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ABSTRACT
Cardiovascular diseases (CVD), with high morbidity and mortality, seriously affect
people’s life and social development. Clinically, reperfusion therapy is typically used
to treat ischemic cardiomyopathy, such as severe coronary heart disease and acute
myocardial infarction. However, reperfusion therapy can lead to myocardial ischemia
reperfusion injury (MIRI), which can affect the prognosis of patients. Studying the
mechanisms of MIRI can help us improve the treatment of MIRI. The pathological
process of MIRI involves many mechanisms such as ferroptosis and mitophagy.
Ferroptosis can exacerbate MIRI, and regulation of mitophagy can alleviate MIRI. Both
ferroptosis andmitophagy are closely related toROS, but there is no clear understanding
of the relationship between ferroptosis and mitophagy. In this review, we analyzed the
relationship between ferroptosis andmitophagy according to the role ofmTOR,NLPR3
and HIF. In addition, simultaneous regulation of mitophagy and ferroptosis may be
superior to single therapy for MIRI. We summarized potential drugs that can regulate
mitophagy and/or ferroptosis, hoping to provide reference for the development of drugs
and methods for MIRI treatment.

Subjects Biochemistry, Cell Biology, Molecular Biology, Cardiology, Pharmacology
Keywords Ferroptosis, Mitophagy, Relationship, Myocardial ischemia reperfusion injury,
Mechanism

INTRODUCTION
Cardiovascular diseases (CVD), including hypertension, coronary heart disease and
myocardial infarction, not only pose a serious threat to human health but also bring heavy
economic burden to patients (Andersson & Vasan, 2018; Geraghty et al., 2021). Coronary
heart disease, myocardial infarction and other ischemic cardiomyopathy are mostly caused
by long-term ischemia of myocardial tissue. Timely reperfusion therapy is an effective
clinical treatment method at present. However, myocardial ischemia reperfusion injury
(MIRI) caused by reperfusion therapy can affect the prognosis of patients (Hausenloy &
Yellon, 2013; Zhao et al., 2022). Since MIRI cannot currently be treated effectively, studying
its pathological mechanism is crucial to improving CVD treatment.
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As we know, mitochondria are extremely important since the heart needs efficient
oxidative metabolism (Kumar, Kelly & Chirinos, 2019; Pohjoismaki & Goffart, 2017).
Mitochondrial dysfunction will lead to ROS overproduction, which is considered to
be the critical cause of MIRI (Jiang et al., 2021). In cardiomyocytes, mitochondria maintain
quantity, quality and basic functions through mitophagy which is a kind of selective
autophagy (Yang et al., 2019). Mitophagy can degrade damaged mitochondria and reduce
ROSproduction, so it is of great significance formaintaining normal physiological functions
of the heart.

Ferroptosis, a new form of cell death is identified as a primary mechanism of MIRI
(Gao et al., 2015). Ferroptosis inhibition is emerging as an effective method to treat MIRI
(Stamenkovic et al., 2021; Zhang et al., 2021a). At present, the understanding of ferroptosis
is still limited. It is already known that the pathological process of ferroptosis is not
only closely related to ROS (Li et al., 2020a; Park & Chung, 2019; Su et al., 2019) but also
closely related to mitochondrial dysfunction (Gan, 2021; Gao et al., 2019b; Sumneang et
al., 2020). Taking morphology into consideration, the ultrastructure of mitochondria
can be affected by ferroptosis such as volume reduction, increased bilayer membrane
density, outer mitochondrial membrane disruption and so on (Battaglia et al., 2020). It is
known that mitophagy can degrade damaged mitochondria and thus inhibit mitochondrial
dysfunction, but the relationship between mitophagy and ferroptosis remains unclear. We
thus speculate that there may be some direct or indirect relationship between mitophagy
and ferroptosis in MIRI, and analyzing the mechanisms of ferroptosis and mitophagy may
provide some valuable clues.

Although with advanced development of drug management, CVD remain the most
common cause of death worldwide (Liu et al., 2019a; Townsend et al., 2022), which result
in a high burden of comorbidities to physicians in clinic. Thus, newly and developed
drug management of CVD aimed for special mechanism remains challenging and
urgently explored. In this study, we hypothesized that elaborating the relationship
between mitophagy and ferroptosis would help us find effective treatments for MIRI.
We intended to investigate and review the main mechanisms that lead to ferroptosis by
exploring the relationship betweenmitophagy and ferroptosis involved in CVD progress. In
addition, we also summarized the potential drugs including natural compounds and drugs
used in alternative medicine that could alleviate MIRI via regulating mitophagy and/or
inhibiting ferroptosis, providing reference for the treatment of MIRI. This study was a
mechanism-oriented review that explored the innovative relationship between mitophagy
and ferroptosis participated in the development of CVD, which could provide new insight
for CVD treatment and bring hope to patients by improving clinical efficacy, improving
patient prognosis and increasing the quality of life of CVD patients.

