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ABSTRACT
Matrix factorization is arguably one of the most widely employed collab-
orative filtering techniques for recommender systems. The recommenda-
tion is obtained based on the user-item relationships discovered within
some lower-dimensional latent space. The optimal latent space is generally
data-dependent and often needs to be selected using the time-consuming
cross-validation scheme. In this paper, we propose to leverage the power of
the ensemble method not only to facilitate the hyper-parameter selection
but also to improve the predictive performance of the system. Specifically,
we studied ways to combine predictions from multiple Singular Value De-
composition models, each operates in its own latent space. Experimental
results based on MovieLen100K, MovieLen1M, Bookcrossing and Filmtrust
datasets demonstrated that the ensembles outperformed a tuned single
model in terms of RMSE and MAE while requiring no additional model
selection step. Ensemble sizes experiment have shown that the 21 sub-
model of the ensemble models produce better results than the 14, 8 and
standalone model. However, it takes longer to complete. We also found
that an ensemble that pays more attention to lower-dimensional latent
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spaces tends to generalize better.
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1. INTRODUCTION

Recommender systems play an essential role in
modern business strategy. They can be found in
both online shopping and movie businesses such as
Amazon and Netflix, to name a few. The goal is to
increase the ability to recommend interesting prod-
ucts to the users. As a consequence, several product
recommendation systems have been developed con-
tinuously. In general, there are two types of recom-
mendation approaches: Content-based (CB) [1] and
Collaborative Filtering (CF) [4]. The basic idea of
the content-based approach is to use properties of an
item to predict the user’s interest in it. Most CBs
advise users with an inferential model trained from
the characteristics of both users’ and items’ profiles.
On the other hand, the CF approach generates per-
sonalized recommendations according to the calcu-
lated similarity of historical data among collabora-
tive users. Various techniques have been developed
to build recommendation solutions based on the CF

concept. However, CF has attracted much attention
in the past decade, resulting in significant progress.
It was adopted by several successful commercial sys-
tems, including Amazon, TiVo, CDNow.com, and
Netflix. This is because CF models can be more flexi-
ble with regard to the types of rating [4]. The histor-
ical database represents relationships between users
and items with the corresponding rating scores which
are collected in the form of a users-items rating ma-
trix. The pre-constructed rating prediction model,
which represents the behavior of the users assembled
from the users-items rating matrix, is established us-
ing offline learning algorithms.

One of the notable techniques for rating predic-
tion in CF is Singular Value Decomposition (SVD).
The SVD-based technique factorizes the users-items
rating matrix into latent factor matrices and other
learning parameters. The overall size of these learn-
ing parameters is smaller than the entire users-items
rating matrix. Therefore, when recommendations are
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called for, the recommendation results are returned
based on the re-composition of the learning param-
eters, which encompass latent factor matrices and
other additional learning parameters [2]. In many re-
search efforts, a recommendation system model based
on SVD shows sufficient efficiency in predicting the
rating. Many researchers try to improve SVD for bet-
ter prediction and reduction of errors between the
actual rating and the predicted rating [3]. However,
there are still challenges associated with using SVD
in recommendation systems.

The crucial factor that affects the model’s accu-
racy is the dimensionality of the latent space, e.g.,
the number of latent factors. Interestingly, the hyper-
parameter is usually data dependent [5]. The optimal
value for one dataset might not necessarily be opti-
mal for other datasets. This is because each dataset
may have different distribution characteristics, such
as the distribution of the data or the sparseness of
the users and items. Furthermore, the size of the
users-items rating matrix grows explosively due to
the enormous number of people accessing the service
while new items are being added to the system ev-
ery day. Thus, another essential concern is how to
efficiently re-train the SVD-based model in order to
adapt to new information. Clearly, the traditional
brute-force method for determining the appropriate
hyper-parameter value might be impractical for the
fast-changing nature of data. To mitigate the diffi-
culties mentioned above, this paper proposes to em-
ploy ensemble of a constant set of multiple SVD-based
models to facilitate hyper-parameter tuning and im-
prove predictive performance. The predictions from
the ensemble which the combination of multiple SVD-
based models’ predictions.

By considering SVD-based techniques, the com-
putationally intensive brute-force method for finding
the best k-latent factors can be replaced with ensem-
ble of a constant set of multiple SVD-based rating
predictions models. The latter is much faster, as can
be seen from the experimental results. Moreover, the
combined multiple SVD-based models as an ensem-
ble tend to outperform the tuned single SVD-based
model.

