright argued against the use of standardized effect sizes because
they oversimplify the analysis of, and distort the conclusions derived from, data. In
epidemiology, Greenland et al. (1986) provided a damning indictment of the use of
standardized coefficients; namely, because they are largely determined by the variance in
the sample, which is heavily influenced by the study design. In psychology, Baguley (2009)
offers a similarly bleak view of standardized effect sizes. He argues that the advantages
of standardized effect sizes are far outweighed by the difficulties that arise from the
standardization process. In particular, scientists tend to ignore the impact of reliability
and range restriction on effect size estimates, in turn overestimating the generalizability of
standardized effect sizes to wider populations and other study designs (Baguley, 2009).

Proponents
Conversely, prominent statisticians have also argued in favor of standardized effect sizes,
especially for facilitating meta-analysis (Hedges, 2008). Cohen (1977) was the first to
suggest the use of standardized effect sizes to be useful for power analysis purposes.
This is because, unlike the t -statistic, (bias-corrected) standardized effect sizes are not
dependent on the sample size. Similarly, while p-values indicate the compatibility of data
with some test hypothesis (e.g., the null hypothesis) (Greenland, 2019), SMDs provide
information about the ‘effect’ itself (Rhea, 2004; Thomas, Salazar & Landers, 1991). Thus,
p-values and t -statistics provide information about the estimate of the mean relative to
some test hypothesis and thus are sensitive to sample size, while SMDs strictly pertain
to the size of the effect and thus are insensitive to sample size. Moreover, any linear
transformation of the data will still yield the exact same standardized effect size (Hedges,
1981). The scale invariance property of a standardized effect size theoretically allows
them to be compared across studies, various outcomes, and incorporated into a meta-
analysis. Therefore, scientists can measure a phenomenon across many different scales
or measurement tools and standardized effect sizes should, in theory, be unaffected.
Finally, SMDs can provide a simple way to communicate the overlap of two distributions
(https://rpsychologist.com/d3/cohend/).

Comments on Standardized Mean Differences in Sport and Exercise
Science
Sport and exercise scientists have also commented on the use of standardized effect sizes
(Dankel et al., 2017; Dankel & Loenneke, 2018; Rhea, 2004; Thomas, Salazar & Landers,
1991; Flanagan, 2013). The discussion has focused on the need to report more than just
p-values, emphasizing that scientists have to discuss themagnitude of their observed effects.
Rhea (2004) also provided new benchmarks for SMDs specific to strength and conditioning
research, which is certainly an improvement from just using Cohen’s benchmarks.
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If SMDs are to be reported, they should not be done so in lieu of understanding effects
on their natural scales. To this end, we agree with the laments of Tukey (1969): too often,
standardized effects sizes, particularly SMDs, are relied upon to provide a crutch for
interpreting the meaningfulness of results. Default and arbitrary scales, such as ‘‘small’’
or ‘‘large’’ based on those proposed by Cohen (1977), should generally be avoided. SMDs
should be interpreted on a scale calibrated to the outcome of interest. For example, Rhea
(2004) and Quintana (2016) have demonstrated how to develop scales of magnitude for a
specific area of research. When possible, it is best practice to interpret the meaningfulness
of effects in their raw units, and in the context of the population and the research question
being asked. For example, a 5 mmHg decrease in systolic blood pressure may be hugely
important or trivial, depending on the context—here, the SMD alone cannot communicate
clinical relevance.

In our opinion, standardized effect sizes can be useful tools for interpreting data when
thoughtfully employed by the scientists reporting them. However, sport and exercise
scientists should be careful when selecting the appropriate SMD or effect size, and ensure
that their choice effectively communicates the effect of interest (Hanel & Mehler, 2019).
Herein, we will discuss things to consider when reporting an SMD, and we will close
by providing general recommendations and examples that we believe sport and exercise
scientists will find useful.

WHICH STANDARDIZED MEAN DIFFERENCE SHOULD I
REPORT?
To facilitate a fruitful discussion of SMDs, here, we categorize them based on the
information they convey. We contend that there are two primary categories of SMDs
that sport and exercise scientists will encounter in the literature and use for their own
analyses. The first helps to communicate the magnitude of an effect (magnitude-based
SMD), and the second is more related to the probability that a randomly selected individual
experiences a positive or negative effect (signal-to-noise SMD). These categories serve
distinct purposes, and they should be used in accordance with the information a scientist
is trying to convey to the reader. We will contrast these SMD categories in terms of the
information that they communicate and when scientists may wish to choose one over the
other. In doing so, we will show that both approaches to calculating the SMD are distinctly
valuable. Finally, we demonstrate that, when paired with background information and
other statistics—whether they be descriptive or inferential—each SMD can assist in telling
a unique, meaningful story about the reported data.

