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Abstract: It is proved analytically that the complex growth
rate 0= 0 +io, (0, and o, are the real and imaginary parts of
0, respectively) of an arbitrary oscillatory motion of neutral
or growing amplitude in ferrothermohaline convection in
a ferrofluid layer for the case of free boundaries is located
inside a semicircle in the right half of the ¢ 0-plane, whose
center is at the origin and

Ry [1- M (1- Mis)]
B! ’

radius =

where R_is the concentration Rayleigh number, P’ is the
solutal Prandtl number, M, is the ratio of magnetic flux
due to concentration fluctuation to the gravitational force,
and M, is the ratio of concentration effect on magnetic
field to pyromagnetic coefficient. Further, bounds for the
case of rigid boundaries are also derived separately.

Keywords: Linear stability; Ferrofluid; Oscillatory
motions; Ferrothermohaline convection.

1 Introduction

Ferrofluids, also known as magnetic fluids, are colloidal
suspensions of nano-sized ferromagnetic particles stably
dispersed in a carrier liquid. For most applications, it is
absolutely essential that the ferrofluids must be very
stable with regard to temperature and in the presence of
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magnetic field. The agglomeration of particles is avoided
by some surfactant coating. Ferrofluids have wide range of
practical applications, which include treatment of ulcers
and brain tumors, destroying cancer cells, sealing of
computer hard disc drives, cooling down of loudspeakers,
noiseless jet printing system, etc. (Rosensweig [18],
Odenbach [7, 8]).

The study of thermal convection in ferrofluids has
gained much importance in recent decades. Finlayson
[2] studied the convective instability of ferromagnetic
fluids and explained the concept of thermomechanical
interactions in ferrofluids. Lalas and Carmi [5] investigated
the thermoconvective stability of ferrofluids without
considering buoyancy effects. Rosensweig et al. [17]
investigated experimentally the penetration of ferrofluids
in a Hele-Shaw cell. For further details on the subject of
ferroconvection, one may refer to Sekar et al. [20,21], Sekar
and Vaidyanathan [19], Gupta and Gupta [3], Shliomis [26],
Vaidyanathan et al. [29], Rahman and Suslov [16], Nataraj
and Bhavya [6], Prakash [9,10,12], and Prakash et al. [15].

These researchers have performed their analysis by
considering ferroconvection as a single diffusive system
with heat as an only diffusive component. Since ferrofluids
are mostly suspensions of magnetic salts in an organic
carrier, it is equally important to study the convective
instability in double diffusive systems, which is also
known as ferrothermohaline convection configurations.
Several researchers have contributed to the development
of this problem. Vaidyanathan et al. [30,31] analyzed the
ferrothermohaline instability problem in porous and
nonporous medium, respectively, for stationary as well as
oscillatory modes by using linear stability theory. Sekar
and Raju [24] studied the effect of sparse distribution pores
in thermohaline convection in a micropolar ferromagnetic
fluid. Sunil etal. [27] investigated thermosolutal convection
in a ferrofluid layer heated and soluted from below in the
presence of uniform vertical magnetic field and obtained
exact solutions for the case of two free boundaries. Sekar
et al. [22] have analyzed ferrothermohaline convection in
a rotating medium heated from below and salted from
above and have shown that stationary mode of convection
is more favorable in comparison to oscillatory mode of
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convection. The effect of rotation on ferromagnetic fluid
heated and soluted from below saturating a porous
medium was investigated by Sunil et al. [28]. Sekar et al.
[23] performed a linear analytical study of Soret-driven
ferrothermohaline convection in an anisotropic porous
medium. Sekar and Murugan [25] studied the stability
analysis of ferrothermohaline convection in a Darcy
porous medium with Soret and magnetic field—dependent
viscosity effects.

Since for a double diffusive ferroconvection problem,
the exact solutions in closed form are not possible for
the cases where at least one of the boundaries is rigid,
in order to facilitate the experimentalists and numerical
analysts with better estimates of the complex growth rate
of an arbitrary oscillatory motion of neutral or growing
amplitude, the problem of obtaining its upper bounds
has its own importance. Initially, Banerjee et al. [1] and
Gupta et al. [4] had derived the bounds for the complex
growth rate of arbitrary oscillatory perturbations in some
thermohaline convection problems. Later, this problem
was extended to triply diffusive convection by Prakash
et al. [13]. Recently, Prakash [9, 10] has also derived the
upper bounds for the complex growth rates in some
ferromagnetic convection problems in porous/nonporous
medium. Prakash and Gupta [11] have extended his work
to ferromagnetic convection with rotation and magnetic
field—dependent viscosity. Recently, Prakash et al. [14]
also derived the upper bounds for complex growth rates
in ferromagnetic convection in a rotating porous medium.

