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ABSTRACT

Background. Preoperative prediction of cervical lymph node metastasis in papillary
thyroid carcinoma provided a basis for tumor staging and treatment decision. This
study aimed to investigate the utility of machine learning and develop different models
to preoperatively predict cervical lymph node metastasis based on ultrasonic radiomic
features and clinical characteristics in papillary thyroid carcinoma nodules.

Methods. Data from 400 papillary thyroid carcinoma nodules were included and
divided into training and validation group. With the help of machine learning,
clinical characteristics and ultrasonic radiomic features were extracted and selected
using randomforest and least absolute shrinkage and selection operator regression
before classified by five classifiers. Finally, 10 models were built and their area under
the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive
predictive value and negative predictive value were measured.

Results. Among the 10 models, RF-RF model revealed the highest area under curve
(0.812) and accuracy (0.7542) in validation group. The top 10 variables of it included
age, seven textural features, one shape feature and one first-order feature, in which eight
were high-dimensional features.

Conclusions. RF-RF model showed the best predictive performance for cervical lymph
node metastasis. And the importance features selected by it highlighted the unique role
of higher-dimensional statistical methods for radiomics analysis.

Subjects Computational Biology, Oncology, Radiology and Medical Imaging, Computational
Science, Data Mining and Machine Learning

Keywords Ultrasound, Radiomics, Machine learning, Lymph node metastasis, Papillary thyroid
carcinoma

INTRODUCTION

Thyroid cancer is commonly seen in clinics and it ranked the top 10 major cancer in
China with an incidence and mortality rate of 1.00% and 0.34% in 2015 (Du et al., 2020).
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Moreover, in province like Zhejiang, its incidence rate rises to the top of all cancers

in females (Du et al., 2020). Papillary thyroid carcinoma (PTC) is the most common
histological type of thyroid malignancy. Although it presents with indolent procedure,
recurrence and metastasis are unavoidable. Literature showed a strong correlation between
cervical lymph node metastasis (LNM) and recurrence or poor survival rate in PTC (Hart!
et al., 20125 Kai Guo, 20145 Zhou et al., 2020a). In addition, the judgement of cervical LNM
affects the staging of PTC as well as its treatment and the extent of resection (Haugen et al.,
2016; Kim et al., 2017).

Cervical LNM presents in 20%-90% patients at diagnosis with an incidence of 30%-—
65% and 3%-44.5% for central LNM (level VI) and lateral LNM (level II-V), respectively
(Hartl et al., 2012; Tong et al., 2020). High-resolution ultrasound (US) is the first-line
noninvasive imaging method in detecting PTC (Jiang et al., 2020). However, the diagnostic
value of US in cervical LNM is limited with high specificity (85.0%-97.4%) but low
sensitivity (36.7%—-61.0%) (Jiang et al., 2020). Radiomics analysis quantitatively extracts
high-throughput features from medical images and converts them into mineable data
to help diagnosing or predicting diseases in clinical practice (Jiang et al., 2020; Lu et al.,
2019). Recent studies showed that radiomic features of magnetic resonance imaging (MRI),
computed tomography (CT) images had some potential predicting values in cervical LNM
in patients with thyroid carcinoma (Hu et al., 2020; Zhou et al., 2020b). Similar results were
found in US images for predicting central or lateral LNM (Jiang et al., 2020; Park et al.,
2020b).

Machine learning (ML), which acts like a subset of artificial intelligence, has become
the top interest in medical imaging recently (Shin et al., 2020). It is comprised of multiple
computational models and methods using meaningful features extracted from medical
image, and thus can draw results with consistent diagnostic and prognostic accuracy (Lee et
al., 20205 Shin et al., 2020). Recent studies based on ML method had been applied to thyroid
US imaging (Shin et al., 2020; Zhao et al., 2021). However, little study has applied ML to
analyzing the predicting value for cervical LNM in PTC nodules based on the radiomic
features extracted from US images.