Signal-to-noise Standardized Mean Difference
The first category of SMDs can be considered a signal-to-noise metric: it communicates
the average change score in a sample relative to the variability in change scores. This is
called Cohen’s dz, and it is an entirely appropriate way to describe the change scores in
paired data. The Z subscript refers to the fact that the comparison being made is on the
difference scores (Z =Y −X). This SMD is directly estimating the change standardized to
the variation in this response, making it a mathematically natural signal-to-noise statistic.
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Cohen’s dz can be calculated with the mean change, δ̄, and the standard deviation of the
changes, σδ ,

dz =
δ̄

σδ
. (1)

Alternatively, for convenience, dz can be calculated from the t -statistic and the number of
pairs (n),

dz =
t
√
n
. (2)

In Eq. (2), one can see that dz is closely related to the t -statistic. Specifically, the t -statistic
is a signal-to-noise metric for the mean (i.e., using its sampling distribution), while dz
is a signal-to-noise metric for the entire sample. This means that the t -statistic will tend
to increase with increases in sample size, since the estimate of the mean becomes more
precise, while (bias-corrected) Cohen’s dz will not change with sample size.

Although Cohen’s dz may be useful to describe the change in a standardized form, it
is typically not reported in meta-analyses since it cannot be used to compare differences
across between- and within-subjects designs (see SMDs below). It is difficult to interpret
the value of this type of SMD; that is, since the signal-to-noise ratio itself is more related to
the consistency of a change, one can wonder, how much consistency constitutes a ‘large’
effect? This is in contrast to other types of SMDs, wherein the statistic conveys information
about the distance between two central tendencies (mean) relative to the dispersion of the
data (standard deviation). Moreover, it appears that, to sport and exercise scientists, the
value of this SMD is measuring the degree of the change in comparison to the variability
of the change scores (Dankel & Loenneke, 2018). Therefore, scientists’ intent on using dz
should consider reporting the common language effect size (CLES) (McGraw &Wong,
1992), also known as the probability of superiority (Grissom, 1994). In contrast to dz , CLES
communicates the probability of a positive (CLES> 0.5) or negative (CLES< 0.5) change
occurring in a randomly sampled individual (see below).

Alternative to the signal-to-noise Standardized Mean Difference
The information gleaned from the signal-to-noise SMD (Cohen’s dz) can also be captured
with the CLES (McGraw &Wong, 1992; Grissom, 1994). In paired samples, the CLES
conveys the probability of a randomly selected person’s change score being greater than
zero. The CLES is easy to obtain; it is simply the Cohen’s dz (SMD) converted to a
probability (CLES=8(dz), where 8 is the standard normal cumulative distribution
function). Importantly, CLES can be converted back to a Cohen’s dz with the inverse
standard normal cumulative distribution function (dz =8−1(CLES)). CLES is particularly
useful because it directly conveys the direction and variability of change scores without
suggesting that themean difference itself is small or large. Further, current evidence suggests
that the CLES is easier for readers to comprehend than a signal-to-noise SMD (Hanel &
Mehler, 2019).
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1Although conceptually similar, Glass’s
1 and1pre have different distributional
properties (Becker, 1988).

Table 1 Types of StandardizedMean Differences for pre-post designs.

Magnitude-based Glass’s1pre, Cohen’s dav, Cohen’s drm
Signal-to-noise Cohen’s dz

Magnitude-based Standardized Mean Difference
The second category of SMDs can be considered a magnitude-based metric: it
communicates the size of an observed effect relative to spread of the sample. The simplest
and most understood magnitude-based SMD is Glass’s 1, which is used to compare two
groups, and is standardized to the standard deviation of one of the groups. However, a
conceptually similar version of Glass’s1, which we termGlass’s1pre, can also be employed
for repeated-measures. In 1pre, the mean change is standardized by the pre-intervention
standard deviation.1 For basic pre-post study designs, Glasss 1pre is fairly straightforward;
mean change is simply standardized to the standard deviation of the pre-test responses.
There are other effect sizes for repeated measures designs, such as Cohen’s dav and drm,
but for brevity’s sake, these are described in the Appendix. Of note, 1pre, dav, and drm are
identical when pre- and post-intervention variances are the same (see Appendix).