In the present communication, as a further step, we
have derived the upper bounds for the complex growth
rate of a disturbance in ferrothermohaline convection in
a ferrofluid layer heated and soluted from below in the
presence of a uniform vertical magnetic field by using
linear stability theory.

2 Mathematical Formulation of the
Problem

A ferromagnetic Boussinesq fluid layer of infinite
horizontal extension and finite vertical depth, heated and
salted from below, has been considered. The lower (z=0)
and upper (z=d) boundaries are, respectively, maintained
at temperatures T, and T, (<TO) and concentrations C and
C, (<C,). A uniform magnetic field H acts along the vertical
direction, which is taken as the z-axis (see Figure 1).

The mathematical equations governing the flow of
the ferromagnetic fluid for the above model were given by
Sunil et al. [27].

Upper Bounds for the Complex Growth Rate of a Disturbance in Ferrothermohaline Convection =—— 115

zZ A

z=d T1 C1

’ TH ) (O’O’HO) ¢g = (0,0, _g)

Incompressible ferromagnetic fluid

z=0 0 TTT?TT To(>Ty) Co(> Cy)
Figure 1: Geometrical configuration of the problem.
V.q =0, )

Po % = —Vp+pg +V.(HB) + uV?q, @

oM DT
[Po Cyn — HoH. (E)VH e T

+ T (3) PE=K VT + o ¥
Hol \ 57 yy' ot Ts
oM DC
[Po Cvw — Mo H. (E)VH Pl
(4)

om DH _ 11 g2
+“06(ac)v,,,'m = K',V2C + &,

where q, t, p, H, B, u, g= (0,0-g) denote the velocity, time,
pressure, magnetic field, magnetic induction, coefficient
of viscosity, and acceleration due to gravity, respectively.
C,, is the heat capacity at constant volume and magnetic
field, p, is the magnetic permeability, Tis the temperature,
C is the solute concentration, M is magnetization, K, is
thermal conductivity, K is the solute conductivity, and
@, and @, are the viscous dissipation containing second-
order terms in velocity. @, and @, being small of second
order, may be neglected.
The equation of state is given by

p= poll—a(T —Ty) +a'(C—Cyl, (5)

where p is the fluid density, p, is the reference density,
a is the coefficient of volume expansion, and « is an
analogous solvent coefficient of expansion.

In Eq. (2), the viscosity is assumed to be isotropic and
independent of the magnetic field.

Maxwell’s equations, for a nonconducting fluid, with
no displacement currents, are given by
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V.B =0, (6a)

VX H=0. (6b)

Further, the relation between B and H is expressed as
B = pu,(H+ M). @)

It is assumed that magnetization is aligned with the
magnetic field intensity and depends on the magnitude of
magnetic field, temperature, and salinity, so that

H
M—;M(H,T,C), (8)
and the linearized magnetic equation of state is given by
M= My + x(H—Hy) — Ky(T —Tp) + K3 (C — Cp). 9)

In the above equation, M = M(H,, T,, C,) is magnetization
when the magnetic field is H, temperature is T, and
the concentration is C,. x = (aM/aC)H’T is magnetic
susceptibility, K, (aM/aC) is the f:)yromagnetlc
coefficient, K, = (aM/aC) 1s the salinity magnetic
coefficient, H is the magmtude of H, and M is the
magnitude of M.

The basic state is assumed to be static and is given by

a=q,=0,p=p,(2),p=pp(2),T =
= Tb(z) = —ﬁZ + TOa C = Cb(Z) = _ﬁlz + CO5

— To—T, r_ Co—Cq — (10)
ﬁ d ﬁ d )] Hb
_ Kpz | K3fz KBz K3p'z]
- [HO 1+yx + 1+)(]k Mb - [MO + 1+x 1+)(]

HO + MO = HOeXt )

where K is the unit vector in the z direction.

Only the spatially varying parts of H, and M,
contribute to the analysis, so that the direction of the
external magnetic field is unimportant and the convection
is the same whether the external magnetic field is parallel
or antiparallel to the gravitational force (Finlayson [2]).