SURVEY METHODOLOGY
Literature searches were conducted in the PubMed, Web of Science and Chinese National
Knowledge Infrastructure databases. In addition to articles published since 2017, earlier
articles were also considered. The keywords used were as follows: myocardial ischemia
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reperfusion injury, ferroptosis, mitophagy, myocardial ischemia reperfusion injury and
ferroptosis, mitophagy and myocardial ischemia reperfusion injury, iron metabolism, the
mechanism of ferroptosis, the mechanism of mitophagy. As our work gradually unfolded,
we then searched literature by keywords HIF and mitophagy, HIF and ferroptosis, NLRP3
and mitophagy, NLRP3 and ferroptosis, mTOR and mitophagy, mTOR and ferroptosis,
natural compounds with mitophagy and/or ferroptosis. After removing duplicate articles
and the articles with little relevance, 151 articles were selected for this review.

MIRI and mitophagy
Because of the heart’s high demand for energy, normal mitochondrial function is
essential for heart development (Pohjoismaki & Goffart, 2017; Zhang et al., 2020a). MIRI
is often accompanied by mitochondrial damage and dysfunction in cardiomyocytes.
Assuring myocardial cells have enough mitochondria to fulfill their physiological
needs, a variety of quality control mechanisms have evolved in mitochondria including
mitophagy, biogenesis, mitochondrial dynamics, etc. (Li et al., 2021a). In 2005, Lemasters
proposed ‘‘mitophagy’’ firstly to emphasize the non-random nature of the mitochondrial
selective autophagy process (Lemasters, 2005). Mitophagy is the main mechanism for
maintaining mitochondrial homeostasis in cardiomyocytes by degrading the dysfunctional
mitochondria.

The occurrence of MIRI will go through two stages: ischemia and reperfusion. In
the myocardial ischemia stage, hypoxia environments caused by ischemia can affect the
process of oxidative phosphorylation of mitochondria, resulting in insufficient myocardial
energy supply (Killackey, Philpott & Girardin, 2020). The lack of energy activates the AMPK
pathway, and then mitophagy is activated (Kim et al., 2011; Laker et al., 2017). Activated
mitophagy is mainly used to degrade aging mitochondria to cope with the energy crisis.
Meanwhile, ROS accumulation is gradually induced by hypoxia at this stage. As ischemia
and hypoxia continue, the lack of energy leads to the inability of Ca2+ to be excreted by
the calcium pump, resulting in the accumulation of Ca2+ in cardiac myocytes. In order to
maintain Ca2+ homeostasis in cardiomyocytes, mitochondria will absorb excessive Ca2+

from cytoplasm, resulting in Ca2+ overload in mitochondria. Ca2+ overload (Kinnally
et al., 2011) and ROS accumulation (Leucker et al., 2011; Pravdic et al., 2009) lead to the
mitochondrial mPTP opening, then mitochondrial membrane potential collapse (Zorov,
Juhaszova & Sollott, 2014). In the reperfusion stage, the restoration of oxygen supply leads
to ROS burst, which in turn prolongs the opening time of mitochondrial mPTP, further
damaging the mitochondria. The ROS released by damaged mitochondria induces more
ROS generation (Zorov et al., 2000), creating a vicious cycle. At this point, mitophagy,
which can reduce the production of ROS by degrading the damaged mitochondria, is very
important for MIRI mitigation. It should be noted that although most studies have shown
that promoting mitophagy can alleviate MIRI, some studies have also shown that excessive
mitophagy also damages cardiac myocytes, and inhibition of mitophagy is required at this
time (Huang et al., 2022; Wu et al., 2020).
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Ferroptosis and MIRI
Ferroptosis is a new type of programmed cell death that was first discovered by Dolma in
2003 and named by Dixon in 2012 (Dolma et al., 2003; Dixon et al., 2012). Programmed
cell death, such as apoptosis, necrosis, and other forms, clears out damaged or infected
cells, allowing surrounding healthy cells to perform their functions better (D’Arcy, 2019).
Unlike reported forms of programmed cell death, ferroptosis is an iron-dependent form
of cell death that is accompanied by massive iron accumulation and lipid peroxidation (Li
et al., 2020a). Nowadays, Ferroptosis has been shown to exist in the pathological process
of a variety of diseases, such as in cancers (Qiu et al., 2022; Xu et al., 2019), brain diseases
(Weiland et al., 2019), kidney diseases (Tang & Xiao, 2020), MIRI (Zhao et al., 2021) and
other diseases. For some ferroptosis-susceptible tumors, activation of ferroptosis is a
potential treatment strategy (Yu et al., 2017). But in cardiac tissue, ferroptosis which can
lead to cardiomyopathy needs to be suppressed (Fang et al., 2019).