The rest of this paper is organized as follows. Sec-
tion 2 presents the background on matrix factoriza-
tion and SVD as well as notable related work. The
proposed ensemble learning methodologies are pre-
sented in Section 3. Empirical evaluation of the pro-
posed method is given in Section 4, Section 5 con-
cludes the study and outlines future research direc-
tions.

2. BACKGROUND AND RELATED WORK

Recommender Systems implement a long-established

technique that has been applied in many industrial
domains [12]. For example, they have been used in
music [13], e-commercial [14], and the film industry

[15], especially Netflix. CF is the substantial part
of recommender systems that provide practical rec-
ommendations via behavior correlation between users
and items. In recent years, matrix factorization such
as the SVD and the SVD++ models has become pop-
ular by providing good predictive accuracy and flex-
ibility for real-life scenario modeling [16]. Here we
briefly describe the working of the two models which
will be used as the base models in the proposed en-
semble methods.

2.1 SVD

Singular Values Decomposition (SVD) is one ap-
proach to matrix factorization which is used to cre-
ate an efficient CF recommendation system. The
SVD technique factorizes the user-rating matrix into
a user matrix and an item matrix both correlated
with each other. The conventional SVD technique
[8] maps users and items in the correlated directions.
The associated rating matrix R € R"™*"™ is decom-
posed into user latent matrix p, € ®* and item la-
tent matrix ¢; € R*, where k is the number of latent
factors. By the characteristic of matrix factorization,
both decomposed matrices can be used to recover to
the original user-rating matrix and approximate the
rating of the user-item pair for an unknown rating. A
baseline estimation for predicted the rating score of
user u over item 4, denoted as t,,; of this conventional
SVD technique, is formulated as in Equation (1).

Fui ~ Dudl (1)

Normally, the user-item rating matrix exhibits sys-
tematic tendencies for some users to give higher rat-
ings than others, and for some items to receive higher
ratings than others. These tendencies are known as
biases or intercepts. An improved regularized SVD [9]
was proposed for handling the biases and data varia-
tions. This technique extends the prediction accuracy
of this conventional SVD technique by adding some
bias parameters to its model. A baseline estimation
for predicted rating score of user u over item ¢, (¥,; )
of this technique is given in Equation (2).

Fui = p 4 by 4+ b + ¢l pu (2)

1 is a global average rating. p, and ¢; are k-
dimensional latent feature vectors of user u and item
i, respectively. The parameters b, and b; are the ob-
served bias of both user v and item 4, respectively. In
addition, p, and ¢; are k-dimensional latent feature
vectors of user v and item 4, respectively.

In 2017, Xin Guan [17] presented an enhanced
SVD model to improve the accuracy of the recom-
mender system. A series of user and item models
were implemented and validated the performance of
collaborative filtering recommendations. Transform-
ing models into different formats can make a signifi-
cant difference in model performance.
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2.2 SVD++

Recommendation systems often suffer from data
sparsity and cold start issues [9, 11]. Limited explicit
information about user-item rating interactions does
not provide efficient recommendation performance.
Thus, SVD++ [10] adds other concerning informa-
tion to its model, named implicit feedback, which
is comprised of the Boolean implicit feedback values
that indicate whether the concerning item has been
rated by users or not. A baseline estimation for pre-
dicted the rating score of user u over item 4, (t,; ) of
SVD++ is established in Equation (3).

Fui = by + b + ¢ (pu + LTV D y) (3)
Jj€ly

w is the global mean. p, and g; are k-dimensional la-
tent feature vectors of user u and item i, respectively.
The bias term b,, is referred to as the bias of the user,
and b; denotes the bias of the item. Additionally,
|I,| is a set of items rated by user w, and y; is k-
dimensional vector that collects the implicit influence
of items rated by user u. The term |L,[~"/23" | y;
represents the eigenvector of the user u on the implicit
feedback.