1pre=
δ̄

σpre
(3)

Importantly,1pre is well-described (Morris & DeShon, 2002;Morris, 2000; Becker, 1988)
and can also be generalized to parallel-group designs; in particular, when there are 2 groups,
typically a control and treatment group, being compared over repeated-measurements
(Morris, 2008). Typically, in these cases, a treatment and control group are being directly
compared in a ‘pretest-posttest-control design’ (PPC). A simple version of the PPC-adapted
1pre is

1ppc=1T −1C (4)

where1T and1C are the1pre from the treatment and control groups, respectively. There
are several other calculative approaches which should be considered for comparing SMDs
in a parallel-group designs. We highly encourage further reading on this topic if this type
of design is of interest to readers (Morris, 2008; Becker, 1988; Viechtbauer, 2007).

Summary of Standardized Mean Differences
Our distinction between signal-to-noise (namely, Cohen’s dz) and magnitude-based SMDs
(including Glass’s 1pre, Cohen’s dav, and Cohen’s drm) provides a conceptual dichotomy
to assist researchers in picking an SMD (summarized in Table 1). However, along with
the conceptual distinctions, researchers should also consider the the properties of these
SMDs. In the following section, we briefly review the math underlying each SMD and
its implications. The properties that follow from the math complement the conceptual
frameworkwe just presented, in turn providing researchers with a theoretical, mathematical
basis for choosing and justifying their choice of an SMD.
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WHAT ARE THE STATISTICAL PROPERTIES OF
STANDARDIZED MEAN DIFFERENCES?
An SMD is an estimator. Estimators, including SMDs, have basic statistical properties
associated with them that can be derived mathematically. From a high level, grasping how
an estimator behaves—what makes it increase or decrease and to what extent—is essential
for interpretation. In addition, one should have a general understanding of the statistical
properties of an estimator they are using; namely, its bias and variance, which together
determine the accuracy of the estimator (mean squared error, MSE=Bias(θ̂ ,θ)2+Varθ (θ̂),
for some true parameter, θ , and its estimate, θ̂). These properties depend on the arguments
used in the estimator. As a result, signal-to-noise and magnitude-based SMDs are not
only distinct in terms of their interpretation, but also their statistical properties. Although
these properties have been derived elsewhere (e.g., Hedges, 1981; Morris & DeShon, 2002;
Morris, 2000; Gibbons, Hedeker & Davis, 1993; Becker, 1988), their implications are worth
repeating. In particular, there are several salient distinctions between the properties of each
of these metrics, which we will address herein. Although this section is more technical, we
will return to a higher-level discussion of SMDs in the next section.

Estimator components
Before discussing bias and variance, we will briefly discuss the components of the formulae
and their implications. Of course, all SMDs contain the mean change score, δ̄, in the
numerator, and thus increase linearly with mean change (all else held equal). Since this is
common to all SMDs, we will not discuss it further.

More interestingly, the signal-to-noise and magnitude-based SMDs contain very
different denominators. To simplify matters, let us assume the pre- and post-intervention
standard deviations are equal (σpre= σpost= σ ). This assumption is reasonable since pre-
and post-intervention standard deviations typically do not substantially differ in sports and
exercise science. In this case, the standard deviation of change scores can be found simply:

σδ =
√
2σ 2(1− r).

With these assumptions, drm = dav =1pre for −1≤ r < 1, where r is the observed pre-
post correlation (Appendix). Greater pre-post correlations, r , are indicative of more
homogeneous change scores. This makes the behavior of the magnitude-based SMDs fairly
straightforward; that is, the estimates themselves will not be affected by the correlation
between pre- and post-intervention scores. Their dependence on σ means that the
magnitude-based SMDwill blow up as σ→ 0. This is in contrast to dz , whose denominator
contains both σ and r , making it blow up if either σ→ 0 or r→ 1 (Fig. 1).