The purpose of this study was to investigate the utility of ML and develop 10 models to
preoperative predict cervical LNM based on US radiomic features and clinical characteristics
in PTC nodules.

MATERIALS & METHODS

The authors are accountable for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of the work are appropriately investigated and resolved.
The study was conducted in accordance with the Declaration of Helsinki (as revised in
2013). The study was approved by institutional ethics committee of the Second Affiliated
Hospital of Wenzhou Medical University (NO.: 2021-K-20-01). Informed consent was
waived by the local Ethics Committee in view of the retrospective nature of the study and
all the procedures being performed were part of the routine care.
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Patients, clinical characteristics and surgery

From January 2018 to September 2019, 615 nodules from 518 consecutive patients were
involved in this study. Among them, four patients had four nodules, 12 patients had three
nodules and 61 patients had two nodules on contralateral or ipsilateral lobe of thyroid.
Our study was based on nodule level. The inclusion criteria for each nodule included:
(1) preoperative US examination; (2) initial surgical resection within 2 weeks of US
examination; (3) nodules confirmed with PTC pathologically; (4) cervical dissection and
lymph node resection with pathologically confirmation of state. The exclusion criteria for
each nodule included: (1) preoperative radiofrequency ablation; (2) incomplete clinical
characteristics; (3) multifocal lesions in one lobe of the thyroid. In total, 400 nodules from
371 patients were included in this study. Among them, 58 nodules were from separate lobe
of thyroid of 29 patients, i.e., each patient had one nodule on each side of thyroid. The
cohort consists of 101 males and 270 females with the mean age of 45.73 & 11.84 years
(ranging from 12 to 81 years). The flowchart of nodules’ inclusion and exclusion was
shown in Fig. 1.

Clinical characteristics included basic information (age and sex), biochemical results
and US findings. Standardized biochemical examination was done including differential
blood count, liver function analysis, renal function analysis, blood calcium ion, routine
urianlysis, serum free triiodothyronine 3 (FT3), serum FT4, serum total triiodothyronine 3
(TT3), serum TT4, serum thyroid stimulating hormone (TSH), serum anti-thyroglobulin
antibodies (ANTITGAB), serum anti-thyroid peroxidase antibody (ANTITPOAB) and
serum thyroglobulin (TG). US findings of composition, echogenicity, shape, margin and
echogenic foci were measured, scored and classified according to the Thyroid Imaging
Reporting and Data System (TI-RADS) criteria of American College of Radiology (Haugen
et al., 2016). In total, there were 34 clinical characteristics (Table 1, Fig. 2).

Total or near total thyroidectomy or hemithyroidectomy was performed according to
the clinical TNM staging with prophylactic or therapeutic cervical dissection and lymph
node dissection. Cervical LNM were determined when ipsilateral lymph nodes were proved
metastasis pathologically. It was because tumor cells metastasized to central lymph node,
followed by lateral lymph node. Rarely, skip’ lesions could occur (Table 1) (Al Afifet al.,
2015).

US image and US radiomic feature extraction

US examinations of thyroid nodules were performed with high-frequency linear probes (5
MHz to 14 MHz) with a variety of US systems: Philips EPIQ7C (Philips Medical Systems,
Best, the Netherlands), GE Volume E8 (GE Medical Systems, Chicago, IL, USA), Siemens
ACUSON OXANA 2 (Siemens Medical Solutions, Malvern, PA, USA), Esaote MyLab
Class C (Esaote, Genoa, Italy), Hitachi HI VISION Preirus (Hitachi-Aloka Medical, Tokyo,
Japan) and Mindray Resona 7T (Mindray Medical International, Shenzen, China). The US
images included both transverse and longitudinal section of nodules and were saved as JPG
images. Two US experts (YY, HL) who had 24 and 16 years of experience in in performing
thyroid US examination retrospectively reviewed the images. They scored the TI-RADS
of each nodule and draw the region of interest (ROI) of it without knowing the states of
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518 patients (615 thyroid nodules) with
pathologically confirmed PTC who underwent
preoperative ultrasound examination