An interesting meta-learning approach to improve
the performance of a single SVD or SVD++ model
is the ensemble method. Generally, an ensemble with
sufficiently diverse members often yields better re-
sults than each of its members. Ariel Bar [18] stud-
ied the improvement of collaborative filtering models
using two ensemble methods: the bagging and the
boosting techniques. The results showed that the en-
semble outperformed one single weak model as mea-
sured by the Root Mean Square Error. Motivated by
the above study, we set out to explore other model
ensemble strategies hopes of finding a method with
improved rating prediction accuracy. We also want
to leverage the collective power of weak models to
bypass the need to search for a single optimal model.
The idea is similar to that used in multiple kernel
learning.

3. PROPOSED ENSEMBLE METHODS

In this section we will describe three ensemble ap-
proaches for combining matrix factorization based on
collaborative filtering models. We also provide a time
complexity analysis which highlights the efficiency of
each of the proposed ensemble methods. Without loss
of generality, we shall be using the Singular Value De-
composition (SVD) model as our base model.

3.1 Ensemble with simple averaging

The ensemble method with simple averaging aver-
ages the prediction results of individual base models.
The final prediction is an equally weighted predic-
tion from all of the base models. Each base model

is an SVD model employing a unique number of la-
tent factors. The working of the ensemble with con-
stant weighted average is illustrated in Fig 1. Appar-
ently, this is the most straight-forward way to com-
bine models. However, as we shall see in the experi-
ment, this simple approach can outperform the more
sophisticated approaches. The reason for that will be
explained later.

3.2 Ensemble with non-negative linear combi-
nation

In contrast to the simple averaging ensemble,
the non-negative linear combination assigns a non-
negative weight to the prediction from each member
of the ensemble. The weights are the coefficients of a
linear regression model fitted to the predictions from
the base models to explain the ground truth ratings.
The gradient descent technique is applied to opti-
mize the coefficient or weight of each ensemble in-
stance. The predicted rating from the SVD ensemble
model with non-negative linear combination is given
in Equation 4.

E
Fui = C+ Z Wy, (4)
=1

re, is the predicted rating score on an item ¢ for

user u by the e-th based model from the total of E
models. w€ is the coefficient for the e-th based model
from the linear regression analysis. The term c is the
intercept of the linear regression model. It is worth
noting that the value of the coefficients w® cannot
be negative because the prediction of one base model
might cancel out those from the other base models.

3.3 Ensemble with regularized non-negative
linear combination

It is possible that in the case where there are not
enough ratings to learn from, the non-negative linear
combination approach might overfit the training rat-
ings and will not generalize well. To reduce such un-
wanted behavior, regularization terms can be added
to the linear regression model to mitigate the prob-
lem. Here, instead of fitting a non-negative linear
regression model directly to the predicted ratings by
the base models, we employ lasso [6] and elastic net
[7] to regularize the linear regression model. The reg-
ularized losses for lasso and elastic net are given in
Equations 5 and 6, respectively.

E
Llasso(w) = Z (Tui - TAuz)2 + )\1 Z |we| (5)

uel,iel e=1
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After obtaining the weight vector, the prediction of
the ensemble can be computed using Equation 4.

E
11—«
+)\2(aZ|we\ + 5
e=1

3.4 Time complexity analysis

We shall now show that performing ensemble
learning and bypassing the need to select the opti-
mal number of latent factors for a single SVD via, for
example, cross validation, is more computationally
efficient than single run.

3.4.1 Time complexity analysis for SVD

To analyse the time complexity, let us first recall
the learning process of an SVD model with the ob-
jective function in Equation 7.

min Y (rui—fus) *HAGL 0]+ pul P+ alP) (7)
uwel,iel

Typically, estimating the learning parameters is car-
ried out using the gradient descent technique with
some regularization to minimize the sum of squared
errors.

The generalized algorithm for the learning process
to calculate all model parameters for SVD with k-
latent factors tuning is summarized as Algorithm 1.

Here, X is regularization parameter, and ~ repre-
sents of learning rate.

From the above, the time complexity of learning
a single SVD model is O(mnk), where m, n, and k
denote the number of users, number of items, and the
size latent factors, respectively. The time complexity
can be rewritten as O(mn?) when n < m and k = n,
or O(m?n) when m < n and k = m. Thus, the time

Constant Weighted Average Ensemble

Algorithm 1 SVD with k-latent factors tuning

1. for K =1,2,...max(m,n) do

2: > single SVD learning
3: Random b, b; , p, and ¢; with small values.
4: while terminal conditions do not met do

5: foru=1,2,...,mdo

6: fori=1,2,...,ndo

7 € = Tui — Tui

8: for k=1,2,...,K do

9: bur+ = ’Y(G - /\buk)

10: b+ = ’7(6 — )\bik)

11: end for

12: for k=1,2,...,zdo

13: Puk+ = Y(€qir — Apur)

14: Qi+ = Y(€Pur — Air)

15: end for

16: end for

17: end for

18: epoch = epoch + 1

19: end while

20: end for

complexity of the SVD learning process is cubic. In
other words, the polynomial time complexity is of
degree 3.

