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ABSTRACT
Pseudoterranovosis is a well-known human disease caused by anisakid larvae belonging
to the genus Pseudoterranova. Human infection occurs after consuming infected fish.
Hence the presence of Pseudoterranova larvae in the flesh of the fish can cause serious
losses and problems for the seafood, fishing and fisheries industries. The accurate
identification of Pseudoterranova larvae in fish is important, but challenging because
the larval stages of a number of different genera, including Pseudoterranova, Terranova
and Pulchrascaris, look similar and cannot be differentiated from each other using
morphological criteria, hence they are all referred to asTerranova larval type. Given that
Terranova larval types in seafood are not necessarily Pseudoterranova and may not be
dangerous, the aim of the present study was to investigate the occurrence of Terranova
larval types in Australian marine fish and to determine their specific identity. A total
of 137 fish belonging to 45 species were examined. Terranova larval types were found
in 13 species, some of which were popular edible fish in Australia. The sequences of
the first and second internal transcribed spacers (ITS-1 and ITS-2 respectively) of the
Terranova larvae in the present study showed a high degree of similarity suggesting that
they all belong to the same species. Due to the lack of a comparable sequence data of a
well identified adult in the GenBank database the specific identity of Terranova larval
type in the present study remains unknown. The sequence of the ITS regions of the
Terranova larval type in the present study and those of Pseudoterranova spp. available in
GenBank are significantly different, suggesting that larvae found in the present study do
not belong to the genus Pseudoterranova, which is zoonotic. This study does not rule out
the presence of Pseudoterranova larvae in Australian fish as Pseudoterranova decipiens E
has been reported in adult form from seals in Antarctica and it is known that they have
seasonal presence in Australian southern coasts. The genetic distinction of Terranova
larval type in the present study from Pseudoterranova spp. along with the presence of
more species of elasmobranchs in Australian waters (definitive hosts of Terranova spp.
and Pulchrascaris spp.) than seals (definitive hosts of Pseudoterranova spp.) suggest
that Terranova larval type in the present study belong to either genus Terranova or
Pulchrascaris, which are not known to cause disease in humans. The present study
provides essential information that could be helpful to identify Australian Terranova
larval types in future studies. Examination and characterisation of further specimens,
especially adults of Terranova and Pulchrascaris, is necessary to fully elucidate the
identity of these larvae.
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INTRODUCTION
Psudoterranovosis (Hochberg & Hamer, 2010), the seafood borne parasitic disease, caused
by larvae of Pseudoterranova, is another form of anisakidosis, that has caused concern
to human beings. The disease is most common in the United States followed by Japan
and Europe (Hochberg & Hamer, 2010). With the increased popularity of eating raw or
slightly cooked seafood dishes, the number of cases have increased globally (Chai, Darwin
Murrell & Lymbery, 2005). The symptoms of the disease vary and may include nausea,
severe epigastric pain and other abdominal discomforts, ‘‘tingling throat syndrome’’
from a worm crawling in the upper esophagus or oropharynx, cough and vomiting up
live or dead worms (Margolis, 1977). The life cycle of the Pseudoterranova spp. includes
crustaceans and fish as their intermediate hosts and marine mammals as their definitive
hosts (Anderson, 2000). Human infection occurs after eating infected seafood, therefore
the presence of Pseudoterranova larvae in the flesh of fish can cause serious losses and
problems for fish and fisheries industry across the world. For example, up to 36 worms
per fish have been reported in cod populations from Norwegian waters (Jensen, Andersen
& Desclers, 1994) or Icelandic cod fillets provided by the industry have been reported to
be infected with 2.5–17.6 worms per kg fillet (Hafsteinsson & Rizvi, 1987). It has been
estimated that detection and removal of the larvae thought to be Pseudoterranova from
the flesh of Atlantic cod (Gadus morhua) and other demersal species, and the resultant
downgrading and discard of product, cause an annual loss of $50 million in Atlantic
Canada (McClelland, 2002). This implies the need for detection and accurate identifi-
cation of these larvae in fish. One of the challenges in diagnosing of parasitic diseases is
the specific identification of larval stages of parasites. Larval stages of nematodes cannot
be identified reliably using morphological characters alone. This is a consequence of the
small size of larval stages and the lack of a sufficient number of characteristic features
(Shamsi, Gasser & Beveridge, 2011). Molecular approaches have gained prominence for
accurate identification of anisakids, irrespective of developmental stage and sex of the
parasite, and for establishing systematic relationships (e.g., Orecchia et al., 1986). Several
studies showed that ITS-1 and ITS-2 are useful genetic markers for specific identifications
of nematodes irrespective of their developmental stage or sex and to study their life cycle
(e.g., Shamsi, Gasser & Beveridge, 2011). However, this approach relies on presence of ITS
sequences for well identified adults.

