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ABSTRACT

Background. Endogenous retroviruses (ERVs) are the result of the integration of
retroviruses into host DNA following germline infection. Endogenous retroviruses are
made up of three main genes: gag, pol, and env, each of which encodes viral proteins
that can be conserved or not. ERVs have been observed in a wide range of vertebrate
genomes and their functions are associated with viral silencing and gene regulation.
Results. In this work, we studied the evolutionary history of endogenous retroviruses
associated with five human genes (INPP5B, DET1, PSMA1, USH2A, and MACROD?2),
which are located within intron sections. To verify the retroviral origin of the candidates,
several approaches were used to detect and locate ERV elements. Both orthologous and
paralogous genes were identified by Ensembl and then analyzed for ERV presence using
RetroTector. A phylogenetic tree was reconstructed to identify the minimum time point
of ERV acquisition. From that search, we detected ERVs throughout the primate lineage
and in some other groups. Also, we identified the minimum origin of the ERVs from
the parvorder Catarrhini to the Homininae subfamily.

Conclusions. With the data collected, and by observing the transcription factors
annotated inside ERVs, we propose that these elements play a relevant role in gene
expression regulation and they probably possess important features for tumorigenesis
control.

Subjects Bioinformatics, Evolutionary Studies, Genomics, Virology
Keywords ERVs, Primates, Evolution, Transcription factors, Clinical variants

BACKGROUND

Given that endogenous retroviruses (ERVs) are brought about by the retroviruses’
integration into the host’s DNA after a germline infection, they are directly transmissible
from parents to children, i.e., from one generation to the next (Johnson, 2015; Xu et
al., 2018). ERVs are formed through multiple integrations of exogenous retroviruses
throughout the species’ evolution (Lavialle et al., 2013). Within the vertebrate genomes,
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endogenous retroviruses typically comprise 5-10% of the whole material (Waterston et
al., 2002; Mager & Stoye, 2015), while about 8% of the human genome is derived from
retroviral sequences (Johnson, 2019). Recent studies have found endogenous retroviruses
in birds, reptiles, amphibians, and fish (Xu et al., 2018). Thus, more than 100,000 retroviral
elements in humans, 30,420 in birds, and 2,300 in Xenopus tropicalis have been identified
(Chalopin et al., 2015; Naville & Volff, 2016).

Retroviruses are made up of four main genes: gag, pro, pol, and env. Additionally,
both exogenous retroviruses and ERVs have long terminal regions (LTRs) that flank their
genomes (Gifford et al., 2018). The gag genes code for specific antigen proteins, including
the matrix (MA), the capsid (CA), and the nucleocapsid (NC). The env genes encode
retroviral envelope proteins, such as the surface protein (SU) and the transmembrane
subunit (TM) (Jern et al., 2005; Chen & Cui, 2019). The pol genes are the best-conserved
ones through the ERVs and encode a reverse transcriptase (RT) and an integrase (IN)
(Hayward, 2017). However, these endogenous retroviral elements lose their identity over
time, essentially by mutation or recombination, and in some cases become undetectable
from their original state (Diehl et al., 2016).

ERVs, as well as other transposable elements, play a fundamental role in the vertebrate’s
evolution (Biémont, 2010), and have a strong influence on the host genomes (Frank ¢
Feschotte, 2017). Tt is presumed that an ERV’s presence allows new proviral structures to
be replicated and inserted, directly affecting the host genome. They could also disrupt
the regulation of adjacent genes, as well as promote viral gene expression with long-term
genomic effects (Villesen et al., 2004; Mourikis, Aswad ¢ Katzourakis, 2016). This effect
is clearly observed with syncytin, an essential viral protein expressed during placental
formation (Chuong, Tong ¢ Hoekstra, 2010).

The activity of LTRs in the host genome has often been described as neutral. However,
it is likely that the activation of these sequences has a significant impact on the regulatory
network of the host genes, because these have retroviral promoters and enhancer elements
that can influence the transcription of adjacent genes and the ERVs themselves (Griffiths,
2001; Johnson, 2019). For example, the disruption of the human ERV-K interferes with cell
expression processes, for instance RNA-binding and alternative splicing (Ibba et al., 2018).
Cancer cell formation has been associated with the ectopic activation of ERVs, presumably
due to the stochastic effect of oncogene expression by LTR elements (Chuong, 2014; Pontis
etal., 2019).