147 patients (215 nodules) excluded:
10 patients (10 nodules) with preoperative radiofrequency ablation
k 115 patients (156 nodules) with incomplete clinical characteristics

22 patients (49 nodules) who had multifocal lesions in one lobe of thyroid

371 patients (400 thyroid nodulcs)

AN

[ 155 nodules with positive 245 nodules with ’

cervical LNM negative cervical LNM

Figure 1 The flowchart of nodules’ inclusion and exclusion for this retrospective study. LNM, lymph
node metastasis; PTC, Papillary thyroid carcinoma; US, ultrasound.
Full-size Gl DOL: 10.7717/peerj.14546/fig-1

LNM. Before and in the middle of the study, they analyzed 20 nodules jointly to establish
a standard. Finally, they reviewed half of the nodules, respectively.

The US images of the largest cross section were obtained and the ROI was manually
delineated by Paint Winl10 for windows. US radiomic features were extracted by an
open-source software (Pyradiomics, http:/pyradiomics.readthedocs.io/en/atest/index.html)
(Jiang et al., 2020) (Fig. 2). In order to reduce image noise and increase the contrast
of structures of interest, histogram equalization algorithm was employed before
normalization. The scale within the ROI was normalized from 0 to 255. The binWidth
of image was 25. Resample was skipped for the two-dimensional nature of US image. A
total of 1,769 candidate US radiomic features were extrated for each nodule. There were
nine shape features, 360 first-order statistical features and 1,400 textural features. The
gray matrices in textural features included gray-level size-zone matrix (GLSZM), gray-
level co-occurrence matrix (GLCM), gray-level dependence matrix (GLDM) and gray-level
runlength matrix (GLRLM). In addition, high-dimensional features were acquired by filters
including square, square root, Laplacian of Gaussian (LOG) with different sigma values
(1.0 mm~-10.0 mm with step 1.0 mm), wavelet with 2D transform (low-pass/low-pass, LL;
low-pass/high-pass, LH; high-pass/low-pass, HL; high-pass/high-pass, HH), logarithm,
gradient and exponential (Fig. 2).

Predicting model building and validating by ML

All nodules were divided into training group (282 nodules) and validation group (118
nodules) at random by a ratio of 7:3 (Fig. 2). The 1803 features contained 34 clinical
characteristics and 1,769 US radiomic features. And the number of non-LNM and LNM
was 245 and 155, which were not class balanced. The number of non-LNM and LNM for
training group and validation group was 165 and 117, 80 and 38, respectively. Their ratio
was 1.4 and 2.1 for training group and validation group. In training group, all features
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Table 1 Clinical characteristics of nodules in training and validation groups.