The relationship between ferroptosis and MIRI was first revealed by Gao et al.
(2015). Inhibition of ferroptosis via inhibiting glutaminolysis can protect heart tissue
from MIRI in vitro heart model. Inhibition of myocardial ferroptosis can also alleviate
MIRI in diabetic rats by inhibiting endoplasmic reticulum stress (Li et al., 2020b).
According to recent studies, ferroptosis which is iron-dependent is accompanied by
lipid peroxide (LPO) accumulation (Dixon et al., 2012; Stamenkovic, Pierce & Ravandi,
2019). Ferroptosis inhibitor Fer-1 has been reported can inhibit peroxidation, and prevent
the accumulation of LPO thereby inhibiting ferroptosis and subsequently alleviating MIRI
(Dixon et al., 2012; Li et al., 2019; Miotto et al., 2020). Fer-1 can also protect the heart
from cardiomyopathy by maintaining mitochondrial function (Fang et al., 2019). Fang et
al. found another ferroptosis inhibitor Lip-1 could reduce myocardial infarct sizes and
maintain mitochondrial structure and function to prevent MIRI (Feng et al., 2019). In
addition, on the outer mitochondria membrane, ischemia and other pathological stimuli
can be protected against by the mammalian target of rapamycin (mTOR). When mTOR
is overexpressed, erastin (a ferroptosis inducer) induced cell death is inhibited, while
mTOR deletion will exaggerate the cell death (Baba et al., 2018). According to these data,
mitochondria are important for ferroptosis-induced cardiomyocyte death. At present, the
main systems for inhibiting ferroptosis include: the Cyst (e)ine/GSH/GPX4 Axis, the NAD
(P)H/FSP1/CoQ10 System, and the GCH1/BH4/DHFR System (Zheng & Conrad, 2020),
but the research focus is mainly on iron homeostasis, system Xc- and GPX4 (Li et al.,
2021b; Cao & Dixon, 2016).

Absorption and utilization of iron
Iron homeostasis is a vital element for fundamental biological functions of human
body, accumulating evidences have shown that iron dyshomeostasis is involved in the
pathogenesis of cardiovascular diseases (Wei et al., 2022). When iron homeostasis is
disrupted because of iron deficiency or overload, it can lead to rapid lipid peroxidation
of cells due to lack of GPX4 (Ouyang et al., 2021), resulting in cardiovascular cellular
damage and accelerating the occurrence of various diseases including atherosclerosis,
MIRI, coronary heart disease and so on (Gao et al., 2019a; Kobayashi et al., 2018). Until
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now, regulating iron acquisition, recycling, and storage is the main method of controlling
system iron levels for human (Wallace, 2016), which is mainly by unidirectional recycling of
iron from senescent red blood cells to the erythroid bonemarrow throughmacrophages, the
cycling of iron from hepatocytes to the blood and vice versa, and iron absorption through
duodenal and upper Jejunum (Piperno, Pelucchi & Mariani, 2020).

Normally, human body absorbs iron from food or other nutritious in the type of heme
and non-heme (or inorganic) forms except a small amounts of iron are lost through skin
exfoliation, gastrointestinal exfoliation, and urine and bile excretion (Gulec, Anderson
& Collins, 2014). After entering the body from food, iron experience various metabolic
processes before it can be used (Fig. 1). Heme iron (Fe2+) can be absorbed directly via
heme/folate transporter 1 at the apical membrane of intestinal epithelial cells (West &
Oates, 2008; Zhang et al., 2019a). Non-heme iron (Fe3+) in food is partly reduced and
dissolved by gastric acid and ascorbic acid, and the rest is reduced to Fe2+ by cytochrome
B, which is then transported to intestinal epithelial cells by divalent metal-ion transporter 1
(DMT 1, encoded by the SLC11A2 gene) for absorption. Subsequently, after traversing the
basolateral membrane via ferroportin 1, Fe2+ is oxidized to Fe3+ by Hephaestin (HEPH),
and then binds with transferrin (TF) to form TF-Fe3+ complex for utilization by organs
(Gulec, Anderson & Collins, 2014). After the TF-Fe3+ complex binds with the transferrin
receptor (TFR) and enters the endosome through endocytosis, Fe3+ is released from
the TF-Fe3+ complex, then is reduced to Fe2+ by STEAP3 and crosses the endosomal
membrane into the cytoplasm by DMT (Sendamarai et al., 2008). The imported Fe2+

enters a metabolically cytosolic labile iron pool, which is used for incorporation into
prosthetic groups of iron-dependent enzymes and proteins, incorporation into heme and
iron-sulfur cluster biogenesis, and storage in ferritin. The excess iron is exported back to
the circulation by ferroportin 1, during which Fe2+ is oxidized to Fe3+ by HEPH in plasma
and recombined with TF (Manz et al., 2016).

MECHANISM OF FERROPTOSIS
Iron overload
Iron overload is an important factor in activating ferroptosis. Iron overload usually
occurs from a genetic disease or iatrogenic (Godbold & McFarland, 2021;Murphy & Oudit,
2010; Piperno, Pelucchi & Mariani, 2020). In pathological conditions caused by some
diseases, iron overload can result from increased iron intake, increased gastrointestinal
absorption (Godbold & McFarland, 2021), and accumulation of non-heme iron through
heme degradation (Fang et al., 2019), etc. When the body is in a pathological condition
of iron overload, the capacity of plasma transferrin to bind iron is saturated, leading to
the accumulation of non-transferrin bound iron (Brissot et al., 2012). The accumulation
of non-transferrin bound iron in plasma accelerates the deposition of iron in tissues,
particularly excitable tissues containing Ca2+ channels which are known to conduct Fe2+

into cells (Zhang et al., 2019a). Therefore, iron overload may be an important cause of
MIRI-induced cardiac ferroptosis, because cardiac tissue contains high levels of functional
voltage-gated Ca2+ channels.
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Figure 1 Absorption and utilization of iron. Created with MedPeer: http://image.medpeer.cn.
Full-size DOI: 10.7717/peerj.14952/fig-1