In order to differentiate the ERVs from the native genomic signatures, several programs
have been developed. Software, such as RetroTector, estimates the probability that a
sequence comes from a retrovirus based on a combination of heuristic algorithms (Sperber
et al., 2009; Hayward, Grabherr ¢ Jern, 2013). The main algorithm is based on “chunk
threading”. First, candidates are selected if LTRs are present. Then, conserved retroviral
motifs are detected. Finally, it rebuilds the four major retroviral proteins, namely gag, pro,
pol, and env (Sperber et al., 2007). Other programs based on the identification of LTR-RT
sequences, such as LTR_FINDER (Xu & Wang, 2007), predict the locations and structure
of full-length LTR retrotransposons from DNA sequences. LTR-Harvest (Ellinghaus, Kurtz
& Willhoeft, 2008), for the de novo detection of full-length LTR retrotransposons, provides
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annotations based on length, distance, and sequence motifs of the LTR retrotransposon.
LTR_Retriever (Ou ¢ Jiang, 2018) is a multi-threaded program that identifies LTR-RT
and generates high-quality LTR libraries from genomic sequences. These programs are
essential for obtaining a high-quality genetic annotation; however, they are associated with
low specificity rates and high false discovery rates (You et al., 2015).

In this work, we traced the evolutionary history of conserved intronic human ERVs
and analyzed their potential impact on their host. To do that, we studied the presence and
absence of ERVs in the orthologs and paralogs, analyzing 118 vertebrate genomes. Finally,
we detected the transcription factors associated with ERV regions to deduce the potential
role of these sequences inside the host genomes. With this work, we aimed to shed some
light on the role of ERVs in the human genome and understand the causes that lead to the
host genome retention of viral information through millions of years of evolution.

METHODS

ERV detection in humans

We searched a de novo list of human ERVs using LTR-HARVEST, with the same parameters
suggested by the authors (Ellinghaus, Kurtz & Willhoeft, 2008). Then, the results were
filtered with LTR-RETRIEVER (Ou ¢ Jiang, 2018) using default parameters. The script
call_segbylist.sh included in LTR-RETRIEVER was used to retrieve the predicted ERVs
from a GFF3 file. To validate our results, a BLAST search against the Genome-based
Endogenous Viral Element Database (gEVE, http:/geve.med.u-tokai.ac.jp/) was performed.
Only query sequences whose best hit had a low e-value (1e—5) were considered human
ERVs (Table S1). We used RetroTector(© (Sperber et al., 2009) to perform a second round
of filtering to obtain only ERVs with detectable elements of pol, gag, and env genes. Because
we focussed on intronic ERVs, we retained candidates located exclusively between exons.

ERV detection in mammal orthologs and human paralogs
Orthologs for 118 different species were identified using the Orthologous Mammalian
Markers (OrthoMam) database (Ranwez et al., 2007), based on the list of genes obtained
in the previous section as a query. Each ortholog was analyzed with RetroTector to detect
the presence of ERV elements. A pairwise alignment was performed for each human ERV
candidate and every ortholog detected. We used pairwise BLASTN (Johnson et al., 2008) to
achieve this task. In addition, the predicted human ERVs were mapped to each ortholog
using the Geneious Prime mapping tool (with default parameters) (“Geneious Prime R10™).
The human paralog genes were identified with Ensembl (Howe et al., 2021). The presence
of ERVs was evaluated in the same way as the orthologs. Moreover, a multiple alignment
was made using the MAFFT (FFT-NS-1 algorithm) (Katoh ¢ Standley, 2013) in order to
identify paralogs with similar Intron-Exon structures to the target gene.