Characteristics Training group Validation group pvalue
(n=282) (n=118)
Sex 0.240
Male 70(24.82) 36(30.51)
Female 212(75.18) 82(69.49)
Age (years) 1 45.66 £+ 12.03 46.65 £ 11.76 0.449
Size (mm) 9.97 +5.95 10.03 £ 7.57 0.410
WBC (x109/L) 6.11 £1.56 5.94 + 1.57 0.302
NEUT (x109/L) 3.75 £ 1.27 3.67 £1.28 0.478
LYM (x109/L) 1.91 £0.59 1.84 £ 0.50 0.448
HB (g/L) 138.18 = 15.98 141.63 £ 14.33 0.032
RBC (x1012/L) 4.66 £ 0.45 4.72 £ 0.44 0.336
PLT (x109/L) 258.34 £ 62.73 242.37 £53.28 0.066
ALT (U/L) 23.59 £ 20.03 22.19 £ 16.91 0.743
AST (U/L) 21.32 £ 8.09 20.87 £6.75 0.956
ALB (g/L) 45.09 £ 3.08 45.19 £ 3.04 0.742
BUN (mmol/L) 4.85£1.26 4.87 +£1.33 0.919
CREA (umol/L) 57.59 £ 13.33 57.81 £ 12.04 0.428
UA (umol/L) 313.35£78.17 321.46 £ 92.40 0.754
Ca (mmol/L) t 2.40 £0.10 240 £0.12 0.955
TT3 (ng/ml) 1.08 £0.17 1.12 £ 0.40 0.426
TT4 (ng/dl) 824 +1.55 8.31+£1.92 0.998
FT3 (pg/ml) 3.28 £0.40 3.47 £ 1.58 0.174
FT4 (ng/dl) 1.29 £0.17 1.32£0.34 0.476
TSH («IU/ml) 1.71 £ 1.05 1.83 £ 1.34 0.902
ANTITGAB (IU/ml) 117.99 % 327.15 130.06 £ 348.83 0.817
ANTITPOAB (IU/ml) 39.65 £ 94.90 50.47 £ 126.10 0.818
TG (ng/ml) 37.97 £ 80.06 28.13 £ 39.32 0.747
Urinary leukocyte$ 0.516
Negative 229(81.21) 100(84.75)
Positive 1+ 22(7.80) 9(7.63)
Positive 2+ 15(5.32) 6(5.08)
Positive 3+ 12(4.26) 1(0.85)
Positive 4+ 4(1.42) 2(1.69)
URBC$ 0.323
Negative 253(89.72) 104(88.14)
Positive 1+ 21(7.45) 8(6.78)
Positive 2+ 5(1.77) 3(2.54)
Positive 3+ 0(0.00) 2(1.69)
Positive 4+ 3(1.06) 1(0.85)
Urinary protein 0.296
Negative 171(60.64) 80(67.80)

(continued on next page)

Zhu et al. (2023), PeerdJ, DOI 10.7717/peerj.14546

517


https://peerj.com
http://dx.doi.org/10.7717/peerj.14546

Peer

Table 1 (continued)

Characteristics Training group Validation group p value

(n=282) (n=118)

Positive 1+ 77(27.30) 29(24.58)

Positive 2+ 34(12.06) 9(7.63)

Composition$ 1.000

Predominately cystic 2(0.71) 1(0.88)

Predominately solid 279(98.94) 117(99.12)

Solid 1(0.35) 0(0.00)

Echogenicity$ 0.971

Hyperechoic or isoechoic 9(3.19) 4(3.39)

Hypoechoic 231(81.91) 98(83.05)

Markedly hypoechoic 42(14.89) 16(13.56)

Shape 0.253

Wider-than-tall 125(44.33) 45(38.14)

Taller-than-wide 157(55.67) 73(61.86)

Margin 0.615

Smooth or ill-defined 153(54.26) 69(58.47)

Lobulated or irregular 93(32.98) 33(27.97)

Extrathyroidal extension 36(12.77) 16(13.56)

Echogenic foci$ 0.025

No calcification 67(19.76) 32(9.44)

Macrocalcifications 84(24.78) 17(5.01)

Peripheral calcifications 6(1.77) 1(0.29)

Microcalcifications 182(53.69) 81(23.89)

TI-RADS score 9.17 £ 2.41 9.16 +2.28 0.943

TI-RADS classification$ 0.499

111 1(0.35) 0(0.00)

v 19(6.74) 10(8.47)

\% 262(92.91) 108(91.53)

Cervical LNM 0.082

Negative 165(58.51) 80(67.80)

Positvie 117(41.49) 38(32.20)

Notes.

Continuous variables were presented with Mean =SD while categorical variable were presented with number and percentage (percentage in parentheses). Continuous variables
were calculated by Mann—Whitney U test except for data marked with 1, which were calculated by Student’s ¢-test. Categorical variables were calculated by Chi-square analysis
except for data marked with §, which were calculated by Fisher’s exact test.