For SVD learning with the k-latent factors tuning
process, the additional outer loops are taken into ac-
count for iterating to find the most appropriate size of
k-latent factors. Thus, the additional outer iteration
rounds for the learning process, denoted as K with
K = min(m,n), are required. Therefore, the overall
time complexity of SVD learning with k-latent fac-
tors tuning process is quartic, having a polynomial
time complexity of degree 4.

3.4.2 Time complexity analysis for SVD++

Next let us analyze the time complexity of
SVD++, which is another possible base model. Again
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let us recall the objective function of the SVD++
model, as shown in Equation 8.

min Z (Tui — Fui)? + A(bi + bzz +|lpul >+
Tui €ETui (8)

lasl? + [1ys11%)

From the SVD++ learning process, the learning
parameters are assigned by moving in the opposite
direction of the gradient with a magnitude propor-
tional to a constant . The generalized algorithm
for the learning process to calculate all model pa-
rameters for SVD++ with k-latent factors tuning is
summarized as Algorithm 2.

72 denotes a learning rate of y;. The additional
learning parameters y;, which collect the implicit in-
fluence of items rated by user u, require extra time
for the learning.

Accordingly, the time complexity of a single
SVD++ model is O(mn?k), which has a polynomial
having time complexity of degree 4, or quartic time
complexity. Additionally, the overall time complex-
ity of SVD++ learning with a k-latent factors tuning
process has quintic time complexity, which means the
polynomial time complexity is of degree 5.

3.4.3 Time complexity analysis for the ensemble
methods

In contrast to the learning with k-latent factors
tuning process, which increases the degree of single
model’s time complexity to a polynomial of higher
degree, the proposed ensemble approaches preserve
the time complexity and also return more accurate
rating predictions.

The overall time complexities for our proposed
simple averaging ensembles for SVD and SVD++ are
O(mnkE) and O(mn?kE), respectively. E denotes
the constant number of ensemble models and F < K.
Thus, the time complexity of the SVD and SVD ++
ensemble method with simple averaging have polyno-
mial time complexities of degree 3 and 4, respectively.

In addition, the time complexity of the SVD
and SVD++ ensemble methods with other regres-
sion models are O(mnkE + E?*mn) and O(mn?kE +
E?mn), respectively. Since E is constant, the time
complexity of the SVD and SVD++ ensemble meth-
ods with other regression models also have polyno-
mial time complexities of degree 3 and 4, respectively.

From this theoretical point of view, the ensem-
ble models’ time complexity is classified into the
same class of time complexity for both the primi-
tive SVD and SVD-++ learning processes. This infers
that the SVD-based ensemble models will spend less
time learning than the SVD-based model with a k-
latent factors tuning process. The concrete results of
this study are demonstrated by the empirical results
shown in the next section.

4. EXPERIMENTS
4.1 Experimental protocol

The experiments are designed to investigate the
following research questions: 1) Can the proposed en-
semble methods effectively facilitate the task of latent
factor tuning?, 2) Which of the proposed approaches
is more appropriate for the task?, and 3) Can the
ensemble methods improve upon the single SVD or
SVD++ models in terms of running time?

To answer the first two questions we validated the
proposed ensemble methods against an SVD and an
SVD++ model on publicly available recommendation
system testbeds. The predictive performance should
highlight the benefit of the ensemble methods. We
should also be able to study the comparative per-
formance between the three ensemble approaches. In
each repetition of the experiment, we tuned all hyper-
parameters, such as the number of latent factors and
k ranging from 20 to 200, of SVD and SVD++ and
A1, A2 € (0,1) for the regularized linear combination
ensemble via 5-fold cross validation. In the ensemble
methods, the base SVD and SVD++ models require
no k-factor tuning, because each member uses its own
predefined k-factors. The predefined latent factors
are chosen so that they cover the whole search space
from 20 to 200. A diagram of ensemble learning is
shown in Fig. 2.