Now, the stability of the system is analyzed by
perturbing the basic state. The perturbed state is given by
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a=q,+q.,p=p,(@D+ p',p=p,(2) +

+p’9T=Tb(Z)+9’aC:Cb(Z)+ ¢’a (11)

H=H,z)+H ,M=M,(z) + M,

where ¢ = (u, v, w ), p, p, 6, ¢ ,H, and M are
infinitesimal perturbations in velocity, density, pressure,
temperature, concentration, magnetic field intensity,
and magnetization. Using Eq. (11) into Egs (1)-(9) and
using the basic state solutions, we obtain the following
linearized perturbation equations:

ou’ ow'’

ow | ovl, dw 12
T ay+ 5, =0 (12)
o _ _op' o] 2y
Po at ox + “O(MO +H0) 9z +‘le u, (13)
v’ ap’' ,
Poge=— 5+ o (Mo + Hp) > 2+MV2 . (14)
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where pC,=p, C,,+u, K, H;, and (19)
Hy+M; = (1+ y)Hy — K, 0', Hy +
+M; =.(14+ y) H; + K3 ¢’, 20)

H! + M| =(1+ )H'(l—l 2),
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where we have assumed Kfd<(1+y)H, Kfd<(1+x)H,,.
Eq. (6b) means that we can write H=V(®,-®,), where @
is the perturbation magnetic scalar potential and @, is
the perturbation magnetic scalar potential analogous to
solute.

Now, following Finlayson [2] and Sunil et al. [27] and
using the normal mode technique by assuming to all
quantities describing the perturbation a dependence on
x, y, and t of the form

w6, ¢, &1, @)(x,y,2,t) =
=[w"(2),0"(2),¢"(2),.9{(2),
Y (2). Jexpli(kyx + kyy). +.nt],

(21)

where k and k are the wave, ="t m——=———=¢ and y
L y . k = Jki+k;

directions, respectively, - ¥ is the

resultant wave number, is a complex constant in

general, and nondimentionalizing the variables by setting
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we obtain the following nondimensional equations
(dropping the asterisks for convenience):

(D? —a?)(D? —a? —o)w =aRY?[ (1 + M, — M,)0 —
— (M, — M,)D®, | —aR,Y?*[(1 — M} + M})¢p —
— (M — M{)D®,], (23)

(D? —a? —oP.)0 = — (1 — My)aR?w — P. M,oD®,,
(24)
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(D2 —a?—oP! )¢ = — (1 — My)aR,**w — P!MycD®,,

(25)
(DZ - a2M3)d)1 = DH, and (26)
(D2 - a2M3)d)2 = D¢ (27)

In the above equations, z is a real independent variable
such that 0=<z<1, D is differentiation with respect to z, a*
is square of the wave number, P>0 is Prandtl number,
P >0 is Prandtl number analogous to the solute, ¢ is the
complex growth rate, R>0 is thermal Rayleigh number,
R>0 is the concentration Rayleigh number, M >0 is the
ratio of magnetic force due to temperature fluctuation
to the gravitational force, M>0 is the ratio of thermal
flux due to magnetization to magnetic flux, M,>0 is the
ratio of magnetic flux due to concentration fluctuation
to the gravitational force, M,>0 is the ratio of mass flux
due to magnetization to magnetic flux, M,>0 and M,>0
are nondimensional parameters, M>0 is the ratio of
concentration effect on magnetic field to pyromagnetic
coefficient, M>0 is the measure of nonlinearity of
magnetization, o= o+io, is a complex constant in
general, such that o and o, are real constants, and as a
consequence, the dependent variables w(z)= w (2)+ iw(2),
0(2)= 6 (2)+ i0(2), D(2)= D (2)+ iD(2), and D (2)= D, (2)+ i
th.(z) are the complex valued functions of the real variable
z, such that w (2), w(2), 0.(2), 0(2), ¢ (2), p(2), D, (2), D, (2),
@, (2), and @,(2) are the real valued functions of the real
variable z.

Since M, and M, are of very small order (Finlayson
[2]), they are neglected in the subsequent analysis, and
therefore, Eqs (24) and (25) takes the forms

(D? —a? —oP.)8 = —aR'?w and (28)
(D% —a? —oP! )¢ = —aR,Y?*w (29)
respectively.
The boundary conditions are given by
w=0=60=¢ =D?>w=Do, =D,
(30)

atz = 0andz =1

(both the boundaries are free)
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orw=0=0=¢=Dw=0a, =0,

1
Oandz =1 GD

atz =

(both the boundaries are rigid).

It may further be noted that Eqs (23) and (26)-
(31) describe an eigenvalue problem for ¢ and govern
thermosolutal ferromagnetic convection in ferrofluid layer
heated and salted from below.