SD, standard deviation; WBC, white blood cell; NEUT, neutrophil; LYM, lymphocyte; HB, hemoglobin; RBC, red blood cell count; PLT, platelets; ALT, alamine amino-
transferase; AST, asparate aminotransferase; ALB, albumin; BUN, blood urea nitrogen; CREA, creatinine; UA, uric acid; Ca, calcium ion; TT3, total triiodothyronine 3;
TT4, total triiodothyronine 4; FT3, free triiodothyronine 3; FT4, free triiodothyronine 4; TSH, thyroid stimulating hormone; ANTITGAB, anti-thyroglobulin antibodies;
ANTITPOAB, anti-thyroid peroxidase antibody; TG, thyroglobulin; URBC, urinary red blood cell; LNM, lymph node metastasis.
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Model Building

selection algorithm classification algorithm

Clinical C!

Standardization

grouping (7:3)
US radiomiesFeature Extraction

Figure 2 The workflow of US radiomic feature extraction, model building and validation in this retro-
spective study. US, ultrasound; RF, randomforest; LASSO, the least absolute shrinkage and selection op-
erator; xgboost, the extreme gradient boosting; SVM, support vector machine; KNN, k nearest neighbors;
LR, logistics regression.

Full-size &l DOLI: 10.7717/peerj.14546/fig-2

were selected using randomforest (RF) and the least absolute shrinkage and selection
operator (LASSO) regression after standardization. To avoid over-fitting and select the
most significant features, five-fold and seven-fold cross-validation was used for RF and
LASSO regression, respectively (51, S3). Parameter tuning was employed to improve the
performance of them (to have the minimal error rate for RF and the minimal lambda for
LASSO regression). The top-100 features were selected according to the value of mean
decrease of accuracy (MDA) and the result of cross-validation by RF (Data S1, S2). And
23 features were selected by LASSO regression (Data 52, 53, 54). Then five classifiers
were separately used for datal and data2. The classifiers were RF, k nearest neighbors
(KNN), binary logistics regression (LR), support vector machine (SVM) and the extreme
gradient boosting (xgboost). Parameter tuning was conducted for the best performance
of each model. In total, 10 models were developed and their predictive performance were
compared by the area under the receiver operating characteristic (ROC) curve (AUC),
sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value
(NPV), balanced accuracy and kappa value. Cross-validation was employed for best model.
The workflow of model building and validating was shown in Fig. 2.

Statistical analysis

The normality analysis, Student’s £-test, Mann—Whitney U test, Chi-square analysis and
Fisher’s exact test were performed with SPSS software (version 19.0, IBM). The random
allocation, RF, LASSO regression, binary LR, KNN, SVM, xgboost, delong’s test, Confusion
Matrix and other statistical analysis were carried out with R software (version 4.0.3; R Core
Team, 2020). The package for RF, KNN, SVM, xgboost LASSO regression and binary LR

» PRI {4

was “randomForest”, “kknn”, “e1071”, “xgboost”, “glmnet” and “glmnet”. The type for
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the former two was “classification”. The type and kernel for SVM was “C-classification”
and “polynomial”. The booster and object for xgboost was “gbtree” and “rank:pairwise”.
The family setting of LASSO regression and binary LR was “binomial()”. A value of p < 0.05
was considered statistically significant.

RESULTS

Clinical characteristics

The clinical characteristics of nodules in training and validation group were summarized in
Table 1. The number of nodules with cervical LNM accounted for 41.49% (117/282) and
32.20% (38/118) of training and validation group, respectively. No significant differences
were seen between the two groups except for HB and echogenicfoci (p = 0.032, 0.025). The
images acquired by Esaote MyLab Class C, Hitachi HI VISION Preirus, Philip EPIQ7C,
Siemens ACUSON OXANA 2, GE Volume E8 and Mindray Resona 7T accounted for
59.25% (237/400), 7.75% (31/400), 15.75% (63/400), 12.50% (50/400), 1.25% (5/400) and
3.50% (14/400).