Species tree reconstruction

To infer a species tree and reconstruct the evolutionary history of our ERV candidates,
we used the INPP5B gene, because this is considered a remarkable phylogenetic marker
for mammals, in agreement with OrthoMam (Ranwez et al., 2007). The species tree was
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reconstructed in PhyML (Guindon et al., 2010) using the GTR model, allowing the program
to estimate the value of the gamma parameter and proportion of the invariable sites. SH-like
was used as a supporting measurement of the branches.

We used the presence/absence of ERVs in target genes to estimate the minimum sites of
ERYV introduction in the species tree.

Transcription factor binding sites in ERVs
The Gene Transcription Regulation Database (GTRD) was used to determine the
transcription factors present in the regions annotated as ERVs. GTRD is based on the
BioUML platform, which uses a ChIP-seq data collection of Homo sapiens, Mus musculus,
and Rattus norvegicus, among others (Yevshin et al., 2019). A list of annotated transcription
factor binding sites was collected for the five genes selected in humans and their orthologs in
Mus musculus and Rattus norvegicus, as well as paralogs in humans with similar structures
(introns and exons with the same disposition and length proportion). Once the different
lists were obtained, a comparison (presence/absence) was made between orthologs and
then between paralogs to determine transcription factors able to bind to the sections
specifically annotated as ERV. In addition, an enrichment analysis was carried out in
David Bioinformatics (Huang, Sherman ¢ Lempicki, 2009) with the transcription factors
exclusively found in ERVs to determine the biological processes and metabolic pathways
enriched in these regions. Equivalent information was obtained for the paralogs.
Furthermore, an interaction analysis was carried out in BioGrid (Oughtred et al., 2019)
for the five human genes annotated as intron ERVs. Once the lists were obtained, the
interaction networks were generated in the Cytoscape software (Shannon et al., 2003).
Finally, an enrichment analysis was performed using BINGO (Maere, Heymans ¢ Kuiper,
2005) to determine the gene ontology (GO) categories overrepresented in a set of genes or
in a subgraph of an interaction network.

Analysis of clinical variants

We searched for clinical variants reported in Ensembl (Howe et al., 2021) that were
identified in the gene sections annotated as ERVs in the human genes. The same analysis
was performed for the orthologs and paralogs with available information in Ensembl.

ERV expression

To regard the expression of ERV in human tissues, we used the information compiled
in the UCSC browser (Kent et al., 2002) from the GTEx portal on 03/23/2022 (https:
lgtexportal.org/). The expression patterns observed were limited to the specific genomic
coordinates where the ERVs were predicted.

RESULTS

Retroviral elements

We performed a thorough analysis of human intronic ERVs with a conserved retroviral
structure by applying a de novo search. We detected 28 intronic ERVs but only six (inside
five human genes) with elements of pol and gag genes, and in some cases env and pro genes.
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These were: 5’LTR, Primer Binding Site (PBS), Matrix protein (MA), Capsid protein (CA),
Nucleocapsid protein (NC), Reverse Transcriptase (RT), Integrase (IN), Viral Protease
(PR), Surface envelope protein (SU), Transmembrane protein (TM), Polypurine Tract
(PPT), and 3'LTR. Figure 1 shows the ERVS’ relative position to the gene and the retroviral
elements detected by RetroTector. In all the cases, the ERVs show antisense orientation
relative to the transcriptional direction of the gene. The other 22 predicted ERVs have only
LTR signals but no recognizable retroviral genes; for that reason, we decided to focus only
on the ERVs with the most complete structures.

Identification of ERVs in orthologs

We analyzed the orthologs of the human genes described in the previous section. 118
orthologs were identified for INPP5B and DET1, 117 for PSMA1I, 114 for USH2A, and 111
for MACROD?2. We identified ERV presence in these genes (Table 1) by pairwise alignment
in BLASTN and posterior analysis with RetroTector. To consider the genes as ERVs, we
took into account the similarity with the human candidates and the identification of ERV
elements by RetroTector.

From these analyses, we found evidence of ERV homologs in primates (Tables 52-57),
showing high similarities with human ERVs that have been detected by RetroTector.
Outside the primate group, only in some species has the presence of ERVs been detected,
and never by the BLAST search and RetroTector at the same time (Figs. 52-56).