We performed 5 repetitions of the experiment us-
ing 80/20 random train/test splitting in order to ob-
tain the performance statistics.

4.2 Datasets

In this study, we use the MovieLens 100K [19],
MovieLens 1m [19], Book crossing [20], and Filmtrust
[21] datasets for benchmarking. The statistics of the
datasets for the experiment are presented in Table 1.

Table 1: Statistics of the datasets used in the ex-
periment
#Users|#Items|#Ratings|Range
MovieLens-100k 943| 1,682 100,000 1-5
MovieLens-1m 6,040| 3,900(1,000,000| 1-5
Filmtrust 1,508| 2,071 35,497 0.5-4
Book Crossing 1,295| 14,684 62,657| 1-10

4.3 Evaluation Metrics

To evaluate the model’s performance, the metrics
used in this experiment were the root mean square er-
ror (RMSE) and the mean absolute error (MAE) de-
fined in Equations (9) and (10), respectively. Resid-
ual error from both indicators is a measure of how far
from the regression line data point is. Smaller values
show the model’s predictive capability is better.
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Fig.2: The schematic diagram of the proposed ensemble methods.

Algorithm 2 SVD++ with k-latent factors tuning

1. for K =1,2,...maz(m,n) do

2: > single SVD++ learning
3: Random by, b;, p.., q; and y; with small values.
4: while terminal conditions do not met do

5: foru=1,2,...,m do

6: B = Zje]u Yj

7 fori=1,2,...,ndo

8: € =Tyui — 7’A’u.i

9: for k=1,2,..., K do

10: bur+ = ’)’(E — )\buk)

11: bqk"‘ = ")’(E — )\bzk)

12: Pukt = Y(€qir. — Apur)

13: Qi+ = V(EPuk — ADuk)

14: for j €I, do

15: v+ = (e L) 2 din —2u;)
16: end for

17: end for

18: end for

19: end for

20: epoch = epoch + 1

21: end while

22: end for

Algorithm 3 Ensemble method

for z=1,2,...£ do

> Perform single SVD or SVD ++learning

> Perform simple ensemble method
foru=1,2,...,m do
fori=1,2,...,ndor,; =0

1

2

3

4:
5. end for
6:

-

8

9 for z=1,2,...£ do

10: Fuit = Ty from z-latent factor
11: end for

12: 7A’u7; = 7A’ui/(€

13: end for

14: end for

RMSE =

3=

n
Z(’f'uz - Tui)2
i=1

1.
MAE = EZ;M — Tuil

4.4 Results

In this experiment we have compared the results
produced in a number of ways, such as with a sim-
ple averaging ensemble, with a non-negative linear
combination ensemble, and with a regularized lin-
ear combination model. Simple Average Ensemble
is an ensemble system in which voting weights are
distributed equally according to the number of base
models available in the system. This allows all the
base models to contribute equally. On the other
hand, the linear combination ensemble has a pro-
cess to learn the weight variables to create conditional
decision-making and give preference to a more capa-
ble base model. Regularization eliminates the prob-
lem of model overfitting, and employs both Lasso reg-
ularization and Elastic Net regularization. We used
21 models for both SVD and SVD++ variants in this
experiment.

Tables 2 and 4 summarize the RMSE and MAE
indicators of each of the proposed models compared
to the standard single SVD and SVD-++ model on all
datasets. As can be observed in Table 2, averaging
the predictions of multiple SVD models each operat-
ing in its own latent space yields the lowest RMSE.
The elastic net ensemble of SVDs provided the lowest
MAE for all the datasets. We can also see from Table
4 that averaging predictions from base SVD++ mod-
els provided the best results on both RMSE and MAE
for all datasets except Book Crossing and Filmtrust,
where the MAE value was inferior to the elastic net
ensemble model. However, it can be seen that all
of the proposed ensemble methods were superior to
either of the single models, SVD or SVD++. This
proves the suitability of using ensemble methods for
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Table 2: The RMSE and the MAE measurements of the SVD ensembles compared to a single SVD model.