Feature selection and model performance evaluation

After standardization, 100 features out of 1803 were selected using RF (MDA > 1.744)
and 23 features out of 1803 were selected by LASSO regression in training group (S1-54).
Then, RF, KNN, binary LR, SVM and xgboost were used for model construction based on
them (Fig. 2). In validation group, the AUC of the 10 models ranged from 0.580—0.812, in
which RF-RF model reached the highest and RE-SVM model the lowest (Fig. 3A, Table 2).
Delong’s test was carried out for AUC comparison between RE-RF model and other models.
The p value revealed a significantly higher AUC of RF-RF model than others except for
RF-xgboost model (Table 2). The accuracy, sensitivity, specificity, PPV and NPV of these
models were shown in Table 2. Among them, RF-RF model had the highest accuracy
compared to other models. Since our data was class imbalanced, we calculated the balanced
accuracy using Confusion Matrix of each model. The balanced accuracy of RE-xgboost was
higher than that of RF-RF model. And the balanced accuracy of RF-RF was similar to the
imbalanced one (Table 2). Besides, the kappa value of models in validation group revealed
a moderate consistency for RF-RF model and RF-xgboost model (Table 2). We then chose
RE-RF as the best model for its highest AUC and relatively high balanced accuracy. Figure
3B showed the modeling process of RE-RF model. And we used 5-fold cross-validation
to prove the reliability of RF-RF model and help selecting the most important features
(Fig. 3C, Fig. S5). Finally, the top 10 variables were chosen with their MDA and partial
dependent plot were shown in Figs. 3D and 4A—4]. The selected features included age, 6
GLRLM, 1 GLCM, 1 shape feature, 1 first-order feature, in which 8 were high-dimensional
features.

DISCUSSION

High-dimensional omics data sets, whose number of variables is much larger than the
number of individuals, are usually sparse regarding relevant information. The utilizing
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Figure 3 The preoperative predicting value of models and the selection of features of importance. (A)
The ROC curve and AUC value for RF-RF model in validation group. (B) Error convergence curve ac-
cording to the number of trees used in the RF-RF model in training group. (C) Error convergence curve
according to the number of variables in the RF-RF model based on 5-fold cross-validation in validation
group. (D) Importance score of top 10 variables of RF-RF model with MDA. ROC, the receiver operat-
ing characteristic; AUC, area under the curve; RF, randomforest; MDA, mean decrease of accuracy; xg-
boost, the extreme gradient boosting; KNN, k nearest neighbors; LR, logistics regression; SVM, support
vector machine; LASSO, the least absolute shrinkage and selection operator; OOB, out-of-bag; CV, cross-
validation; logsigma, Laplacian of Gaussian with sigma; GLRLM, gray-level runlength matrix; GLCM,
gray-level co-occurrence matrix; LL, low-pass/low-pass; LH, low-pass/high-pass.

Full-size G4l DOI: 10.7717/peerj.14546/fig-3

of them is often based on ML, a promising computation approaches for classification
and regression. RF, one of the ensemble machine learning methods based on decision
trees, is a well-suited method for tackling the problem (Degenhardt, Seifert & Szymeczak,
2019). It’s widely applied to analyzing data from life science. And the availability of
variable importance measures (VIMs) accounts for its widespread (Nembrini, Konig ¢
Wright, 2018; Park et al., 2020a). Impurity importance (often called Gini importance)
and the permutation importance (also known as MDA) are the most widely used VIMs.
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Table 2 Comparison of diagnostic performance for different models in validation group.