3 Mathematical Analysis

We now derive the upper bounds for the complex
growth rate of the arbitrary oscillatory motions of
neutral or growing amplitude for the cases of free and
rigid boundaries separately, respectively, in the form of
following theorems:

Theorem 1: If R>0, R >0, M,>0,1-(1/M,) <0, P >0, 6,20,
and 0#0, then a necessary condition for the existence of a
nontrivial solution (w, 6, ¢, @,, @,, 0) of Egs (23) and (26)-
(29) together with the boundary conditions in Eq. (30) is
that

fmi(os)]

ol < o

Proof: Multiplying Eq. (23) by w* (the superscript *
here denotes the complex conjugation) throughout and
integrating the resulting equation over the vertical range
of z, we get

folw*(D2 —a?)(D? —a? —-o)wdz =

= aRY2 (1+ M, - M,) [, w* 6 dz —
. (32)
—aRY2(My — M) [ w* DPydz —aRM* (1 - M; +

M) [ w* § dz + aR YA (M} — M}) [} w* Dd,dz.

Using Eqs (26)—(29) and the boundary conditions in Eq.
(30), we can write

aR'? (1 + M, —M4)folw*9 dz =

= —(1+ M1 = M) [ 6(D? — ? — P.o*)0*dz, &)
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—aRY2(M; — M,) [, w* D®ydz = M, (1 —
— Ms) [ D&, (D* — a* — P.0")§"dz
= -M,(1— Ms) [} D*®, D§"dz + M, (1 —
— Ms)(a® + P.o") [, ®, D6"dz
= —M;(1— M;) [ D2®, (D? — a® M3 )@, dz +
+ M, (1= Ms)(a? + P.a”) [, &, (D? —

— a? M3 )®,"dz (utilizing Eq. (26)), (34)

—aRM? (1= Mj + M}) [ w* pdz =

=[1-mi(1-2)] [ o 02— a2~ Bio)gdz,
(35)

aRYA(My — My) [ w* D&,dz =
= —My(1— Ms) J, D&, (D* — a* — Pla")p*dz
= My(1— M) f, D?®, Dop*dz — M;(1 —
— Ms)(a® + Plo*) [ &, D¢p*dz
= My(1— Ms) [, D*®, (D* — a* M3 )®,"dz —
— M1~ Ms)(a? + Plo) [, &, (D? -

—a? M5 )®,"dz (utilizing Eq. (27)). (36)

Combining Egs (32)-(36), we get

fol w*(D? — a?)(D? — a? — o)wdz
= —(1+M,(1-M5)) [, 6(D* — a* -
~ P.0")8"dz—M,(1 — Ms) [, D*®, (D2 —

— a? M3)®, dz +M; (1 — Ms)(a® + P.o*) [, &, (D* -
a® M)y dz + [1 - i (1- i)] IO
—a?—PBlo*)p*dz+ My(1—

- Ms) fol D*®, (D* — a* M3)®, dz —
My(1— Ms)(a® + Pla*) [ &, (D? — a® M3 ), " dz.
(37)
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Integrating the various terms of Eq. (37) by parts, for a
suitable number of times and making use of the boundary
conditions in Eq. (30) and the equality

J, " D*™Mpdz = (=1)" [ ID™P|*dz,  (38)

where =w (n=1,2) or =0,¢,2,,®, (n=1),
we obtain

fol(lDzwl2 + 2a?|Dw|? + a* |w|?)dz + afol(lle2 +
+alw|?)dz = [1+ My (1 - M5)] [ (ID6I* +
+a?|0|* + P.o*161?)dz —M; (1 — M) [ (ID2®,|? +
+ a?Ms|D®,|?)dz — My(1 — Ms)(a® + B.o*)

Jy (D@12 + a2Ms| @y 2ydz - [1 = M (1 - )]
[, (UD@I? + a?|$|? + Plo™||?) dz + My(1 —
My) J, (ID*®,|? + a®Ms| D&, [?)dz + My(1— Ms)

(a®> + Blo*) fol(lDt;Dzl2 + a?M;|d,|?)dz.  (39)

Equating the imaginary parts of both sides of Eq. (39) and
cancelling o, (#0) throughout from the resulting equation,
we get
[ UDWI? + a?lwl?)dz = =P [1 + My (1 -
1 1
- M5 )] fO |6|2 dZ + Ml(l - M5 )PT fO (lD(pllz +
, 1 , 1
+ @M@, 2)dz + (1= M (1= oo)| B [ 1912 dz —

! ! 1
- M;(1— Ms)F fo (ID®,|? + a*M;|®,|*)dz. (40)

Now, multiplying Eq. (26) by @," and integrating over the
vertical range of z, we get