Paralog identification
We identified 13 paralogs for human INPP5B, 19 for PSMAI, 28 for USH2A, 2 for
MACROD?2, and none for DET1. We analyzed the sequences in RetroTector and performed
a BLASTN vs ERV pairwise alignment for each gene. From the 13 paralogs detected for
INPP5B, we identified only one sequence in RetroTector for the gene SYNJI (Table S8).
However, the query coverage with the INPP5B ERV was 4%, so it is likely that it is a different
ERV or a fraction of it. We determined 4 genes with signals of retroviral elements in USH2A
paralogs: LAMB2, LAMA2, NTN4, and TMEFF2 (Table S9). Nonetheless, their alignments
show that the retroviral structures are different from those found in human genes (query
coverage from 3 to 8%), so we assume that these are different ERVs or remnants of the
query retroviral sequence. For PSMA1 and MACROD?2 paralogs, both RetroTector analysis
and the alignments gave negative results, so there is no evidence of retroviral elements in
any of their paralogs.

From these results, we considered that there is not enough information to assure the
presence of conserved ERVs in the paralogs of the human genes that we analyzed.

Evolutionary history of ERVs in primates

From the ortholog analysis, we deduced that in order to explain the presence of the
ERV observed in PSMA1, the viral infections must have occurred at the very least in the
common ancestors of the subfamily Homininae. In the case of DET1, the retroviral insertion
could have taken place at least in the superfamily Hominoidea lineage (Homo sapiens, Pan
troglodytes, Pan paniscus, Pongo abelii, and Nomascus leucogenys), while insertions observed
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Figure 1 The ERVS’ structures and locations. The dark blue segments represent exons, and sky-blue seg-
ments represent the introns of each gene. The retroviral elements seen on the diagram are those that have
been detected by RetroTector. (A) INPP5B gene. (B) DET1 gene. (C) PSMA1 gene. (D) USH2A gene. (E)
MACROD?2 gene, ERV1. (F) MACROD2 gene, ERV2.

Full-size Gl DOI: 10.7717/peerj.14431/fig-1
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Table 1 Candidates’ orthologs with ERVs detected in them.

Human Number of ERV ERV
genes orthologs detected by detected by
with intron identified RetroTector pairwise
ERVs BLASTN*
INPP5B 118 25 15
DET1 118 5
PSMA1 117 5 4
USH2A 114 48 17
ERV1 MACROD?2 13

111 65
ERV2 MACROD?2 3

Notes.

2The presence of an ERV was assumed in sequences with a pairwise alignment similarity higher than 80% and a query coverage

higher than 50%.

MACROD2

nlalnl

Catrlito syrichta

Cebus capucinus imitator

Aotus nancymaae

Saimiri boliviensis boliviensis

Hominidae

Homininae

Inopithecus roxellana
Rhinopithecus bieti

Colobus angolensis palliatus
Piliocolobus tephrosceles
Chlorocebus sabaeus Catarrhini
Cercocebus atys

Mandrillus leucophaeus
Papio anubis

Theropithecus gelada
Macaca fascicularis

Macaca nemestrina

Macaca mulatta

Otolemur garnettii
Propithecus coquereli
Microcebus murinus

Figure 2 Mammal species tree with the location of the minimum common ancestor where the retro-
virus infection occurred for the genes analyzed in this work.

Full-size Gl DOL: 10.7717/peerj.14431/fig-2

in INPP5B, USH2A, and MACROD?2 could, as a minimum, have occurred in the parvorder
Catarrhini (Old World Monkeys) (Fig. 2).

This evidence leads us to think that the retroviral infection occurred at least between 35
and 40 million years ago during the evolution and differentiation of Catarrhini primates
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(Aiewsakun & Katzourakis, 2015). The phylogenetic tree for each gene analyzed is available
in Figs. S1-55.