The parsimonious nature ofmagnitude-based SMDs arguablymakes their interpretation
easier; with reasonable assumptions, they only depend on the mean change score and the
spread of scores in the sample. On the other hand, when breaking dz down into its
constituent parts, it depends on the mean change score, the spread of scores in the sample,
and the correlation between pre- and post-intervention scores—the latter two will create
σδ . These sensitivities should be understood before implementing an SMD.
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Figure 1 Standardized mean differences for a range of pre-post correlations and pre-intervention
standard deviations. Standardized mean differences (SMD) were calculated for a pre-post design study
with 20 participants to depict the different properties of the different SMDs. We calculated SMDs for
a range of pre-post correlations (r) and pre-intervention standard deviations (σpre), each with a mean
change score of 1. Magnitude-based SMDs have similar estimates across the range of pre-post correlations
and largely only vary as a function of σpre, whereas signal-to-noise SMDs are a function of both σpre and
r . Note, dz blows up as r → 1, and all SMDs blow up as σpre → 0. The standard error of each estimator
increases as σpre → 0. Importantly,1pre has lower or similar standard errors as r → 1, whereas dz has
greater standard errors as r→ 1. Additional simulations, including those of other SMDs, can be found at
10.17605/OSF.IO/FC5XW.

Full-size DOI: 10.7717/peerj.10314/fig-1

Bias
Bias means that, on average, the estimate of a parameter (θ̂) differs from the ‘‘true’’
parameter being estimated (θ). Most SMDs follow a non-central t -distribution, allowing
the bias to be easily assessed and corrected. As shown byHedges (1981), SMDs are generally
biased upwardswith small sample sizes; that is, with smaller samples, SMDs are overestimates
of the true underlying SMD (θ̂ > θ). This bias is a function of both the value of the SMD
obtained and the sample size:

E[d] = d̂ =
d

c(n−1)
(5)

H⇒Bias[d̂,d] = d̂−d = d
(

1
c(n−1)

−1
)
, (6)

where d is the ‘‘true’’ parameter being estimated, d̂ is its estimate, and c(m)= 1− 3
4(m)−1 is

Hedges’ bias-correction factor (Hedges, 1981) andm= n−1 is the degrees of freedom for a
paired sample. Please note that this degrees of freedom will differ for different study designs
and standard deviations. For example, with two groups and a pooled standard deviation,
m= n1+n2−2.We have noticed the incorrect use of degrees of freedom in some published
papers within sport and exercise science, so we urge authors to be cautious.
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Because SMDs are biased, especially in small samples, it is advisable to correct for this
bias. Thus, when using Cohen’s d in small sample settings, most sport and exercise scientists
should apply a Hedges’ correction to adjust for bias. A bias-corrected d̂ is typically referred
to as Hedges’ g :

g = d̂ · c(n−1), (7)

where d̂ can represent any of the SMD estimates outlined above. This correction decreases
the SMD by about 10 and 5% with 10 and 15 participants, respectively; corrections are
negligible with larger sample sizes. Bias correction can also be applied via bootstrapping
(Rousselet & Wilcox, 2019).

More generally, we stress to readers that bias per se is not a bad thing or undesirable
property. Especially inmultidimensional cases, bias can improve the accuracy of an estimate
by decreasing its variance—this is known as Stein’s paradox (Efron & Morris, 1977). Indeed,
biased (shrunken) estimators of SMDs have been suggested which may decrease MSE
(Hedges & Olkin, 1985). However, these are not commonly employed. Having said this, the
upward bias of SMDs is generally a bad thing. As will be discussed in the next subsection,
by correcting for the upward bias, we also improve (decrease) the variance of the SMD
estimate, in turn decreasing MSE via both bias and variance (Hedges, 1981;Hedges & Olkin,
1985).

Variance
While bias tells us about the extent to which an estimator over- or underestimates the value
of a true parameter, variance tells us how variable the estimator is. Estimators that are
more precise (less variable) will have tighter standard errors and thus confidence intervals,
allowing us to make better judgments as to the ‘‘true’’ magnitude of the SMD.

By looking at formulae for variance and its arguments, we can gain a better understanding
of what affects its statistical properties. Below are the variance formulae for Cohen’s dz and
Glass’s 1pre, which are the two best understood SMDs for paired designs (Becker, 1988;
Gibbons, Hedeker & Davis, 1993; Goulet-Pelletier & Cousineau, 2018; Morris, 2000; Morris
& DeShon, 2002).