In several countries other than Australia, the ability to recognise and diagnose
anisakidosis/pseudoterranovosis caused by these larvae has been improved, resulting
in progress towards understanding its epidemiology and clinical manifestations of the
disease. In Australia, however, little is known about the disease, the causative agent
and its epidemiology. Australia is an increasingly multicultural country where seafood
prepared in all its forms is very popular. A confirmed case of human anisakidosis was
published recently by Shamsi & Butcher (2011) and several unpublished cases are on record
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(Shamsi, 2014). Therefore, there has been an increasing awareness of anisakidosis in humans
and the presence of anisakid larval types in marine fish in Australia (Shamsi, 2014).

A review of the literature shows that Terranova larval types have been reported quite
often in Australian marine fish (e.g., Cannon, 1977; Doupe et al., 2003; Lester, Barnes &
Habib, 1985; Moore et al., 2011) but there is no information on the specific identity of
Terranova larval types reported in Australia. The dilemma with Terranova larval types is
that it could belong to any of three genera of anisakid nematodes, including Terranova,
Pulchrascaris or Pseudoterranova, whose adult stages have been reported from Australian
waters. Members of Terranova and Pulchrascaris become adult in elasmobranchs and
are not known to cause harm to humans whereas Pseudoterranova spp. become adult in
marine mammals and there are numerous publications about their pathogenicity and
human health impacts. The larval stages of all these genera, i.e., Terranova, Pseudoterranova
and Pulchrascaris are morphologically very similar. The typical characteristic of these larvae
is the location of the excretory pore at the anterior end of the nematode, presence of a
ventriculus without an appendix and having an intestinal caecum (Deardorff, 1987; Gibson
& Colin, 1982). Therefore, distinction between larval stages of these genera based solely on
morphology can be challenging. With recent increasing awareness about the presence of
anisakid larvae in Australian fish as well as the presence of human cases in the country,
knowing the specific identity of Terranova larval types becomes very important. In the
last decade, molecular tools have provided the opportunity for specific identification of
larval stages of parasites and there have been several works in the Americas, European
countries and Antarctica on specific identification of Terranova larval types (Arizono et al.,
2011; Paggi et al., 1991). Therefore, the aim of the present study is to employ a combined
molecular and morphological approach to investigate the occurrence of Terranova larval
types in Australian marine fish and to determine their specific identity.

MATERIALS AND METHODS
Parasite collection
A total of 137 fish belonging to 45 species, Abudefduf whitleyi (n= 2), Aldrichetta
forsteri (n= 1), Atherinomorus vaigiensis (n= 1), Caesio cuning (n= 8), Carangoides
fulvoguttatus (n= 1), Caranx ignobilis (n= 2), C. melampygus (n= 1), Carcharias taurus
(n= 1), Chaetodon aureofasciatus (n= 1), C. auriga (n= 1), C. flavirostris (n= 2), C.
lineolatus (n= 1), C. melannotus (n= 1), Chaetodon sp (n= 1), Coryphaena hippurus
(n= 1), Engraulis australis (n= 2), Epinephelus cyanopodus (n= 1), Grammatorcynus
bicarinatus (n= 3), Haplophryne sp. (n= 1), Heniochus monoceros (n= 2), H. singularius
(n= 1), Istiompax indica (n= 3), Kajikia audax (n= 3), Lutjanus argentimaculatus (n= 2),
L. bohar (n= 1), L. carponotatus (n= 4), L. fulviflamma (n= 1), L. sebae (n= 4), Makaira
mazara (n= 3),Mugil cephalus (n=5), Pastinachus sephen (n= 1), Platycephalus laevigatus
(n= 8), Platycephalus sp. (n= 2), Pristipomoides multidens (n= 3), Rhombosolea tapirina
(n= 3), Sardinops sagax neopilchardus (n= 8), Scomber australasicus (n= 11), Seriola
hippos (n= 2), S. lalandi (n= 17), Siganus fuscescens (n= 1), S. punctatus (n= 1), Sillago
flindersi (n= 13), Sphyraena novaehollandiae (n= 4), Taeniomembras microstomus (n= 1),
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and Thunnus albacares (n= 1) were examined for infection with anisakid larval types. Fish
were collected off Australian coasts, including Queensland, New South Wales, Victoria,
South Australia and Western Australia. No fish were caught or killed for the purpose of
this study. All fish were either already euthanized as part of other research projects or were
bought from fishermen in various fish markets.

Dead fish were cut open and first examined for presence of larval nematodes in the
surface of the internal organs and also for gross pathology. Then the gastro-intestinal tract
from mouth to anus was examined for the presence of nematodes. All nematodes found
were washed in physiological saline and then preserved in 70% ethanol. A small piece of the
mid-body of each nematode was excised for molecular study, and the rest of the nematode
were used for microscopy.

Morphological examination
The anterior and posterior parts of each nematode were cleared in lactophenol and
examined under a light microscope. Terranova larvae were identified according to the
identification key proposed by Cannon (1977) and were selected for description and
further molecular analyses. Illustrations were made using a microscope equipped with
camera lucida.