Clinical variants associated with ERVs

For the clinical variants annotated in our genes, we described the number and type of
variants found in the ERV region of each gene (Table 2). We performed this analysis

to explore the potential consequence of our list of intronic ERVs in the host genome.
We collected information from: (a) single-nucleotide polymorphism (SNP), defined as

a variant that affects a single base pair (although there are multi-allelic SNPs) that must
be present in more than 1% of the population; (b) insertion-deletion mutations (indels),
which are events where the insertion and/or deletion of less than 1 kb of nucleotides occurs
(Sehn, 2015); (c) single nucleotide variant (SNV), which like SNPs affect a nucleotide, but
this type of mutation is rare and is present in less than 1% of the population (Harel et al.,
2015); and (d) structural variation that is considered a large rearrangement, produced by
deletions, duplications, insertions, inversions, or translocations (Freeman et al., 2006). All
these mutations can occur in both somatic and germline cells.

Furthermore, we collected information about somatic type variants, related to different
types of tumors. In the case of the ERV region of INPP5B, we found variants associated with
tumors in the esophagus (one), breast (three), pancreas (one), liver (seven), hematopoietic
and lymphoid tissue (four), ovary (six), prostate (two), and kidney (one). For DET1, we
found somatic variants related to tumors in hematopoietic and lymphoid tissue (two), the
upper aerodigestive tract (one), the esophagus (one), prostate (one), breast (two), liver
(one), kidney (two), and the central nervous system (one). In PSMAI ERV, we found
somatic variants associated with breast (five), stomach (one), prostate (two), liver (one),
hematopoietic and lymphoid tissue (six), large intestine (one), and esophageal (one)
tumors. In the USH2A ERV region, three variants have been reported—2 SNPs and one
INDEL; we also discovered two variants linked to regulatory activity—one variant in the
TF binding site and one in the CTCF binding site.

Only one somatic SNV associated with kidney tumors has been reported in the ERV1
MACROD:? region (Table 510). Regarding the ERV2 region, there is no information on
clinical variants, but there are four variants in regulatory regions: one in a promoter, one
in an enhancer, and two copy number variations (CNV).

Transcription factors associated with ERVs and intronic ERV
expression
Transcription factor binding sites (TFBSs) have been observed in association with HERV's
and LTRs, regulating the transcriptional activity of these exogenous elements (Monde et
al., 2022; Liu et al., 2022). In order to determine the transcription factors (TFs) associated
exclusively with ERVs, we excluded all the TFBSs shared by orthologs and paralogs
annotated in structural equivalent sections. We obtained 28 TFBSs for INPP5B, 188
for DET1, 58 for PSMA1I, 19 for USH2A, 96 for ERV1 MACROD2, and 238 for ERV2
MACROD?2 (Table S11).

We made an enrichment analysis with David Bioinformatics Resources to find the
pathways in which these factors are involved, and how many of these are related to cancer.
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Table 2 Number of clinical variants annotated in the ERV regions of five human genes.

Gene

INPP5B

Gene

DET1I

Gene

PSMAI

Variants

SNP

INDEL

Deletion
Insertion
Somatic SNV
Somatic deletion
Somatic insertion
Regulatory activity variants
Variants

SNP

INDEL

Deletion
Insertion
Somatic SNV
Somatic deletion
Somatic insertion
Regulatory activity variants
Variants

SNP

INDEL

Deletion
Insertion
Somatic SNV
Somatic deletion
Somatic insertion

Regulatory activity variants

1,474
1347
81

19

2

24

1121
1038
49
14

15

Gene

USH2A

Gene

ERV1
MACROD2

Gene

ERV2
MACROD2

Variants

SNP

INDEL

Deletion
Insertion

Somatic SNV
Somatic deletion
Somatic insertion
Regulatory activity variants
Variants

SNP

INDEL

Deletion
Insertion
Somatic SNV
Somatic deletion
Somatic insertion
Regulatory activity variants
Variants

SNP

INDEL

Deletion
Insertion
Somatic SNV
Somatic deletion
Somatic insertion

Regulatory activity variants

Table 3 summarizes these results. Additionally, we performed the same analysis with the

paralogs (using structural equivalent regions to ERVs). We observed that only three of the