Var[dz ] =
n−1

n(n−3)
(1+d2z n)−

d2z
c(n−1)2

(8)

Var[1pre] =
n−1

n(n−3)

(
2(1− r)+12

pren
)
−

12
pre

c(n−1)2
(9)

Variances for the biased SMDs (above) can be easily converted to variances for the
bias-corrected SMDs by multiplying each formula by c(n−1)2, which is guaranteed to
decrease variance since c(·)< 1 (Hedges, 1981).

Each variance formula contains the SMD itself, meaning that variance will tend to
increase with an increasing SMD. This also complicates matters for dz ; since σδ can increase
from a smaller σpre or greater r , dz ’s variance explodes with homogeneous populations or
change scores (Fig. 1). Such a quality is not very desirable, as typically, we would like more
precision as effects become more homogeneous; this property is a further indication that
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2Dankel & Loenneke (2018) suggest that,
‘‘ ... normalizing effect size values to the
pre-test SD will enable the calculation of a
confidence interval before the intervention
is even completed ... This again also points
to the flaws of normalizing effect sizes
to the pretest SD because the magnitude
of the effect ... is dependent on the
individuals recruited rather than the
actual effectiveness of the intervention’’
(p. 4). This is of course not the case, since
the variance of the SMD will depend on,
among other things, the change scores
themselves. Thus, the confidence interval
of the magnitude-based SMD estimate
cannot be calculated a priori.

dz is not a measure of effect magnitude. This is in contrast to the magnitude-based SMDs,
which become more precise as the effect becomes more homogeneous (Fig. 1). Of note,
these differences in variance behaviors do not reflect differences in statistical efficiency;
after adjusting for scaling, all are unbiased and equally efficient.

By investigating and understanding the statistical properties of a statistic—here, the
SMDs—we can gain a better understanding of what we should and should not expect from
an estimate. These properties provide us with an intuitive feel for the implications of the
mathematical machinery underlying each SMD, in turn helping us choose and justify an
SMD.

Considering Previous Arguments for Signal-to-noise Standardized
Mean Differences
There have been arguments against SMDs—at least certain calculative approaches—with
one particular article claiming that magnitude-based SMDs are flawed (Dankel & Loenneke,
2018). Specifically, Dankel & Loenneke (2018) profess the superiority of Cohen’s dz over
magnitude-based SMDs—specifically, Glass’s 1pre—because of its statistical properties2

and its relationship with the t -statistic. Regarding the former, Dankel & Loenneke (2018)
opine that the magnitude-based SMD is ‘‘dependent on the individuals recruited rather
than the actual effectiveness of the intervention.’’ We do not find this to be a compelling
argument againstmagnitude-based SMDs for several reasons. First, it is in noway specific to
magnitude-based SMDs; all descriptive statistics are always specific to the sample. Second,
if the data are randomly sampled (a necessary condition for valid statistical inference), then
the sample should, on average, be representative of the target population. If imbalance in
some relevant covariate is a concern, then an analysis of covariance, and the effect size
estimate from this statistical model, should be utilized (Riley et al., 2013).

It is certainly the case that Cohen’s dz has a natural relationship with the t -statistic.
Stemming from this relationship, Dankel & Loenneke (2018) suggest that it is a more
appropriate effect size statistic for repeated-measures designs. Although it is true that dz is
closely related to the t -statistic, this does not imply that dz is the most appropriate SMD
to report. First, the t -statistic and degrees of freedom (which should be reported) together
provide the required information to calculate a Cohen’s dz , meaning dz may contain
purely redundant information. Second, although Cohen’s dz has a clear relationship with
the statistical power of a paired t -test, we want to emphasize that utilizing an observed
effect size in power analyses is an inappropriate practice. Performing such power analyses
to justify sample sizes of future work implicitly assumes that (1) the observed effect size is
the true effect size; (2) follow-up studies will require this observed SMD; and (3) this effect
size is what is of interest (rather than one based on theory or practical necessity). In most
cases, observed effect sizes do not provide accurate estimates of the population-level SMD,
and utilizing the observed SMD from a previous study will likely lead to an underpowered
follow-up study (Albers & Lakens, 2018). Moreover, relying on previously reported effect
sizes ignores the potential heterogeneity of observed effect sizes between studies (McShane
& Böckenholt, 2014). Rather, there exist alternative approaches to justifying sample sizes
(Appendix 2).
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3Assumes a normal distribution. We note
that Dankel & Loenneke (2018) data
vignettes are approximately uniformly
distributed which is an odd assumption
to make about theoretical data, but
nonetheless, sufficiently conveys the point.