Molecular study
Genomic DNA (gDNA) was isolated from all individual larvae identified morphologically
as Terranova larval type, by sodium dodecyl-sulphate/proteinase K treatment, column-
purified (WizardTM DNA Clean-Up; Promega, Madison, WI, USA) and eluted into
45 µl of water. PCR was used to amplify the ITS-1 and ITS-2 regions using primer
sets SS1: 5′-GTTTCCGTAGGTGAACCTGCG-3′ (forward) and NC13R: 5′-GCTGCGTT
CTTCATCGAT-3′ (reverse) for the former and SS2: 5′-TTGCAGACACATTGAGCACT-3′

(forward) and NC2: 5′-TTAGTTTCTTTTCCTCCGCT-3′ (reverse) for the latter region,
and cycling conditions, initial 94 ◦C/5′, then 94 ◦C/30

′′

, 55 ◦C/40
′′

, 72 ◦C/40
′′

× 30 cycles,
72 ◦C/5′ extension and 4 ◦C (Shamsi & Butcher, 2011). An aliquot (4 µl) of each amplicon
was examined on a 1.5% w/v agarose gel, stained with GelRedTM and photographed using
a gel documentation system.

Representative samples based on host species and geographical locationswere selected for
sequencing. Sequenceswere alignedusing the computer programClustalX (Thompson et al.,
1997) and then adjusted manually. Polymorphic sites were designated using International
Union of Pure and Applied Chemistry (IUPAC) codes. Pair-wise comparisons of sequence
differences (D) were determined using the formulaD= 1−(M/L), whereM is the number
of alignment positions at which the two sequences have a base in common, and L is the
total number of alignment positions over which the two sequences are compared (Chilton,
Gasser & Beveridge, 1995).

Phylogenetic analysis of the nucleotide sequence data for combined ITS-1 and ITS-
2 regions were conducted in PAUP 4.0. Table 1 shows details of the taxa used to
build phylogenetic trees. Two tree-building methods, neighbour-joining and maximum
parsimony were employed for phylogenetic analysis. The outgroup employed wasHeterakis
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Table 1 Scientific name and specimens/accession number of taxa used to build phylogenetic trees in the present study.

Abbreviation Scientific name Specimen/Accession no. Reference

ITS-1 ITS-2

A.brevispiculata Anisakis brevispiculata AY826719 AY826719 Nadler et al. (2005)
A.brevispiculata1 Anisakis brevispiculata PSW4-1 PSW4-2 Shamsi, Gasser & Beveridge (2012)
A.pegreffii Anisakis pegreffii FN391850 FN556997 Shamsi, Gasser & Beveridge (2012)
A.pegreffii1 Anisakis pegreffii FN391851 FN556998 Shamsi, Gasser & Beveridge (2012)
A.physeteris Anisakis physeteris AY826721 AY826721 Nadler et al. (2005)
A.physeteris1 Anisakis physeteris AY603530 AY603530 Kijewska et al. (2008)
A.simplexC Anisakis simplex C FN391883 FN391884 Shamsi, Gasser & Beveridge (2012)
A.simplexs.s. Anisakis simplex sensu stricto AJ225065 AB196672 Abe, Ohya & Yanagiguchi (2005)
A.TMTP Larva of Anisakis sp. (TMTP) AY260555 AY260555 Pontes et al. (2005)
A.typica Anisakis typica AY826724 AY826724 Nadler et al. (2005)
A.typica1 Anisakis typica FN391887 FN391889 Shamsi, Poupa & Justine (2015)
A.ziphidarum Anisakis ziphidarum AY826725 AY826725 Nadler et al. (2005)
C.bancrofti Contracaecum bancrofti EU839572 FM177883 Shamsi et al. (2009b)
C.bancrofti1 Contracaecum bancrofti EU839573 FM177887 Shamsi et al. (2009b)
C.eudyptulae Contracaecum eudyptulae FM177531 FM177562 Shamsi et al. (2009b)
C.margolisi Contracaecum margolisi AY821750 AY821750 Nadler et al. (2005)
C.microcephalum Contracaecum microcephalum FM177524 FM177528 Shamsi et al. (2009b)
C.multipapillatum Contracaecum multipapillatum AM940056 AM940060 Shamsi et al. (2008)
C.ogmorhini Contracaecum ogmorhini sensu

stricto
FM177542 FM177547 Shamsi et al. (2009b)