13 sections analyzed in paralogs were enriched in TFs associated with cancer, in contrast
with five out of six that are enriched for the ERVs (Table S12).
Despite the position of ERVs inside introns, some of the candidates have a low but

visible expression in certain tissues and cells. In the case of INPP5B, a high expression

peak is observed in brain tissues in a short section around the transmembrane gene of the

ERV (163 bp). Remarkably, no other section of the ERV has an expression signal in this

case. Intrigued by this observation, we used this section to find copies throughout human

genomes, and we found more than 10 copies located inside the introns of several genes

with a high expression exclusively in brain tissues (File 52). Additionally, several variants

associated with tumors within these sections of high expression were observed (Table S513).

We also found copies of this section in intergenic regions but without expression in any

tissue.
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Table 3 ERV transcription factor enrichment analysis.

Gene No of Statistically Cancer Transcription Benjamini
name unique significant Pathways factors
transcription enriched involved in
factors KEGG Cancer
associated pathways Pathways
with ERVs
INPP5 28 0 - - -
Transcriptional misregulation in cancer 28 8.40E—13
DET1 188 5 Pathways in cancer 18 3.10E—04
Viral carcinogenesis 12 1.60E—03
PSMA1 58 1 Transcriptional misregulation in cancer 9 1.00E—05
Acute myeloid leukemia 4 2.20E—03
USH2A 19 3 Transcriptional misregulation in cancer 5 2.20E—03
Pathways in cancer 5 3.80E—02
Transcriptional misregulation in cancer 20 4.30E—17
ERV1 9% 17 Pathways in cancer 15 1.20E—05
MACROD2 Acute myeloid leukemia 6 7.40E—04
Renal cell carcinoma 5 1.10E—02
Chronic myeloid leukemia 5 1.30E—02
Viral carcinogenesis 7 1.90E—02
MicroRNAs in cancer 8 2.10E—02
ERV2 MACROD2 238 6 Transcriptional misregulation in cancer 5 2.70E—02
Notes.

*Adjusted p-values by using the linear step-up method by Benjamini ¢ Hochberg (1995).

The ERV located inside DET1 has a dispersed pattern of expression in almost all the
tissues available in GTEX, especially in the tibial nerves and testes. A similar pattern was
observed for the ERV located inside PSMA 1. Both ERVs located inside MACROD?2 have low
levels of expression; however, the ERV2 is particularly expressed in brain tissues (File 53).

DISCUSSION

In this work, we found retroviral elements in different vertebrate genomes and suggest the
implications of the retention of this viral information over millions of years of evolution.
From our analysis, a clear pattern of ERV gains and losses was identified in primates.
Additionally, we were able to determine the presence of regulatory sequences inside the
ERV regions.

Endogenous retroviruses can preserve the cis- and trans- acting mechanisms of the
exogenous virus, which could at any time make it potentially dangerous for the host, even
though millions of years have passed since its integration and despite the provirus being
severely degenerated (Lander et al., 2001; Blomberg, Ushameckis ¢ Jern, 2013). In all the
ERVs that we found, gag and pol structures were observed, and the pro and env domains
can be recognized in the ERVs of INPP5B, USH2A, and MACROD?2 (Fig. 1). Even though
ERVs are conserved in these structures, this does not imply that they still have an infectious
capacity as a retrovirus (Jern, Sperber & Blomberg, 2004; Marie, Sandra ¢ Thierry, 2005).
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To explore this possibility, we observed the expression of our intronic ERVs (File 53). We
found a lack or low levels of expression in most of the ERVs, making it unlikely that the
retroviral genetic information still has an infective capacity. A remarkable exception was
observed in the 163 bp section inside the INPP5B ERV. After several BLAST searches, we
annotated this section as an antisense long non-coding RNA (NONHSAG056331.1), in
agreement with the NONCODE database (Zhao et al., 2021) (http:/;iwww.noncode.org/).
The 163 bp section is included in the 917 bp length NONHSAG056331.1; nevertheless, the
expression of the entire IncRNA is higher in the lymph nodes (a tissue not available in GTEx
data) than in the brain. We found at least 10 human genes with a very similar sequence
to the 163 bp section (with a similarity of more than 92%) within introns and highly
expressed in brain tissues (according to the GTEx data) (see File S2). The 163 bp section
was not annotated as part of an ERV gene in RetroTector, but searches in RepeatMasker
(http:/mwww.repeatmasker.org) and RepBase (Bao, Kojima ¢» Kohany, 2015) annotated this
sequence as an LTR and ERV class 1. Although we found several ERV structures inside the
INPP5B intron, the evidence indicates that it is unlikely that the entire ERV is expressed.
However, the 163 bp section deserves to be studied further to determine the cause and
consequences of its expression.