In general, and in contrast to Dankel & Loenneke (2018), we believe that SMDs can
be used for different purposes—whether to communicate the size of an effect, calculate
power, or some other purpose—and what is best for one objective is not necessarily what
is best for the others. Furthermore, we want to emphasize that these are not arguments
against the use of signal-to-noise SMDs, but rather a repudiation of arguments meant to
discourage the use of magnitude-based SMD by sport and exercise scientists.

RECOMMENDATIONS FOR REPORTING EFFECT SIZES
In most cases, sport and exercise scientists are strongly encouraged to present and interpret
effect sizes in their raw or unstandardized form. As others previously discussed, journals
should require authors to report some form of an effect size, along with interpretations of
its magnitude, instead of only reporting p-values (Rhea, 2004; Thomas, Salazar & Landers,
1991). However, an SMD, along with other standardized effect sizes, do not magically
provide meaning to meaningless values. They are simply a convenient tool that can
provide some additional information and may sometimes be helpful to those performing
meta-analyses or who are unfamiliar with the reported measures. Specifically, there are
situations where the outcome measure may be difficult for readers to intuitively grasp
(e.g., a psychological survey, arbitrary units from Western Blots, moments of force). In
such cases, a magnitude-based SMD—in which the SD of pre- and/or post-intervention
measures is used in the denominator—can be used to communicate the size of the effect
relative to the heterogeneity of the sample. In other words, a magnitude-based SMD
represents the expected number of sample SDs (not the change due to the intervention) by
which the participants improve.

Let us consider examples presented previously in the sport and exercise science literature.
The examples presented in Fig. 1 byDankel & Loenneke (2018), in which both interventions
have a σpre = 6.05 and undergo a change of δ̄ = 3.0 (1pre =

3.0
6.05 = 0.5). This can be

interpreted simply: the expected change is 0.5 SD units relative to the measure in the
sample. Put differently, if the person with the median score (50th percentile) were to
improve by the expected change, she would move to the 69th percentile.3 Like a mean
change, this statistic is not intended to provide information about the variability of change
scores. The magnitude-based SMD simply provides a unitless, interpretable value that
indicates the magnitude of the expected change relative to the between-subject standard
deviation. Of course, it can be complemented with a standard error or confidence interval
if one is interested in the range of values with which the data are also compatible.

The above can be contrasted with Cohen’s dz , which uses the SD of change scores.
Again, using the examples presented in Figure 1 of Dankel & Loenneke (2018), Cohen’s
dz of 11.62 and 0.25 are reported for interventions 1 and 2, respectively. If one tries
to interpret these SMDs in a way that magnitude-based SMDs are interpreted, he will
undoubtedly come to incorrect conclusions. The first would suggest that a person with the
median score who experiences the expected change would move to >99.99th percentile,
and the second would imply that she moves to the 60th percentile. Clearly, both of
these interpretations are wrong. As opposed to a magnitude-based SMD, Cohen’s dz is a
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signal-to-noise statistic that is related to the probability of a randomly sampled individual
experiencing an effect rather than its magnitude alone. In our opinion, Cohen’s dz does
not provide any more information than that which is communicated by the t -statistic and
the associated degrees of freedom (which should be reported regardless of the effect size).
Instead, if the signal-to-noise is of interest, a CLES may provide the information a sport
and exercise scientist is interested in presenting. Going back to our earlier example (dz
= 11.62 and 0.25, respectively), the CLES would be approximately >99% and 59.9%, or
the probability of a randomly sample individual undergoing an improvement is >99%
or 59.9% for intervention 1 and 2, respectively. As Hanel & Mehler (2019) demonstrated,
the CLES may be a more intuitive description of the signal-to-noise SMD. While our
personal recommendation leans towards the use of magnitude-based SMDs and CLES,
it is up to the individual sport and exercise scientist to decide what effect size they feel is
most appropriate for the data they are analyzing and point they are trying to communicate
(Hönekopp, Becker & Oswald, 2006).