Accuracy (95% CI) Sensitivity ~ Specificity =~ PPV NPV AUC Pvalue  kappa Balanced

Accuracy
RE-RF 0.7542(0.6665,0.8288) 0.6842 0.7875 0.6047 0.8400 0.812 - 0.4560 0.7359
RF-xgboost 0.7373(0.6483,0.8140) 0.7125 0.7895 0.8769 0.5660 0.787 0.6722 0.4548 0.7510
RF-KNN 0.7034(0.6123,0.7839) 0.6579 0.7250 0.5319 0.8169 0.691 0.0092 0.3605 0.6914
RF-binary LR 0.5508(0.4566,0.6425) 0.5789 0.5375 0.3729 0.7288 0.592 0.0025 0.1017 0.5582
RF-SVM 0.5763(0.4819,0.6667) 0.6053 0.5625 0.3966 0.7500 0.580 0.0009 0.1474 0.5839
LASSO-RF 0.6610 (0.5681,0.7456) 0.5526 0.7125 0.4773 0.7703 0.702 0.0311 0.2546 0.6326
LASSO-SVM 0.6441 (0.5507,0.7300) 0.7632 0.5875 0.4677 0.8393 0.662 0.0244 0.3008 0.6753
LASSO-xgboost 0.6186 (0.5247,0.7065) 0.6625 0.5263 0.7465 0.4255 0.647 0.0147 0.1778 0.5944
LASSO-KNN 0.6949 (0.6034,0.7763) 0.4474 0.8125 0.5312 0.7558 0.630 0.0016 0.2711 0.6299
LASSO-binary LR 0.5593 (0.4650,0.6506) 0.6842 0.5000 0.3939 0.7692 0.627 0.0086 0.1544 0.5921

Notes.

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve; RF, randomforest; xgboost, the extreme gradient boosting;

KNN, k nearest neighbors; LR, logistics regression; SVM, support vector machine; LASSO, the least absolute shrinkage and selection operator.
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Literatures showed that the Gini importance had bias while permutation importance
didn’t (Degenhardt, Seifert ¢ Szymczak, 2019; Nembrini, Konig ¢ Wright, 2018). Thus, we
chose features according to their MDA during feature selection by RE. LASSO regression

is commonly used to reduce variables recruited into model. Its algorithm could process
multicollinearity data, predict and select variables with biased estimate. Besides, it could
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overcome the multicollinearity problem when doing regression analysis (Chen et al., 2020).
With the widely used classifier of RF, KNN, SVM, binary LR and xgboost, the ML process
could help dealing our high-dimensional data sets and find the most important features
for cervical LNM predicting of PTC.

Literature showed that cervical LNM negatively impacted patients’ overall survival and
disease-free survival in PTC patients. It associated with higher rate of distant metastasis
and disease-related mortality by 11.2-fold and 3-fold, respectively (Guo et al., 2019; Hartl
et al., 2012; Zhou et al., 2020a). However, the detection rate of cervical LNM using US
was unsatisfying, especially for central LNM. Besides, prophylactic cervical lymph node
dissection could potentially lead to nerve injury and hypoparathyroidism (Guo et al.,
2019; Liu et al., 2018). Therefore, preoperative prediction of cervical LNM was essential
for all patients. Generally, US features like tumor size, echogenicity, “wider-than-taller”
shape, extrathyroidal extension and calcification, clinical information like age were proved
indicators of cervical LNM. However, because the expertise of the operator significantly
influenced the diagnostic accuracy, these results only served as reference in clinical practice
(Guo et al., 2019; Liu et al., 2018; Liu et al., 2019).

With the development of radiomics analysis, several articles revealed a promising result
for preoperative prediction of cervical LNM for PTC nodules. Liu introduced US radiomic
analysis to preoperative cervical LNM prediction and proved that LNM was associated
with larger size, younger age, irregular tumor shape, obscure boundary, spiculate margin,
taller-than-wide shape, calcification, complex echo pattern, thyroid invasion and posterior
region homogeneity (AUC in validation group = 0.782) (Liu et al., 2019). In addition, Cui
and Jiang revealed an AUC of 0.90 and 0.83 for cervical LNM prediction in the radiomics
signature based on strain elastography ultrasound images and shear-wave elastography
images. However, only Jiang’s study detected the predictive value of high-dimensional
features and showed the wavelet transform of B-mode images were related with cervical
LNM (Jiang et al., 2020; Liu et al., 2018).