Iron overload is often accompanied by the imbalance of iron storage and release in our
bodies. Ferritin, including ferritin heavy chain 1, ferritin light chain, as well as TFR, is
currently the focus of ferroptosis research due to its ability to store iron (Li et al., 2022a;
Zhang et al., 2021b). Ferroptosis inducer RSL3 increased iron uptake by upregulating
the expression of TFR, while down-regulating the expression of ferritin heavy chain 1
and ferritin light chain, reducing iron storage, leading to the release of large amounts of
free iron and thus inducing ferroptosis (Yang & Stockwell, 2008). Additionally, hypoxia
inducible factor 1 (HIF-1) and iron regulatory protein (IRP, also known as IREB) have also
been reported can increase the expression of TFR and increase iron uptake (Cheng et al.,
2015; Tacchini et al., 1999; Torti & Torti, 2013). Tang et al. (2008) further found that HIF-1
α activation not only induced TFR expression increasing, but also increased transferrin
uptake and iron accumulation, exacerbated oxidative damage that increased the lipid
peroxidation. Therefore, inhibition of ferritin (Torti & Torti, 2013) or ferritin deficiency
(Fang et al., 2020) can induce ferroptosis.

The ferroptosis during MIRI is closely related to mitochondrial ROS. When ferritin
is not expressed enough, excessive intracellular free iron will cause oxidative stress and
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impaired mitochondrial function in the heart, manifested by decreased mitochondrial
respiration, depolarization of mitochondrial membrane potential, and mitochondrial
swelling (Sumneang et al., 2020). The mitochondrial dysfunction leads to a large number of
ROS production, mainly including O2− andH2O2, which can promote the Fenton reaction.
Fenton reaction consists of three reactions, Fe2+ + H2O2→ Fe3+ + OH− + OH•, H2O2 +
2Fe3+→ 2Fe2+ + O2 + 2H+ and O2+ Fe2+→ Fe3+ + O2− . We know that H2O2, OH•, O2−

all belong to ROS. The continuous production of ROS by Fenton reaction further damages
the mitochondria and leads to more ROS generation, creating a vicious cycle. In addition,
the accumulating ROS will damage cellular proteins, lipids and DNA, causing cell and
tissue damage and eventually lead to ferroptosis (Valko et al., 2016). In a limited number
of studies, cardiac ferroptosis has also been studied. However, the mechanistic association
between cardiac ferroptosis and iron overload needs further investigation (Sumneang et
al., 2020).

Lipid peroxidation
A large number of ROS produced mainly through Fenton reaction continues to participate
in lipid peroxidation (Fig. 2). Lipid peroxidation has been implicated in almost all human
diseases associated with oxidative stress of cause in MIRI, and it has been used to assess
the degree of ferroptosis (Chen et al., 2021). Attenuating lipid peroxidation can inhibit
ferroptosis and thus alleviates CVD (Bai et al., 2020; Tadokoro et al., 2020).

As a result of lipid peroxidation, polyunsaturated fatty acids (PUFA) and
phosphatidylethanolamine (PE) are oxidatively decomposed. PUFA is themain component
of phospholipids in cell and organelle membranes, it is also an important substrate for the
synthesis of PE, the main component in the inner layer of the phospholipid bilayer. PUFA
has a high affinity with ROS. ROS of hydroxyl radicals (OH•) and hydrogen peroxide
(H2O2) first acquire hydrogen atoms in PUFA to produce Lipid ROS (L-). Then, the
Lipid radicals react with the oxygen molecule to form Lipid peroxyl radicals (LOO-).
Lipid peroxyl radicals extract hydrogen atoms from other PUFA to form a new LOO- and
Lipid hydroperoxide (LOOH). LOO- can continuously react with PUFAs, which makes
the lipid peroxidation of PUFAs have the characteristics of cascade reaction (Ma et al.,
2021). PUFA, arachidonic acid and adrenal acid are synthesized into poly-unsaturated
fatty acid-phosphatidyl ethanolamine (PUFA-PE). With the participation of Lipoxygenase,
PUFA-PE underwent lipid peroxidation reaction in the plasmamembrane and endoplasmic
reticulum, and finally formed LPO (Wang & Li, 2019). The lipid peroxidation reaction of
ROS with PUFA and PE destroys the fluidity and stability of cell membrane, increases the
permeability of cell membrane, and eventually leads to cell death.

GPX4 and system Xc- in preventing ferroptosis
To prevent ferroptosis, oxidative stress caused by LPO needs to be inhibited, and GPX4 is
the key regulator in this process (Fig. 2) (Park et al., 2019). GPX4 is a unique intracellular
antioxidant enzyme that can directly reduce LPO production in cell membranes to
non-toxic lipid alcohols (Imai et al., 2017; Ursini & Maiorino, 2020). Under the catalytic
action of GPX4, H2O2 and LPO were reduced, and GSH was oxidized to disulfide-oxidized
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Figure 2 Classic mechanism of ferroptosis. Created with MedPeer: http://image.medpeer.cn.
Full-size DOI: 10.7717/peerj.14952/fig-2

form (GSSG) (Lu, 2013). When GSH is depleted, GPX4 will be inactivated leading to LPO
accumulation and ultimately ferroptosis (Xie et al., 2016; Yang et al., 2014).