C.osculatumA Contracaecum osculatum A AJ250410 AJ250419 Zhu et al. (2000)
C.osculatumB Contracaecum osculatum B AJ250411 AJ250420 Zhu et al. (2000)
C.osculatumbaicalensis Contracaecum osculatum baicalensis AJ250415 AJ250416 Zhu et al. (2000)
C.osculatumC Contracaecum osculatum C AJ250412 AJ250421 Zhu et al. (2000)
C.osculatumD Contracaecum osculatum D AJ250413 AJ250418 Zhu et al. (2000)
C.osculatumE Contracaecum osculatum E AJ250414 AJ250417 Zhu et al. (2000)
C.radiatum Contracaecum radiatum AY603529 AY603529 Kijewska et al. (2002)
C.rudolphiiA Contracaecum rudolphii A AJ634782 AY603535 Li et al. (2005)
C.rudolphiiB Contracaecum rudolphii B AJ634783 AJ634911 Li et al. (2005)
C.rudolphiiD Contracaecum rudolphii D FM210253 FM210267 Shamsi et al. (2009a)
C.rudolphiiD1 Contracaecum rudolphii D FM210254 FM210265 Shamsi et al. (2009a)
C.rudolphiiE Contracaecum rudolphii E FM210257 FM210269 Shamsi et al. (2009a)
C.rudolphiiE1 Contracaecum rudolphii E FM210258 FM210273 Shamsi et al. (2009a)
C.septentrionale Contracaecum septentrionale AJ634784 AJ634787 Li et al. (2005)
C.variegatum Contracaecum variegatum FM177531 FM177537 Shamsi et al. (2009b)
Contracaecumn.sp. Contracaecum pyripapillatum AM940062 AM940066 Shamsi et al. (2009b)
H.aduncum1 Hysterothylacium aduncum AJ225068 AJ225069 Zhu et al., 1998)
H.aduncum2 Hysterothylacium aduncum AB277826 AB277826 Umehara et al. (2008)
H.auctum Hysterothylacium auctum AF115571 AF115571 Szostakowska et al. (2001)
H.III Hysterothylacium larval type III FN811721 FN811678 Shamsi, Gasser & Beveridge (2013)

(continued on next page)
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Table 1 (continued)

Abbreviation Scientific name Specimen/Accession no. Reference

ITS-1 ITS-2

H.III-1 Hysterothylacium larval type III FN811723 FN811681 Shamsi, Gasser & Beveridge (2013)
H.IVA Hysterothylacium larval type IV

Genotype A
FN811724 FN811690 Shamsi, Gasser & Beveridge (2013)

H.IVB Hysterothylacium larval type IV
Genotype B

FN811730 FN811682 Shamsi, Gasser & Beveridge (2013)

H.IVGA Hysterothylacium larval type IV
Genotype A

FN811729 FN811690 Shamsi, Gasser & Beveridge (2013)

H.IVGA1 Hysterothylacium larval type IV
Genotype A

FN811729 FN811691 Shamsi, Gasser & Beveridge (2013)

H.IVGA2 Hysterothylacium larval type IV
Genotype A

FN811729 FN811692 Shamsi, Gasser & Beveridge (2013)

H.IVGB Hysterothylacium larval type IV
Genotype B

FN811730 FN811683 Shamsi, Gasser & Beveridge (2013)

H.IVGB1 Hysterothylacium larval type IV
Genotype B

FN811731 FN811684 Shamsi, Gasser & Beveridge (2013)

H.IVGB2 Hysterothylacium larval type IV
Genotype B

FN811733 FN811685 Shamsi, Gasser & Beveridge (2013)

H.V Hysterothylacium larval type V FN811738 FN811699 Shamsi, Gasser & Beveridge (2013)
H.VI Hysterothylacium larval type VI FN811740 FN811701 Shamsi, Gasser & Beveridge (2013)
H.VII Hysterothylacium larval type VII FN811749 FN811709 Shamsi, Gasser & Beveridge (2013)
H.VIII Hysterothylacium larval type VIII FN811750 FN811710 Shamsi, Gasser & Beveridge (2013)
Heterakisgallinarum Heterakis gallinarum JQ995320 JQ995320 Jimenez et al. (2012)
P.azarasi Pseudoterranova azarasi AJ413973 AJ413974 Zhu et al. (2002)
P.bulbosa Pseudoterranova bulbosa AJ413970 AJ413971 Zhu et al. (2002)
P.cattani Pseudoterranova cattani AJ413982 AJ413984 Zhu et al. (2002)
P.decipiens Pseudoterranova decipiens AJ413979 AJ413980 Zhu et al. (2002)
P.decipiens1 Pseudoterranova decipiens AJ413979 AJ413978 Zhu et al. (2002)
R.acus Raphidascaris acus AY603537 AY603537 Kijewska et al. (2008)
Terranovasp. Terranova sp. LN795828 LN795872 The present study
Terranovasp.1 Terranova sp. LN795851 LN795871 The present study

gallinarum (Nematoda:Heteakoidea; GenBank accession numbers JQ995320 and JQ995320
for ITS-1 and ITS-2, respectively).