Dataset MovieLen100K MovieLen1lM Book Crossing Filmtrust
Model RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE
SVD 0.9384 0.7392 0.8743 0.6865 1.4951 1.1335 0.7989 0.6187
SVD Average Ensemble 0.9208 0.7266 0.8504 0.6698 1.4832 1.1253 0.7887 0.6110
SVD Linear Ensemble 0.9434 0.7340 0.8682 0.6748 1.5156 1.1346 0.8135 0.6211
SVD Lasso Ensemble 0.9269 0.7316 0.8564 0.6701 1.4911 1.1290 0.7941 0.6118
SVD Elastic Net Ensemble | 0.9214 | 0.7260 | 0.8515 | 0.6673 1.4843 1.1240 | 0.7894 | 0.6093

Table 3: Owverall improvement of SVD ensemble model over single SVD model.

Dataset MovieLen100K MovieLen1M Book Crossing Filmtrust
Model RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE
SVD Average Ensemble 1.88% 1.70% 2.73% | 2.43% | 0.80% 0.72% 1.28% 1.24%
SVD Linear Ensemble -0.53% 0.70% 0.70% 1.70% | -1.37% | -0.10% | -1.83% | -0.39%
SVD Lasso Ensemble 1.23% 1.03% 2.05% 2.39% 0.27% 0.40% 0.60% 1.12%
SVD Elastic Net Ensemble 1.81% 1.79% 2.61% 2.8% 0.72% 0.84% 1.19% 1.52%

model.

Dataset MovieLen100K MovieLen1lM Book Crossing Filmtrust
Model RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE
SVD++ 0.9200 0.7221 0.8626 0.6731 1.5074 1.1368 0.7970 0.6143
SVD++ Average Ensemble 0.9028 | 0.7113 | 0.8407 | 0.6588 1.4806 1.1246 0.7818 0.6032
SVD++ Linear Ensemble 0.9221 0.7180 0.8624 0.6694 1.4905 1.1245 0.7995 0.6088
SVD++ Lasso Ensemble 0.9127 0.7179 0.8512 0.6646 1.4905 1.1250 0.7886 0.6058
SVD++ Elastic Net Ensemble | 0.9055 0.7122 0.8446 0.6646 1.4814 1.1214 | 0.7835 | 0.6025

Table 5: Owverall improvement of SVD++ ensemble model over single SVD++ model.

Dataset MovieLen100K MovieLen1lM Book Crossing Filmtrust
Model RMSE | MAE | RMSE MAE RMSE MAE RMSE MAE
SVD++ Average Ensemble 1.87% 1.5% 2.54% | 2.12% | 1.78% 1.07% 1.91% 1.81%
SVD++ Linear Ensemble -0.23% | 0.57% 0.02% 0.55% 1.12% 1.08% | -0.31% 0.90%
SVD++ Lasso Ensemble 0.79% 0.58% 1.32% 1.26% 1.12% 1.04% 1.05% 1.38%
SVD++ Elastic Net Ensemble 1.58% 1.37% 2.09% 1.26% 1.72% 1.35% 1.69% 1.92%

Table 4: The RMSE and the MAE measurements of the SVD++ ensembles compared to a single SVD++

facilitating the tuning of a single matrix factorization
model in collaborative filtering tasks.

The ensemble of multiple members, each operat-
ing in its own data space, can be seen as employing
different views on the data for prediction. Although
each view was not optimally tuned for the task, collec-
tively they were able to provide sufficient information
to accurately predict the ratings. This might explain
why the ensemble yields better predictive results than
using a single model.

When considering the linear combination and the
regularized ensemble models, the linear combination
one is different from the simple averaging ensemble
model in the sense that the weights are adaptive and
learned from the data. Consequently, the base model
will immediately lose its vote when its weight ap-
proaches zero. That means that not every base model

in the ensemble contributes to the final prediction but
only the base models which explain the training rat-
ing well will be preferred. This results in overfitting in
our experience. Therefore, we designed the regular-
ized linear combination ensemble models to counter-
act this unwanted consequence. The regularizations
were able to lessen the overfitting effect. Increased
generalization of performance can be observed in the
regularized ensemble models. From Tables 2 and 4,
the lasso ensembles and elastic net ensembles show
excellent results in comparison with the linear ensem-
ble. This was due to the reduction of overfitting of the
training model, resulting in better predictive results.