GSH is composed of glycine, glutamate and cysteine. And cysteine uptake depends
on the activation of cystine/glutamate reverse transport system Xc-. System Xc- is a
heterodimeric cell surface amino acid antiporter composed of two subunits, a light-chain
subunit SLC7A11 (xCT) and a heavy-chain subunit SLC3A2 (CD98, 4F2hc), which are
linked by an extracellular covalent disulfide bond and play different roles. System Xc-
imports extracellular cystine in exchange for intracellular glutamate at a ratio of 1:1 (Cao
& Dixon, 2016; Liu, Zhu & Pei, 2021). Intracellular cystine is first reduced to cysteine, then
cysteine and glutamate form γ -glutamylcysteine under the catalysis of glutamate-cysteine
ligase. Next, GSH is formed from γ -glutamylcysteine and glycine under the catalysis of
GSH synthase. Also, GSH can regulate glutamate-cysteine ligase through negative feedback
(Lu, 2013).

When system Xc- dysfunction occurs, the cell redox becomes unbalanced. A study
of glioma cells showed that knockdown of SLC7A11 increased ROS production and
decreased glutathione production, resulting in increased cell death under oxidative and
genotoxic stress, and overexpression of SLC7A11 leads to increased resistance to oxidative
stress (Polewski et al., 2016). The system Xc- can be inhibited irreversibly by ferroptosis
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inducer erastin (Sato et al., 2018). In cancer cells, silencing SLC7A11 makes them more
sensitive to ferroptosis induced by erastin, while overexpressing SLC7A11 makes them
more resistant to it (Dixon et al., 2012). In addition, the tumor suppressor gene P53 can
inhibit the expression of SLC7A11, and then inhibit the uptake of cystine by cells, ultimately
leading to cell ferroptosis (Jiang et al., 2015). Overexpressing SLC7A11 in cardiomyocytes
can restore cardiac GSH and cystine levels and reduce ferroptosis (Fang et al., 2020). In
summary, GPX4 and system Xc- are both key regulators of ferroptosis.

Relationship between ferroptosis and mitophagy in MIRI
We have analyzed the relationship between mitophagy and MIRI as well ferroptosis
and MIRI respectively, and the mechanism of ferroptosis. Mitophagy also has complex
regulatory mechanisms. Classic mitophagy pathways include PINK1/Parkin, BNIP3/Nix
and FUNDC1 pathway (Qiu et al., 2021). Mitophagy and ferroptosis are closely related
to ROS during MIRI’s pathological process (Fig. 3). Moderate mitophagy can degrade
damaged mitochondria and reduce excessive ROS production (Yang et al., 2020), whereas
ferroptosis is accompanied by a large amount of ROS production and ultimately leads to
myocardial cell death (Nakamura, Naguro & Ichijo, 2019; Su et al., 2019). It is an interesting
question whether regulating mitophagy and reducing mitochondrial ROS production can
inhibit ferroptosis in MIRI. From the perspective of mechanism, we found that HIF-1,
mTOR and NLRP3 all play important roles in regulating mitophagy and ferroptosis, acting
as ‘‘messengers’’.

HIF in ferroptosis and mitophagy
HIF-1, which has three subtypes in mammals including HIF-1 α, HIF-2 α, and HIF-3 α,
is a heterodimer transcription factor that plays a key role in mediating adaptive responses
to hypoxia. HIF is closely associated with ferroptosis. In the hypoxic environment, HIF-1
is involved in the increase of TFR gene transcription in Hep3B human hepatoma cells
(Tacchini et al., 1999). In colorectal cancer, activation of HIF-2 α potentiates oxidative cell
death by increasing cellular iron (Singhal et al., 2021). In mouse testis, accumulation and
stabilization of HIF-1 α induced by a widely used plasticizer (di (2-ethylhexyl) phthalate,
DEHP) lead to ferroptosis in Leydig and Sertoli cells (Wu et al., 2022a). In the MIRI model,
HIF-1 α has also been reported to induce TFR expression and iron absorption, exacerbate
cellular oxidative damage and increase lipid peroxidation (Tang et al., 2008). These studies
suggest that HIF especially HIF-1 α overexpression can induce ferroptosis mainly through
storage, absorption and accumulation of iron.

HIF also plays important role in maintaining normal mitochondrial function. The
HIF-1 α could improve mitochondrial function, decrease cellular oxidative stress, activate
cardio-protective signaling pathways (Zheng et al., 2021). When MIRI occurs, promoting
the expression of HIF-1 α and BNIP3 can promote BNIP3-mediated mitophagy, thus
alleviating MIRI (Liu et al., 2019b; Zhang et al., 2019b; Zhu et al., 2020). BNIP3 and Nix
(BNIP3L, homologous protein of BNIP3) are proteins on the surface of the mitochondrial
membrane (Dorn, 2010). When mitophagy is activated, the LC3-interacting region (LIR)
on BNIP3 andNix can bind to LC3 on themembrane of the autophagosome, promoting the
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Figure 3 Regulation of ferroptosis andmitophagy by HIF, NLRP3 andmTOR. Created with MedPeer:
http://image.medpeer.cn.