ERVs, after their insertion into the host genome, can undergo recombination events
or accumulate multiple mutations (Liber et al., 2018; Halo et al., 2019), leading to their
inactivation, although some ERVs retain their ability to replicate (Kozak, 2015). Published
methods for the retrieval of retroviral sequences from genomic databases focus on long
terminal repeat pair detection, specific conserved sequences, or general repeat detection
(Steinbiss et al., 2009; Shi ¢ Liang, 2019). These limitations in detection methods may
result in false negatives or false positives in ERV research, making it even more difficult
to determine the presence or absence of ERVs in certain genomes. In the same way and
due to these limitations, it is likely that the LTRs changed their sequence and avoided
being recognized by RetroTector and some other software based on LTR recognition. In
this work, we found several genes in vertebrates without ERV signals (in agreement with
RetroTector); however, BLAST alignments showed a high similarity with the human ERVs.
Using a strict criterion, we do not consider these sections to be ERVs, but it is plausible that
these genes already contain ERVs with one or more of the retroviral signatures deleted. We
compiled this information in the trees presented in Figs. S1-S6.

Various methods are used to determine the time interval in which a retrovirus infects
a germline in a host species to lead to the appearance of an ERV. One of these is by
determining the presence or absence of an ERV in the genomes of phylogenetically related
species (Johnson, 2015). In general, if an infection occurred in a recent common ancestor, all
species or most of the descendants must retain the ERV. If the retrovirus infection occurred
in an ancient ancestor, more losses are expected. This robust method only provides an
estimation of the interval in which the infection could occur (De Parseval ¢ Heidmann,
2005; Hron et al., 2016). Using this approximation, we estimated the minimum ancestor
for each ERV appearance analyzed in this work (Fig. 2). It is important to remark that we
found evidence of ERVs in several species of primates. This level of conservation points out
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the relevant role of the ERVs inside their hosts, since the retention of the ERVs by genetic
drift in up to 18 species is highly unlikely.

Our results show that the ERV integrations occurred along the Catarrhini lineage, made
up of hominoids and cercopithecoids (Groves, 2016). These two superfamilies diverged
approximately 32 million years ago (MYA) according to fossil and genetic evidence (Pozzi
etal, 2014). In a similar experiment, Vargiu ef al. (2016) estimated the origin of 3,173
human ERVs (HERVs) from six to 100 MYA. This implies that the integration took place
after the Eutheria divergence but before the differentiation between chimpanzees and
humans. In the same line, Grandi et al. (2016) performed a phylogenetic and structural
analysis of HERV-W (a group of human endogenous retroviruses widely studied due to
their participation in various diseases), based on the divergence rate of the nucleotides.
These results date the acquisition of this element during the Catarrhini lineage evolution
(40 and 20 MYA approximately), just after the separation of the parvorder Platyrrhine.
These results coincide with our estimations, suggesting that the parvorder Catarrhini could
be a hotspot of ERV acquisition, and perhaps these external elements contributed toward
shaping the evolutionary pathway of this lineage.