In choosing an SMD, we also sympathize with Lakens (2013), ‘‘ ... to report effect sizes
that cannot be calculated from other information in the article, and that are widely used
so that most readers should understand them. Because Cohen’s dz can be calculated from
the t -value and the n, and is not commonly used, my general recommendation is to report
Cohen’s dav or Cohen’s drm.’’ Along these same lines, if scientists want to present an SMD,
it should not exist in isolation. It is highly unlikely that a single number will represent all
data in a meaningful way. We believe that data are often best appreciated when presented
in multiple ways. The test and inferential statistics (e.g., p-values and t -statistics) should be
reported alongside an effect size that provides some type of complementary information.
This effect size can be standardized (e.g., 1pre) or unstandardized (raw), and should be
reported with a confidence interval (CI). Confidence intervals of a magnitude-based SMD
will provide readers with information concerning both the magnitude and compatibility
limits of an effect size; CIs can be calculated using formulae, or perhaps more easily,
using the bootstrap. In situations where the measurements are directly interpretable,
unstandardized estimates are generally preferable. The CLES can also be reported when
the presence of a change or difference between conditions is of interest.

Percent changes
It is not uncommon for sport and exercise scientists to report their data using percentages
(e.g., percent change). While this is fine if it supplements the reporting of their data
in raw units, it can be problematic if it is the only way the data are presented or if the
statistics are calculated based on the percentages. In the case of SMDs, an SMD calculated
using a percent change is not the same as an SMD calculated using raw units. More
importantly, the latter—which is often of greater interest to readers or those performing
meta-analysis—cannot be back-calculated from the former. It is imperative that authors
consider the properties of the values that they report and what readers can glean from
them.
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Data sharing
To facilitate meta-analysis, we suggest that authors upload their data to a public repository
such as the Open Science Framework, FigShare, or Zenodo (Borg et al., 2020). This ensures
that future meta-analysis or systematic reviews efforts have flexibility in calculating
effect sizes since there are multitude of possible calculative approaches, designs, and
bias corrections (see Baguley (2009)). When data sharing is not possible, we highly
encourage sport and exercise scientists to upload extremely detailed descriptive statistics
as supplementary material (i.e., sample size per group, means, standard deviations, and
correlations), or alternatively, a synthetic dataset that mimics the properties of the original
(Quintana, 2020).

Examples
In the examples below, we have simulated data and analyzed it in R (see Supplemental
Information) to demonstrate how results from a study in sport and exercise science could
be interpreted with the appropriate application of SMDs. For those unfamiliar with R,
there is an online web application (https://doomlab.shinyapps.io/mote/) and extensive
documentation (https://www.aggieerin.com/shiny-server/introduction/) to simplify the
process of calculating SMDs Redundant (Buchanan et al., 2019).

Scenario 1: interpretable raw differences
In the first hypothetical example, let us imagine a study trying to estimate the change
in maximal oxygen consumption (V̇O2; L min−1) in long-distance track athletes before
and after a season of training. For this study, maximal V̇O2 was measured during a
Bruce protocol with a Parvomedics 2400 TrueOne Metabolic System. The results of this
hypothetical outcome could be written up as the following:

V̇O2 after a season of training with the track team (mean = 4.13 L min-1, SD = 0.25)
increased compared to when they joined the team (mean= 3.89 L ·min-1, SD= 0.21), t
(7)= 3.54, p= 0.009, δ̄= 0.23 L min-1 95% CI [0.07–0.38]. The CLES indicates that the
probability of a randomly selected individual’s V̇O2 increasing after their first season
with the team is 89%.

Scenario 2: uninterpretable raw differences
Now, let us imagine a study trying to estimate the effect of cold water immersion on muscle
soreness. For this hypothetical study, muscle soreness is measured on a visual analog scale
before and after cold water immersion following a muscle damaging exercise. The muscle
soreness score would be represented by cm on the scale measured left-to-right. Because
sensations tend to be distributed lognormal (Mansfield, 1974)—and are multiplicative
rather than additive—it is sensible to work with the logarithm of the reported soreness
levels. Since these logged scores are not directly interpretable, it is sensible to use an SMD
to help interpret the change scores. The hypothetical study could be written up as follows:
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Muscle soreness was lower after cold water immersion (mean = 27, SD = 7) compared
to before (mean = 46, SD = 11) cold water immersion, t (9) = −6.90, p < .001,
Glass’s 1pre=−2.2 95% CI [−3.2, 1.3]. The CLES indicates that the probability of a
randomly selected individual experiencing a reduction in muscle soreness after cold
water immersion is 99%.