Full-size DOI: 10.7717/peerj.14952/fig-3

combination of damaged mitochondria with the autophagosome to complete mitophagy
(Marinkovic, Sprung & Novak, 2021). Specifically, in the ischemia stage of MIRI, BNIP3
acts as a mitochondrial sensor of oxidative stress (Kubli et al., 2008) and HIF-1 initiates
mitophagymainly by activating BNIP3 andNix (Martinez Vicente, 2017). In the reperfusion
stage, BNIP3 is further activated due to ROS outburst, which promotes the initiation of
mitophagy (Kubli et al., 2008;Ma et al., 2012).

Although both ferroptosis and mitophagy can be regulated by HIF. Paradoxically,
increased HIF expression induces ferroptosis to aggravate MIRI, and increased HIF
expression promotes mitophagy to alleviate MIRI. Some researchers inhibited GPX4
activity with ferroptosis inducers, and the production of lipid peroxides in the cells
began to increase, followed by mitochondrial damage, mitochondrial ROS increased,
and eventually lead to cell ferroptosis. When mitochondria targeted ROS scavenger
agent (MitoQ) was used, mitochondrial morphology and function were preserved and
cell death was prevented, despite the GPX4 inhibition and lipid peroxidation remained
(Jelinek et al., 2018). Therefore, we suggest that ferroptosis in MIRI and even in ischemic
cardiomyopathy may be mainly mitochondrial ROS dependent. Appropriate mitophagy
can degrade damaged mitochondria and reduce ROS production, and the reduction of
mitochondrial ROS makes Fenton reaction lack the necessary substrate H2O2, so even if
HIF expression is increased, ferroptosis is not actually promoted.
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NLRP3 in ferroptosis and mitophagy
NLRP3 is strongly associated with ferroptosis due to the level change of ROS. The NLRP3
inflammasome is a critical component of the innate immune system and inflammation,
mediating caspase-1 activation and secretion of the pro-inflammatory cytokine IL-1
β/IL-18 in response to numerous danger signals and pathogens (Kelley et al., 2019). In a
swine MIRI model (cardiac arrest followed by resuscitation), the NLRP3 expression, IL-1
β and IL-18 contents, iron deposition in myocardial tissue were significantly increased,
while the GPX4 expression was significantly decreased (Xu et al., 2021a). In an H9C2 cell
model induced by hyperglycemia, hypoxia, and reoxygenation, NLRP3 protein expression
increased, GPX4 expression decreased, and ferroptosis increased under the influence of
ROS (Wang et al., 2020a). Therefore, the effect of NLRP3 on ferroptosis is mainly through
the level of ROS, in which GPX4 plays an important role in reducing ROS and inhibiting
ferroptosis.

NLRP3 is also associated with CVD, including atherosclerosis, MIRI, heart failure,
etc. (Wang et al., 2020b). The ROS is reported can promote NLRP3 production, and
NLRP3 can also be released to promote ROS production (Wang et al., 2021a). Mitophagy
can eliminate damaged mitochondria and reduce ROS production, thereby inhibiting
NLRP3 inflammasome activation (Kim, Yoon & Ryu, 2016; Mangan et al., 2018; Wu &
Cheng, 2022). Therefore, NLRP3 is one of the important therapeutic targets to alleviate
MIRI. And NLRP3-related mitophagy relies on the activation of the mitophagy pathway
of PINK/Parkin which plays a crucial role in cardiovascular disease prevention and
treatment (Wu et al., 2022b). In normal mitochondria, the serine/threonine kinase
PINK1 is transferred to the mitochondrial inner membrane for degradation. When
mitochondria are damaged, such as membrane depolarization, mitochondrial complex
dysfunction, mutagenic stress, etc., PINK1 accumulates on the outer membrane of injured
mitochondria, recruiting Parkin from the cytoplasm to the mitochondrial and activating
it. Activated Parkin ubiquitinated mitochondrial membrane proteins allow mitochondria
to be recognized and swallowed by autophagic vesicles, and eventually fuse with lysosomes
and be degraded (Ji et al., 2021; Li et al., 2021c). NLRP3 inflammasome activation can be
reduced by PINK1-mediated mitophagy during cerebral and hepatic ischemia-reperfusion
injury (He et al., 2019; Xu et al., 2020). Although it has not been reported so far, we
speculate that PINK1-mediated mitophagy plays an important role in NLRP3 inhibition
and thus alleviates MIRI.