RESULTS
Of 45 species of fish examined in the present study, third stageTerranova type larvae (n= 93)
were identified as type II based on the presence of intestinal caecumand ventriculus, absence
of developed labia and ventricular appendix, and location of the excretory pore being at the
anterior end (Fig. 1). Morphological description of these larvae was summarized in Table 2.
Terranova type larvae were found in 13 species of fish collected fromNorth-Eastern, Eastern
and south eastern coasts of Australia. Material morphologically examined were 10 larvae
in good condition from Caesio cuning (n= 3), Caranx ignobilis (n= 2), Grammatorcynus
bicarinatus (n= 1), Lutjanus argentimaculatus (n= 3) and L. carponotatus (n= 1) from
Heron Island, Queensland.
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Table 2 Morphological description of Terranova larval type found in the present study. All measure-
ments are given in millimetres. Mean measurements are given, followed by the range in parentheses.

Taxonomically important morphological character Measurement/description

Body length 6.6 (3.0–9.0)
Body width 0.24 (0.18–0.28)
Tooth Present
Lips morphology Inconspicuous
Distance of nerve ring from anterior end 0.37 (0.22–0.72)
Location of excretory pore At anterior end
Oesophagus length 0.88 (0.4–1.14)
Ratio of oesophagus length to body length 14.3 (9.5–26.5%)
Ventriculus length 0.38 (0.24–0.54)
Intestinal caecum length 0.71 (0.50–0.90)
Tail morphology Strongly annulated,

conical, tapering smoothly
Tail length 0.13 (0.12–0.14)
Ratio of tail length to body length 2.2% (1.3–4.0%)

A total of 93 specimens from various fishes, including Abudefduf whitleyi, Caesio cuning,
Carangoides fulvoguttatus, Caranx ignobilis, Caranx melampygus, Epinephelus cyanopodus,
Grammatorcynus bicarinatus, Lutjanus argentimaculatus, L. bohar, L. carponotatus and L.
fulviflamma and Scomber australasicus were subjected to PCR amplification. Based on the
species of hosts and their geographical locations, 25 and 21 specimens were selected and
sequenced for ITS-1 and ITS-2 respectively.

The length of the ITS-1 was 437 bp except for two specimens which were 436 bp
long. The difference in length was due to a gap at alignment position 20 in the latter
specimens (Fig. 2). Also, sequence polymorphism was detected at alignment position 426
in one specimen (Fig. 2). Sequence variation in the ITS-1 among specimens was 0–0.4%
and the G + C content was 47.6–47.9%. The length of the ITS-2 was 252 bp. Sequence
polymorphism was detected at alignment position 22 in two specimens. Sequence variation
among individuals was 0–0.4% and the G + C content was 46.4–46.8%. ITS-1 and ITS-2
sequences of Terranova larval type found in the present study were almost identical among
all larvae.

DISCUSSION
Previously, Cannon (1977) described two distinct Terranova larval types, I and II, in
Queensland waters which were later reported by other authors from other parts of
Australia (e.g., Doupe et al., 2003; Moore et al., 2011). According to Cannon (1977), the
main difference between larval types I and II is the ratio of intestinal caecum to ventriculus
being 1:1 in the former and 2:1 in the latter morphotype. Based on the similarity in the ratio
of intestinal caecum to ventriculus and considering the geographical location of larvae and
matching it with presence of adult nematodes, he suggested Terranova larval type I in his
study could be Terranova chiloscyiti and Terranova larval type II could be T. galeocerdonis
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Table 3 Taxa listed under genera Terranova, Pulchrascaris and Pseudoterranova.

Taxa Host common name Host scientific name Location Reference

Terranova Leiper & Atkinson,
1914
T. amoyensis Fang & Luo 2006 Red string ray Dasyatis akajei Taiwan Strait Fang & Luo (2006)
T. antarctica (Leiper & Atkinson,
1914)a

Gummy shark Mustelus antarcticus Bay of Islands, New Zealand Leiper & Atkinson (1914)

T. brevicapitata (Linton, 1901) Tiger sharkk Galeocerdo cuvier Woods Hole, Massachusetts,
USA

Deardorff (1987)

T. caballeroi Diaz-Ungria, 1967 Porcupine river stingray Potamotrygon hystrix Delta of the Orinoco River,
Venezuela

Diaz-Ungria (1967)

T. cephaloscyllii (Yamaguti, 1941) Blotchy swell shark Cephaloscyllium umbratile Nagasaki, Japan Yamaguti (1941)
T. circularis (Linstow, 1907) Common sawfish Pristis pristis Cameroon Bruce, Adlard & Cannon (1994)
T. crocodili (Taylor, 1924) West African crocodile

Malayan crocodile
Crocodylus sp
Crocodylus johnstoni

Ghana
Northern Australia;
Queensland; Malaya

Sprent, (1979)

T. draschei (Stossich, 1896)b Arapaima Arapairna gigas Rivers of northern South
America

Bruce, Adlard & Cannon (1994)

T. galeocerdonis (Thwaite, 1927) Tiger shark
Scalloped hammerhead
Smooth hammerhead
Blacktai reef shark

Galeocerdo cuvier
Sphyrna lewini
S. zygaena
Carcharinus amblyrhynchos

Twynams Paar, Ceylon;
South Australia and Queens-
land, Australia; Natal, north-
ern Brazil.