In the present study, with the help of ML, we established 10 models based on clinical
characteristics and US radiomic features for preoperative prediction of cervical LNM in PTC
nodules. The AUC, accuracy and balanced accuracy for each model varied in validation
group and RF-RF model was proved the best one among them. After cross-validation,
RF-RF model selected the top 10 features of importance, which included age, six GLRLM,
1 GLCM, 1 shape feature and 1 first-order feature. Among them, four features were
LOG based features, three were wavelet based feature and 1 were square root based feature.
Unlike our study, Zhou et al. (2020a) demonstrated an ultrasound radiomics nomogram for
central LNM with an AUC of 0.85 and their equation included age, TPOAB level, TG level,
radiomic signature and ultrasonography-reported lymph node status. Because the radiomic
features were extracted based on parameters mentioned by different guidelines, they lacked
higher-dimensional features. Besides, Tong ef al. (2020) established a nomogram for lateral
LNM with an AUC of 0.91. They included six textural features (five GLSZM and one
GLCM) in the equation with little higher-dimensional features, either.

Shape features described the shape of tumor volume, along with its geometric properties.
For voxels within tumor volume, first-order features depicted their distribution of
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intensities while textural features measured their inter-relationship of distributions (Nazari
et al., 2020). The GLRLM quantified the length of consecutive pixels of the same gray level
value in images, while GLCM represented the number of times specific combination of
gray levels occurred in two separated pixels (Nawabi et al., 2020). LOG filter acted as a
combination of Laplacian operator and Gaussian filter, which might detect edges as well as
noise in a smoothed image for filtering and differentiation (Dinapoli et al., 2018; Shayesteh
et al., 20205 Suo et al., 2016). It was employed for image filtering in the spatial domain
and was widely used in radiomics in literature (Dinapoli et al., 2018; Suo et al., 2016).
Different filter sigma parameters applied for fine or coarse anatomic details for textural
features (Shayesteh et al., 2020; Suo et al., 2016). According to literature, wavelet filter could
enhance certain characteristics based on its frequency domain in images and was widely
used in image compression and preprocessing (Chaddad, Daniel ¢ Niazi, 2018; Vuong et
al., 2019). Besides, square root filter could improve the overall condition of covariance
matrices by improving their update accuracy and avoiding the negative definiteness (Caruso
etal., 2017; Wei et al., 2018). The LOG-, wavelet- and square root-filtered features selected
by our result deeply implied the importance of including higher-dimensional statistical
methods, meanwhile highlighting their unique role for radiomics analysis.

There were several limitations in our study. Firstly, due to the retrospective nature,
the clinical procedure was not strict and some nodules had incomplete clinical data. In
addition, the number of samples was relatively small. These conditions could reduce the
number of included nodules and may lead to the class imbalance of our data. Furthermore.
We did not re-balance data at the beginning of statistical analysis. Although the ratio
of non-LNM to LNM was mildly and we used multi-method for validation, such as the
calculation of AUC and balanced accuracy from Confusion Matrix. The balanced accuracy
was slightly lower than imbalanced accuracy. Thus, larger cohorts, more strict clinical
procedure and re-balancing techniques were required in the future. Secondly, some of the
recorded US images were discrete ones which might cause the capture of unrepresentative
portion of the tumor, leading to the inconsistency of data. Thus, more strict clinical
procedure or prospective study with rules could be carried out in the future. Thirdly,
models were validated in mono-center cohort without additional test group. However,
the independent validation group, which did not involve in feature selection and model
construction, could offer reliable results. Multi-methods comparison and cross-validation
further proved its reliability. An additional test group from another center was still needed
for more convincing results. Thus, multi-center test group for validation should be carried
out in the future.

CONCLUSIONS

In conclusion, our study, for the first time, established preoperative predicting models with
the help of ML for cervical LNM based on clinical characteristics and US radiomic features.
They were expected to help with diagnosis, recurrence prediction and treatment decision
of PTC.
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