We found a cluster of TFBSs annotated in ERV regions and enriched in TFs associated
with transcriptional misregulation in cancer. This observation raises the question of
whether ERV regions tend to accumulate TFBSs or if they are independent of the exogenous
material. A similar observation has been reported for p53 TFBSs, where 1,509 LTR of human
ERVs have a p53 DNA binding site (Wang et al., 2007). In addition, the clinical variants
annotated in the ERV regions coincide with variants associated with tumors, reinforcing
the idea that the analyzed ERV sections have important roles in cell cycle regulation and
their misregulation leads to cancer. In agreement with these observations, several authors
have described an association between ERVs and cancer; moreover, this relationship is
explained by ERV activation (Ibba et al., 2018; Topham et al., 2020). Following our data,
another possibility for disrupting the cell cycle and producing tumors could be through
TFBS mutations that prevent TFs from binding to DNA. The regulatory regions observed
in the ERVs analyzed in this work are absent in paralog sequences without ERVs. Do the
ERVs facilitate the host’s gene regulation?

In addition to the association of ERVs with cancer development and other diseases, there
is evidence that these retroviral sequences could play a role in immune responses, placental
development, and so on (Banmnert et al., 2018). The best-known examples of functional
proteins produced during placentation are Syncytin-1 and Syncytin-2, which are critical
in underlying cell fusion for the formation and maintenance of the placenta (Chen et al.,
2008). Furthermore, the ERV sequence functions as an immune functional unit. So, this
can serve as an antiviral sequence that allows the inhibition and destruction of foreign
DNA when a viral infection occurs with a similar sequence (Hammen, 2018). Chiappinelli
et al. (2015) demonstrated that when the ERV bidirectional transcription occurs, the type
I interferon response is triggered and apoptosis of the infected cell occurs through the
activation of a double-stranded RNA detection pathway.

Another interesting question related to the transcription factor analysis is whether
the transcription factor binding sites can activate or deactivate ERVs (Grow et al., 2015;
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Monde et al., 2022). A frequent target of ERV silencing is the so-called primer binding
site (PBS), although there are other described mechanisms associated with this process.
It has been shown that the transcription factor TRIM 28 is involved in proviral silencing
mechanisms (Geis ¢ Goff, 2020). This process is believed to depend on the glycosylation
of the protein (Rowe et al., 2010; Boulard et al., 2020). Scientists have even described
how the deglycosylation of these proteins can reactivate the transcription of methylated
retrotransposons promoters (Rowe et al., 2010). Within our analysis, we found that the
TRIM 28 factor was present in all the studied ERVs, and moreover, other TRIM family
members were found in two ERVs. For the moment, we have not recovered any more
information to suggest a relevant role of this family of transcription factors in ERV
activation. Other important TFBSs observed in our ERVs include the ZNF (Zinc Finger)
protein family, which binds to ERVs by a sequence-dependent mechanism, thus potentially
participating in the regulation of these viral sequences (Rajagopalan ¢ Jha, 2018). In our
analysis, around 19 members of this family were present in at least 1 or 2 of the ERVs
that were the subject of this investigation. The bromodomain family proteins (BRD) are
believed to recruit other complexes to activate or repress gene expression (Frank et al.,
2003). In our results, we found binding sites to Bromodomain-containing protein factors
2, 3,4, and 9. Another relevant TFBS found in this study was that which is associated with
TIP60. This molecule is capable of silencing ERVs in the presence of BRD4 (Rajagopalan
et al., 2018). The complete list of TFBSs is available in Table S9.

Despite the clinical variants and transcription factors associated with the ERV regions, at
this point we are not able to formulate a strong hypothesis for the role of these exogenous

viral materials inside their hosts.

CONCLUSIONS

We developed a battery of experimental procedures to elucidate the role of ERVs described
in this work. The main questions that arise from our results are as follows. How has
exogenous genetic material been conserved in primates’ genomes (particularly in introns)
over millions of years? Do these retroviral elements have an increased capacity to regulate
genes or do they have some other unveiled role in the evolution of the genomes?

We were able to trace the evolutionary history of six ERVs throughout primate evolution.
The ancientness deduced for the retroviral sequences led us to think that these ERVs
survived by natural selection and were co-opted to perform certain roles for their host, as
per the list of 93 vertebrate ERVs reported by Wang ¢ Han (2020). This work proposes
new questions surrounding the function and evolution of ERVs, suggesting a relevant role
of these exogenous elements within their hosts.
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