Bruce, Adlard & Cannon (1994)

T. ginglymostomae Olsen, 1952c Nurse shark
Spotted wobbegong
Zebra shark

Ginglymostoma cirratum
Orectolobus maculatus
Stegostoma fasciatum.

Tortugas, Florida, USA; off
Queensland, Australia

Bruce, Adlard & Cannon (1994)

T. lanceolata (Molin 1860) Black caiman
American alligator

Melanosuchus niger
Alligator mississippiensis

Brazil Sprent (1979)

T. nidifex (Linton, 1900)d Tiger shark Galeocerdo tigrinus Woods Hole, Massachusetts,
USA

Deardorff (1987)

T. pristis (Baylis & Daubney, 1922) Largetooth sawfish
Snaggletooth shark
Wallago

Pristis microdon (P. perotteti)
Hemipristis elongatus Wal-
lago attu

Ulubaria, India; Balgal,
Queensland, eastern
Australia

Bruce, Adlard & Cannon (1994)

T. petrovi Mozgovoi, 1950e Shark Raja longirostris Kamchatka, USSR Bruce, Adlard & Cannon (1994)
T. quadrata (Linstow, 1904) The saltwater crocodile Crocodilus porsus Belgrade Mozgovoi (1950)
T. rochalimai (Pereira, 1935)c Shark Scientific name was not

mentioned in the original
description

Brazil Mozgovoi (1950)

T. scoliodontis (Baylis, 1931) Shark Scoliodon sp. Cleveland Bay, Townsville,
Australia

Bruce, Adlard & Cannon (1994)

T. secundum (Chandler, 1935)f Largehead hairtail Trichiurus lepturus. Galveston Bay, Texas, USA;
La Paloma, Uraguay

Chandler (1935)

(continued on next page)
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Table 3 (continued)

Taxa Host common name Host scientific name Location Reference

T. serrata (Drasche, 1896)b Arapaima Arapaima gigas Rivers of northern South
America

Bruce, Adlard & Cannon (1994)

Terranova trichiuri (Chandler,
1935)g

Indian threadfin Polydactylus indicus
Trichiurus lepturus

Galveston Bay, Texas, USA;
Khulna, Pakistan

Bruce, Adlard & Cannon (1994)

Pulchrascaris Vicente and dos
Santos, 1972
P. caballeroi Vicente and dos San-
tos, 1972

Angelshark Squatina squatinah Rio de Janeiro, Brazil Bruce, Adlard & Cannon (1994)

P. chiloscyllii (Johnston and Maw-
son, 1951)

Brownbanded bambooshark
Blacktip reef shark
Gummy shark
Scalloped hammerhead
Smooth hammerhead
Whitetip reef shark

Chiloscyllium punctatum
Carcharinus melanopterus
Mustelus antarcticus
Sphyrna lewini
S. zygaena
Triaenenodon obesus

Halfway Island, Australia;
Hawaii, Alabama, USA;
South Africa

Bruce, Adlard & Cannon (1994)

P. secunda (Chandler, 1935) Largehead hairtail Trichiurus lepturus. Galveston Bay, Texas, USA;
La Paloma, Uraguay

Bruce, Adlard & Cannon (1994)

PseudoterranovaMozgovoi, 1951
Pseudoterranova azarasi (Yam-
aguti & Arima, 1942)

Steller’s sea lion
Californian sea lion
Harbor seal
Bearded seal

Eumetopias jubatus
Zalophus californianus
Phoca vitulina richardsii
Erignathus barbatus

Japanese and Sakhalinese
waters of the North Pacific
Ocean

Mattiucci & Nascetti (2008)

P. bulbosa (Cobb, 1888) Bearded seal Erignathus barbatus Barents and Norwegian Seas,
the Canadian Atlantic and
the Sea of Japan,

Mattiucci & Nascetti (2008)

P . cattani George-Nascimento and
Urrutia, 2000

South American sea lion Otaria byronia South-East Pacific, Chilean
coast

Mattiucci & Nascetti (2008)

P. decipiens (Krabbe, 1868) (sensu
stricto)

Californian sea lion
Harbor seal
Harbor seal
Grey seal
Hooded seal
Norhern elephant seal

Zalophus californianus
Phoca vitulina richardsii
Phoca vituline
Halichoerus grypus
Cystophora cristata
Mirounga angustirostris

North-East and North-West
Atlantic

Mattiucci & Nascetti (2008)

P. krabbei Paggi, Mattiucci et al.,
2000

Harbor seal
Grey seal

Phoca vituline
Halichoerus grypus

North-East Atlantic; Faeroe
Islands

Mattiucci & Nascetti (2008)