mTOR in mitophagy and ferroptosis
As a serine-threonine kinase, mTOR, which is made up of mTORC1 and mTORC2, is an
essential controller in cell growth and metabolism. In addition, mTOR is also involved
in ferroptosis regulation. In tumor cells, mTOR inhibition can lead to GPX4 degradation
and promotes ferroptosis (Liu et al., 2021a). When mTOR is inhibited in cardiomyocytes,
cellular iron accumulates, resulting in iron overload (Bayeva et al., 2012). Overexpression
of mTOR can prevent ferroptosis by suppressing ROS production (Baba et al., 2018), but
mTOR overexpression also inhibits mitophagy (Wang et al., 2021b; Zhang et al., 2020b).
Yan Xiao, et al. found that electroacupuncture pretreatment could increase the expression
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of mTOR and down-regulate the expression of FUNDC1 to inhibit mitophagy and
thereby alleviate MIRI (Xiao et al., 2020). The FUNDC1 protein is important in CVD
because it is the receptor for hypoxia-induced mitophagy on mitochondrial membranes
(Li et al., 2021a; Liu, Li & Chen, 2021; Wu et al., 2016). In normal conditions, FUNDC1
exists stably in mitochondria’s outer membrane. When mitochondria are damaged or
dysfunctional, FUNDC1 is dephosphorylated under the action of related enzymes, and
the interaction between its LIR domain and LC3 is enhanced, activating mitophagy (Liu
et al., 2012). Controversially, promoting and/or inhibiting mitophagy to alleviate MIRI
via FUNDC1 both have been reported (Dong et al., 2022; Liu, Li & Chen, 2021). This
involves the question that whether mitophagy was excessive. In MIRI, due to the influence
of various factors such as ischemia and reperfusion time, appropriate promotion of
mitophagy with inhibiting mTOR expression can degrade damaged mitochondria, reduce
ROS and relieve MIRI, but excessive mitophagy will lead to apoptosis of cardiac myocytes
(Cao et al., 2019; Qiu et al., 2018). Sometimes, excessive mitophagy is also accompanied
by excessive autophagy, which leads to ferritin degradation, ROS accumulation and
ultimately ferroptosis (Hou et al., 2016; Zhu et al., 2019). Therefore, mTOR overexpression
is beneficial only whenmitophagy is excessive, by inhibiting bothmitophagy and ferroptosis
duringMIRI. And in the early stages ofMIRI, hypoxia and lack of energy can inhibit mTOR
and activate mitophagy but inhibition of mTOR can promote ferroptosis. If our previous
hypothesis is true that ferroptosis in MIRI is mainly mitochondria ROS dependent,
although the expression of mTOR is suppressed, the ferroptosis may not be promoted
because the activation of mitophagy reduces ROS production by inhibiting the Fenton
reaction and thus inhibiting ferroptosis. Unfortunately, there is no clear standard to judge
whether mitophagy is excessive in the existing MIRI animal and cell models. We think that
the role of mTOR in alleviating MIRI needs further study.

Potential compounds for the treatment of MIRI
Considering the important role of inhibiting ferroptosis and regulating mitophagy in
alleviating MIRI, we have summarized the potential drugs that can inhibit ferroptosis
and/or regulate mitophagy (Table 1). In pathological conditions, since mitochondria are
not the only ROS source, theoretically compounds that can both regulate mitophagy and
inhibit ferroptosis should have better medicinal potential than compounds that inhibit
only ferroptosis or regulate mitophagy alone. But it is a pity that although there are many
compounds that can alleviate MIRI by targeting mitochondrial ROS clearance (Peng et al.,
2022), there are few natural compounds have been reported to alleviate MIRI by regulating
mitophagy or inhibiting ferroptosis. This indicates that although ferroptosis inhibition and
mitophagy regulation play important roles inMIRI relief fromamechanismperspective, the
study of active compounds for the treatment of MIRI based on ferroptosis and mitophagy
needs to be further studied. Berberine alleviates MIRI through HIF-1 α/BNIP3 pathway
(Zhu et al., 2020), and pentauterine B alleviates MIRI by inhibiting phosphorylated mTOR
(Lu et al., 2019), providing direct evidence for the important role of mTOR and HIF in
regulating mitophagy in MIRI alleviation. Therefore, referring to our previous analysis,
we believe that HIF-1, mTOR and NLRP3 may become important targets for screening
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effective drugs to treat MIRI, based on the simultaneous regulation of mitophagy and
ferroptosis.

CONCLUSIONS AND PERSPECTIVE
In present, although there aremany studies on themechanismof ferroptosis andmitophagy,
the current drug studies on the treatment of MIRI mainly focus on inhibiting ferroptosis
or regulating mitophagy alone. Damaged mitochondria will produce a large number
of ROS, which promotes ferroptosis. Appropriate mitophagy can reduce mitochondria
ROS production to alleviate MIRI. Our analysis showed that ferroptosis in MIRI may be
mitochondrial ROS dependent. Since mitochondria are not the only source of ROS in cells,
reducing ROS by regulating mitophagy can alleviate but not completely block ferroptosis.
Therefore, compounds can simultaneously regulate mitophagy and inhibit ferroptosis have
great potential to treat MIRI. Act as the ‘‘link’’ between ferroptosis and mitophagy, HIF,
NLRP3 and mTOR can regulate both mitophagy and ferroptosis. Therefore, we analyzed
the relationship between ferroptosis and mitophagy in MIRI based on the role of HIF,
mTOR and NLRP3, summarized potential drugs that could treat MIRI by regulating
mitophagy and/or ferroptosis, hoping to provide reference for the drug and methods
development of MIRI therapy.
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Table 1 The potential durgs that can inhibit ferroptosis and/or regulate mitophagy.

Compounds Component
types

Model Effect Target/
mechanism

Ref

Aringenin Flavonoid Rat model of
MIRI.

Inhibition of
ferroptosis

Regulating
Nrf2/System Xc-/
GPX4 axis

Xu et al. (2021b)

Cyanidin-3-
Glucoside

Flavonoid 1. Rat model of
MIRI.