CONCLUSION
We contend that the reporting of effect sizes should be specific to the research question
in conjunction with the narrative that a scientist wants to convey. In this context, pooled
pre- and/or post-study SDs are viable choices for the SMD denominator. This approach
provides insight into the magnitude of a given finding, and thus can have important
implications for drawing practical inferences. Moreover, the values of this approach are
distinct and, in our professional opinion, potentially more insightful than signal-to-noise
SMDs, which essentially provide information that is redundant with the t -statistic. At the
very least, there is no one-size-fits-all solution to reporting an SMD, or any other statistics
for that matter. Despite our personal preference towards other effect sizes, a sport and
exercise scientist may prefer a signal-to-noise SMD (dz) and could reasonably justify this
decision.We urge sport and exercise scientists to avoid reporting the same default effect size
and interpreting them based on generalized, arbitrary scales. Rather, we strongly encourage
sport and exercise scientists justify which SMD is most appropriate and provide qualitative
(i.e., small, medium, or large effect) interpretations that are specific to that outcome and
study design. Also, sport and exercise scientists should be careful to report the rationale
for using an SMD over simply presenting raw mean differences. Lastly, the creation of
statistical rituals wherein a single statistic, by default, is used to interpret the data is likely to
result in poor statistical analyses rather than informative ones (Gigerenzer, 2018). As J.M.
Hammersley once warned, ‘‘There are no routine statistical questions; only questionable
statistical routines’’ (Sundberg, 1994).
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APPENDIX 1: STANDARDIZED MEAN DIFFERENCE
CALCULATIVE APPROACHES
Throughout the text, we use Glass’s 1pre as our token magnitude-based SMD. However,
there exist other approaches to calculating magnitude-based SMDs. Here, we briefly
discuss two other common calculations of magnitude-based SMDs. Of note, these two
other calculative approaches may contain some ‘‘effects’’ (variance) from the intervention
in the denominator, arguably making Glass’s 1pre a more ‘‘pure’’ (in the sense that the
denominator is uncontaminated by intervention effects) magnitude-based SMD.

Cohen’s dav: Some have argued that Cohen’s dz is an overestimate of the SMD, and
instead advocate for reporting an SMD very similar to the Cohen’s ds typically utilized for
between-subjects (independent samples) designs (Dunlap et al., 1996). The only difference
between Cohen’s dav and Cohen’s ds is that the average standard deviation between the
two-samples (e.g., pre- and post-intervention assessments in a repeated-measures design)
is used rather than the pooled standard deviation.

dav=
δ̄

σpre+σpost
2

(10)

Cohen’s drm: The standardized difference between repeated-measures (hence ‘‘rm’’) is
arguably the most conservative SMD among those reported. This approach ‘‘corrects’’ for
repeated-measures by taking into account the correlation between the two measurements.

drm=
δ̄√

σ 2
pre+σ

2
post−2 · r ·σpre ·σpost

·
√
2 · (1− r) (11)

=
δ̄

σδ
·
√
2 · (1− r) (12)

= dz ·
√
2 · (1− r) (13)

APPENDIX 2: JUSTIFYING SAMPLE SIZES
There are more appropriate approaches to justifying sample sizes than using previously
reported effect sizes. First, if authors have a question that, for some reason, necessitates
null hypothesis significance testing, authors should first perform the necessary risk analysis
to obtain their desired error rates. Next, authors can specify a smallest effect size of interest
(SESOI) or minimal clinically important difference (MCID) (Hislop et al., 2020). Of note,
the ontological basis for (or the rationale for the true existence of) such dichotomizations—
both in the effect (SESOI, MCID) and p-value domains (α-level)—should be justified.
Oftentimes, it is not the researcher, but a reader, clinician, or policymaker whomust make a
decision; for such decisions, proper, contextual decision analytic frameworks should be em-
ployed (Amrhein, Greenland & McShane, 2019; Hunink et al., 2014; Vickers & Elkin, 2006).
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Second, if relying on estimation rather than hypothesis testing, sport and exercise scientists
could determine a sample size at which they would have high enough ‘‘assurance’’ that the
estimates would be sufficiently accurate (i.e., confidence intervals around the effect size
are sufficiently narrow) (Maxwell, Kelley & Rausch, 2008). Third, authors may simply be
working under constraints (e.g., time, money, or other resources) that prohibit them from
recruiting more than n participants. We believe such pragmatic constraints are perfectly
reasonable and justifiable. No matter the sample justification, it should be thoughtful and
reported transparently. Importantly, the utility of an effect size or SMD should not be
determined by its ability to be used in sample size justifications or calculations.
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