P. decipiens E of Bullini et al., 1997 Antarctic Weddell seal Leptonychotes weddellii Antarctica Mattiucci & Nascetti (2008)

Notes.
aThe species has been described based on a single female and should be redescribed.
bMozgovoi (1953) lists this species as Terranova serrata (Drasche 1884) while Bruce, Adlard & Cannon (1994) listed it as Porrocaecurn draschei (Stossich, 1896) and noted that there is some doubt as to
which name has priority for this species.

cThis taxon was considered as junior synonym of T. galeocerdonis by Tanzola & Sardella (2006).
dAccording to Johnston & Mawson (1945) T. nidifex may be identical to T. galeocerdonis.
eThis taxon was regarded as species inquirenda by Gibson & Colin (1982).
fNow is known as Pulchrascaris secunda (Deardorff, 1987).
gThis species was considered as a synonym of T. secundum (Chandler, 1935) by Olsen (1952).
hAccording to Deardorff (1987) this is a misidentification of host.

TMIn the original description Cação panan was stated as type host which could not be assigned to any specific elsamobranch.
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Figure 1 Diagram of Terranova larval type found in the present study indicating taxonomically im-
portant features (scale-bars= 0.3 mm).

or T. scoliodontis. Although some species within Pseudoterranova (e.g., P. cattani) have
the same ratio of intestinal caecum to ventriculus and although Pulchrascaris has been
reported from the same general location (Table 3), the possibility of these larvae being
Pulchrascaris spp. or Pseudoterranova spp. was not discussed in Cannon’s work. In addition,
assigning larval type to adults based on the ratio of intestinal caecum to ventriculus has
been considered to be unreliable. Huizinga (1967) showed that the length of the intestinal
caecum is shorter in smaller/younger larvae and increases as the larvae grow in length. This
can affect the ratio of intestinal caecum to other organs, such as ventricular appendix or
ventriculus. As a result the specific identity of Terranova larval types remains unknown.
For the same reasons, despite of morphological resemblance between Terranova larval type
in the present study and those described by Cannon (1977) there is no certainty that they
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Figure 2 Alignment of the sequences of the ITS-1 and ITS-2 regions of Terranova larval type II of Can-
non, 1977c found in the present study. The left column indicates the GenBank accession number of spec-
imens. Numbers to the right of alignment indicate the alignment position. Polymorphic sites were desig-
nated using IUPAC codes.
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are genetically similar or belong to the same species due to lack of comparable molecular
data for Cannon’s specimens.

In an attempt to specifically identify Terranova larval type in the present study, we
genetically characterised all Terranova larval type found in the present study from broad
geographical region as well as a broad variety of fish species, based on their ITS-1 and ITS-2
sequences followed by phylogenetic analyses.

The nucleotide variation within Terranova larval type in the present study was very low
(0–0.4% for both ITS-1 and ITS-2), and was within the range for nucleotide variation
(0–0.2% and 0–0.4% for ITS-1 and ITS-2 respectively) calculated for members of the same
species in the family Anisakidae (Shamsi et al., 2009b). This suggests they all should be the
same genotype/species.

To reveal the specific identity of the Terranova larval type found in the present study
comparable ITS sequences fromwell identified adults must be available. To date, there is no
such sequence in the GenBank database. Among reliably identified species whose ITS-1 and
ITS-2 sequences were available in the GenBank database, there was no identical or highly
similar sequence to ITS-1 and ITS-2 sequences found in the present study. Alignment
of ITS-1 and ITS-2 sequences of Terranova larval type in the present study with those
available inGenBank database did not result in finding identical or highly similar sequences.
Although the closest ITS sequences in the GenBank database belonged to Pseudoterranova
azarasi, P. bulbosa, P. cattani and P. decipiens sensu strict the nucleotide difference between
ITS sequences of the larvae in the present study and those of Pseudoterranova spp. in the
GenBank was too great (38.9–39.8% and 46.7–48.4% for ITS-1 and ITS-2, respectively)
to be considered within the genus Pseudoterranova (Table 4). The distinction between
Terranova larval type in the present study and Pseudoterranova spp. was also supported by
phylogenetic analyses (Fig. 3).

ITS-1 and ITS-2 sequences of well identified closely related taxa were selected to build
the phylogenetic tree to investigate the association of larvae in the present study with other
taxa within family Anisakidae. Both neighbour joining and maximum parsimony (the
latter is not shown) trees had similar profile and grouping of taxa were the same among
both trees. In the neighbour joining phylogenetic tree (Fig. 3), Terranova larval type found
in the present study were resolved as a distinct clade with strong bootstrap support of
100%. None of the anisakid species (Pseudoterranova spp., Anisakis spp. and Contracaecum
spp. becoming adult in marine mammals) with similar morphology to Terranova spp.
(i.e., having excretory pore opened at the base of the labia) were grouped in the same clade
as Terranova larval type found in the present study. Closely related species becoming adult
in teleost fishes (Hysterothylacium spp. and Raphidascaris acus) were also included in the
phylogentic tree, although the excretory system in this group has a different feature to
Terranova spp. These anisakids also resolved as a distinct clade to Terranova larval type.