Inhibition of
ferroptosis

Downregulating
LC3II/LC3I, re-
ducing autophago-
some number,
downregulating
TfR1 expression,
and upregulating
the expressions
of ferritin heavy
chain 1 and GPX4

Shan et al. (2021)

2. Oxygen-glucose
deprivation/reoxy-
genation (OGD/R)
model of H9C2
cell.

Icariin Flavonoid OGD/R model of
H9C2 cell

Inhibition of
ferroptosis

Activating the
Nrf2/HO-1
signaling path-
way;decreasing
content of Fe2+

and increasing
expression of
GPX4

Liu et al. (2021b)

Xanthohumol Flavonoid 1. Ferroptosis
model of H9C2
cell.

Inhibition of
ferroptosis

Decreasing the
ROS and LPO,
chelating iron, re-
ducing the NRF2
protein level, and
modulating the
protein level of
GPX4.

Lin et al. (2022)

2. Rat MIRI model
with Langendorff
Heart Perfusion
System In vitro.

Resveratrol Polyphenol OGD/R model of
H9C2 cell.

Inhibition of
ferroptosis

Reducing Fe2+

content, decreasing
TfR1 expression,
and increasing the
expressions of fer-
ritin heavy chain 1
and GPX4

Li et al. (2022b)

(continued on next page)
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Table 1 (continued)

Compounds Component
types

Model Effect Target/
mechanism

Ref

Histochrome A water-soluble form Rat model of
MIRI.

Inhibition of
ferroptosis

Upregulating the
expression of nu-
clear factor ery-
throid 2-related
factor (Nrf2) and
its downstream
genes, maintaining
the intracellular
glutathione level,
upregulating the
activity of GPX 4

Hwang et al. (2021)

Gossypol Acetic Acid Acetic Acid 1. Ferroptosis
model of H9C2
cell.

Inhibition of
ferroptosis

Reducing lipid per-
oxidation, decreas-
ing the protein lev-
els of ACSL4 and
NRF2, and increas-
ing the protein lev-
els of GPX4.

Lin et al. (2021)

2. Rat heart MIRI
model established
by Langendorff
Heart Perfusion
System.

Ferulic acid Polyphenol Rat model of
MIRI.

Inhibition of
ferroptosis

Reversing the in-
creased level of
the Ptgs2 mRNA,
Fe2+ accumulation,
and a decreased
GSH/GSSG ratio
caused by ferrop-
tosis. Upregulation
of AMPK α2 and
GPX4 expression

Liu et al. (2021c)

Britanin Lactone 1. Rat model of
MIRI.

Inhibition of
ferroptosis

Upregulating
GPX4 through
activation
of the AMP-
K/GSK3b/Nrf2
signaling pathway

Lu et al. (2022)

2. OGD/R model
of H9C2 cell.

Baicalin Flavonoid glycoside 1. Rat model of
MIRI

Inhibition of
ferroptosis

Reverse ferropto-
sis induced lipid
peroxidation, iron
accumulation, and
activated TfR1 sig-
nal and nuclear re-
ceptor coactiva-
tor 4 (NCOA4)-
medicated fer-
ritinophagy

Fan et al. (2021)

(continued on next page)
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Table 1 (continued)

Compounds Component
types

Model Effect Target/
mechanism

Ref

2. OGD/R model
of H9C2 cell.

Berberine Alkaloid 1. Rat model of
MIRI

Promoting mi-
tophagy

Mediating HIF-1
α/BNIP3 pathway

Zhu et al. (2020)

2. OGD/R model
of H9C2 cell.

Gerontoxanthone
I and Macluraxan-
thone, Xanthone

Xanthone OGD/R model of
H9C2 cell.

Promoting mi-
tophagy

Mediating
PINK1/Parkin
pathway

Xiang et al. (2020)

Panax Notoginseng
Saponins

Saponins Rat model of MIRI Promoting mi-
tophagy

Mediating HIF-
1a/BNIP3 pathway

Liu et al. (2019b)

Carvacrol Monoterpene phenol 1. Rat model of
MIRI

Promoting mi-
tophagy

Mediating
PINK1/Parkin
pathway

Yan, Yang & Cheng
(2021)

2. OGD/R model
of H9C2 cell.

AstragalosideIV and
Ginsenoside Rg1

Triterpenoid saponin Rat model of MIRI Inhibition of
excessive mi-
tophagy

Mediating
PINK1/Parkin
path-
way;upregulating
expression of
HIF- α and
downregulating
expression of
NRF-1

Zhang et al.
(2020c)

Schisandrin B lignan Mice model of
MIRI

Promoting mi-
tophagy

Increasing HIF-1
α and Beclin1 pro-
tein expression, in-
hibits the expres-
sion of phosphory-
lated mTOR

Lu et al. (2019)

Salvianolic acid B Phenolic acid OGD/R model of
H9C2 cell.

Inhibition of
mitophagy

Decreasing LC3-
II/LC3 ratio and
expression of Nix

Xin et al. (2020)

Tongxinluo Capsule Chinese herbal Rat model of MIRI Promoting mi-
tophagy

Activating
PINK1/Parkin
Pathway

Yang et al. (2021)

Shenmai Injection Chinese herbal Rat model of MIRI Inhibition of
ferroptosis

Mediating
Nrf2/GPX4
signaling pathway

Mei et al. (2022)

Luhong Formula Chinese herbal Rat model of MIRI Inhibition of
ferroptosis

Mediating
SLC7A11/GPX4
signaling pathway

Cai et al. (2022)
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