Tables 3 and 5 show the performance relative to a
single model in percent. The positive values indicate
that the respective ensemble model has better pre-
dictive performance than the standard single model.
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On the other hand, if the ensemble’s performance was
worse, the value will be negative.

4.5 Study on the ensemble size

In the previous experiments on SVD and SVD++
ensembles, we fixed the ensemble size to 21. It is
then interesting to examine the impact of the ensem-
ble size. In this experiment, we shall study the per-
formance of an ensemble compared to a single model
as the number of base models varies. As the number
of base models within an ensemble system increases,
the weight of each base model should be reduced pro-
portionally, but the diversity of the ensemble will in-
crease due to the fact that each member uses its own
k-factor. Hopefully, as diversity increases, we could
see improved predictive performance.

To see this, we plotted the RMSE of SVD and
SVD++ based ensembles utilizing 3, 8, 14 and 21
base models respectively. The number of latent fac-
tors for the base models were chosen uniformly in the
range of 20 to 200. For example, an ensemble with 3
members consists of base models working in 20, 110,
and 200 dimensional latent spaces. Also included for
reference is the performance of a single model.
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The comparative performance is shown in Fig. 3
to 6 for MovieLen100K, MovieLen1M, Book Cross-
ing, and Filmtrust, respectively. In each data set, it
can be seen that increasing the number of base mod-
els in the ensemble system decreases the RMSE value
despite the fact that the k-factor values are not nec-
essarily the optimal ones. An ensemble with 21 base
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Fig.6: Filmtrust.

models has a lower RMSE than an ensemble system
with 14 base models. The behavior occurs for every
dataset verifying the assumption that having more
base models with different k-factors will create diver-
sity and hence the benefit of ensemble learning can be
expected. This behavior can be observed when using
SVD or SVD++ as a base learner.

4.6 Comparison with other state-of-the-art
methods.

To see how well the proposed methods perform
compared to the existing state-of-the-art collabora-
tive filtering techniques, we present the predictive
performances of k-NN [22], SlopeOne [23] and Non-
negative Matrix Factorization (NMF) [24] together
with the best performing configuration of the pro-
posed ensemble method in Table 6. From the result,
we can see that the proposed ensemble methods out-
perform the existing techniques in all the testbeds.
The finding confirms the effectiveness of using the
ensemble approach to improve the predictive perfor-
mance of SVD and SVD++ models.

5. CONCLUSION

This article offers techniques for taking advantage
of the power of the ensemble method. It not only fa-
cilitates the selection of hyperparameters but also im-
proves the prediction performance of the system. Sev-
eral SVD-based techniques using learning with brute-
force methods for finding the best k-latent factors and
the ensemble of a constant set of multiple SVD-based
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Table 6: The RMSE and MAE of the existing state-of-art techniques compared with the best results from
the proposed ensemble methods.
Dataset MovieLen100K MovieLen1M Book Crossing Filmtrust
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE
k-NN 0.9772 0.7710 0.9229 0.7275 1.8776 1.4164 0.8705 0.6564
SlopeOne 0.9460 0.7430 0.9070 0.7150 1.7537 1.3108 0.8506 0.6389
NMF 0.9630 0.7580 0.9160 0.7240 2.6519 2.2720 0.8620 0.6525
SVD Average Ensemble 0.9208 0.7266 0.8504 0.6698 1.4832 1.1253 0.7887 0.6110
SVD Elastic Net Ensemble 0.9214 0.7260 0.8515 0.6673 1.4843 1.1240 0.7894 0.6093
SVD++ Average Ensemble | 0.9028 | 0.7113 | 0.8407 | 0.6588 | 1.4806 | 1.1246 | 0.7818 | 0.6032
SVD++ Elastic Net Ensemble | 0.9055 0.7122 0.8446 0.6646 1.4814 1.1214 | 0.7835 | 0.6025

rating prediction models were experimented with to
determine the performance in terms of prediction ac-
curacy and learning time was compared.

The experimental results showed that the ensem-
ble of a constant set of multiple SVD-based rating
prediction models outperformed a brute-force method
for tuning the best k-latent factors in a single SVD-
based model. Thus, it can be concluded that despite
the explosive growth in size of users-items rating ma-
trix, the learning time for the ensemble of a constant
set of multiple SVD-based rating prediction models
proposed in this paper was increasing linearly.

The design of more appropriate regularization for
the ensemble is an interesting future research direc-
tion.
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