In both phylogenetic trees produced in the present study based on the combined
ITS-1 and ITS-2 sequences, the Terranova larval type was resolved separately from
Pseudoterranova spp. suggesting they do not belong to the genus Pseudoterranova.

As reviewed in the Introduction, Australian Terranova larval types could potentially
be larval stages of Pseudoterranova spp., Terranova spp., or Pulchrascaris spp. Species
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Figure 3 Phylogenetic analysis of the combined ITS-1 and ITS-2 sequence data for members of the
Anisakidae withHeterakis gallinarum as outgroup, using the neighbour-joining method. Bootstrap
support values are indicated. See Table 1 for detailed abbreviations. Note that Terranovasp and Terra-
novasp1 both belong to the same taxon and only different in polymorphic sites as shown in Fig. 2. They
are representative of 93 Terranova larval type examined in the present study.
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Table 4 Pairwise comparisons of the nucleotide differences (%) in the consensus sequences of ITS-1
and ITS-2 between Terranova larval type found in the present study and Pseudoterranova spp. (the only
taxa with closest ITS sequence similarity available in GenBank database).

Terranova larval type in the present study

ITS-1 ITS-2

P. azarsi 39.8 46.7
P. bulbosa 38.9 48.4
P. cattani 39.3 47.2
P. decipiens sensu tricto 39.0 48.3

Figure 4 Map shows reported cases of Terranova larval types (circles), Adult Terranova spp (asterisk),
adult Pseudoterranova spp (square), adult Pulchrascaris (triangle), distribution of Australian sea lion
(solid line), Australian fur seal (square dots) and New Zealand fur seal (round dot).

associated with these genera have been listed in Table 3. Comparison of ITS sequence
of Terranova larval type found in the present study with those of Pseudoterranova spp.
available in GenBank (Table 4) shows a considerable nucleotide difference of 38.9–39.8%
in both ITS-1 and ITS-2 regions. This is greater than nucleotide difference found for distinct
species within a genus of family Anisakidae (Shamsi et al., 2009b) suggesting Terranova
larval type in the present study does not belong to the genus Pseudoterranova.

To date, four species of Terranova have been reported from Australian sharks, T.
galeocerdonis, T. ginglymostomae, T. pristis and T. scoliodontis (Bruce & Cannon, 1990). In
addition, T. crocodyli was found in Australian crocodiles (Sprent, 1979). They all have
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a similar relationship between length of the intestinal caecum and ventriculus to the
Terranova larval type in the present study. Pulchrascaris is a small genus in terms of number
of species under family Anisakidae. Like members of the genus Terranova, Pulchrascaris
spp. become adult in elasmobranches. There is intra/inter specific variation in the ratio of
the intestinal caecum to ventriculus of Pulchrascaris spp. (Bruce & Cannon, 1990). Since
there is no ITS sequences available for Terranova spp. or Pulchrascaris spp. in the GenBank
database, the specific identity of the Terranova larval type found in the present study
remains unknown and we are not able to associate these larvae to any Terranova spp. or
Pulchrascaris spp. however, the present study, particularly the ITS sequence data, provides
the essential information for future studies when the adult form is found and characterised.

This is the first report of a Terranova larval type from Abudefduf whitleyi, Carangoides
fulvoguttatus, Caranx ignobilis, C. melampygus, Chaetodon flavirostris, Lutjanus argenti-
maculatus, L. bohar, Pristipomoides multidens, Scomber australasicus. Some of these fish,
such as Australian mackerel (Scomber australasicus) are popular edible fish. Infection of
those fish species that are not edible is also very important due to their role in the survival
and transmission of Terranova larval type in the ecosystem.

Although the present study could not specifically identify the Terranova larval type
in Australian waters, it could rule out the possibility of them being Pseudoterranova
larvae which would have different implications for seafood and consumers’ safety and
policy development in the country. It should be emphasized that it is very likely that
Pseudoterranova larvae exist in Australian waters, infect some fish and await discovery.
Their definitive hosts, Australian sea lion, Australian fur seal and New Zealand fur seal
are found in southern coast of Australia (Fig. 4) and have been found to be infected
with Pseudoterranova decipiens E (Bullini et al., 1997). However, given that in Australian
waters the diversity of elasmobranch species is considerably higher (approximately 200
species, www.fishbase.net) than that of marine mammals (3 species of seals) our suggestion
is that Terranova larval type in Australian waters is more likely to be a Terranova or a
Pulchrascaris. To date there is no evidence that larval stage of Terranova or Pulchrascaris
can cause infection in humans.
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