J, ADD, |2 + a®Ms| @, |2) dz = — [, ®,"DOdz = [, 6 D&, "dz
<|f, 0 Do, "dz|
< J; 161D, |dz
< J, 16110, |dz
< (f01|0|2dz)1/2 (f01|Dd>1|2dz)1/2 (using Schwartz inequality),
(41)
which implies that

1

[} 1D®, 2 dz < (f01|9|2dz)1/2 (f; 1D, ?dz)
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and thus,
(Fipo,iaz)” < (flordz) . @)
Upon using a similar procedure, Eq. (27) yields
(f01|D<DZ|2dz)1/2 < (f01|¢|2dz)1/2. (43)

Combining the inequalities in Eqs (41) and (42), we get

[, (DD |7 + aMs|®y|2) dz < [}16]2 dz.  (44)

Now, multiplying Eq. (29) by its complex conjugate and
integrating over the vertical range of z for an appropriate
number of times and using the boundary conditions in Eq.
(30), we obtain

[, (ID2¢|? + 2a2|D$|? + a*|¢|?)dz +
+ 20, B! [ (ID$I + a?|¢|? )dz +

’ 1 1
+ P?|o|? Jylp?dz = Rsa® [/lwl*dz.  (45)
Since 020 , it follows from Eq. (45) that
1,02 Rs a? 1 2
Jyl¢l?dz < PR Jy Iwl?dz . (46)

Using the inequalities in Eqs (44) and (46) in Eq. (40), we get

1 2 2
Jo IDw|?dz +a o2

1 _wl f01|W|2dZ +

1 , , 1
+ P [, 1612dz + My(1 — M;5)F! [ (ID®,|* +

+ a’M;|P,|?)dz < 0, (47)

which clearly implies that

Re|1-M!(1-—=
| O.l < s[ ;5 Ms )]
This completes the proof of the result.

The above theorem, from the physical point of
view, states that the complex growth rate of an arbitrary
oscillatory motion of neutral or growing amplitude
in ferrothermohaline convection, for the case of free
boundaries, must lie inside a semicircle in the right half of
the o o-plane, whose center is at the origin and

(i)

radius = +
PT
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Theorem 2: If R>0, R >0, M >0, M;>0, 1-M >0, P >0, P>0,.
0,20, and 00, then a necessary condition for the existence
of a nontrivial solution (w, 6, ¢, @, @,, 0) of Eqs (23) and
(26)-(29) together with the boundary conditions in Eq. (31)
is that

Z
2,52 RM (1-Ms) | Rs i A oy (12
lo|26? < { e <1+M1|1 M5| M1(1 M5)>}'

Proof: Multiplying Eq. (23) by w" throughout and
integrating the resulting equation over the vertical range
of z, we get

fol w*(D? —a?)(D? —a? —o)wdz =
= aRY2 (1+M; - M,) [, w* 6 dz —
—aRY2(My = M,) [, w* D®;dz — aR;M? (1 — Mj +

’ 1 % 1] I 1 *
M,) fy w* ¢ dz + aR/* (M}, — My) [ w* Do, dz. (48)

Using Eqgs (28) and (29), we can write

aRY? (1+ M, —M4)f01W*9 dz =

= —[1+ M;(1 - M) [} 6(D? — a® — P.a*)§"dz, (49)

and
Mj+ M) [ w* ¢dz =

)]l ¢ (02 - a? = Rio)¢rdz. (50)

—aRY* (1 -
[1—M1(

Combining Egs (48)—(50), we obtain

folw*(D2 —a®)(D? —a?—o)wdz =
= —[1+M,(1 - Ms)] f, 6(D* — a® — P.o")8"dz —
— aRV2M,(1 — My) f) w* D®ydz + [1— i (1~ )]

5

Jy & (D? —a® = Plo*)¢*dz — aR, MMy (1 - i) Jy w* Do, dz.

(51)

Integrating the various terms of Eq. (51) by parts, for

an appropriate number of times and making use of the

boundary conditions in Eq. (31) and equality in Eq. (38),
we obtain

[;(D?w|? +2a*|Dwl? +a* |w|*)dz +

+ afol(lle2 +a?|lw|?)dz= [1+M,(1—

§ sciendo

— M) [, (IDOI? + a?|6]* + P.o*16])dz —

aRY*M,(1 - My) f; w* Ddydz — [1— M (1-
D) [LaDglz + a?Igl? + Pa*Igl) dz -

~ aR, /2 M1( )f w* Db, dz. (52)

Equating the imaginary parts on both sides of Eq. (52) and
dividing the resulting equation by o, (#0), we get

J, ADW|? + a?lw|?)dz =

__aRY?mM;(1-Ms)
g

—[1+M,(1-M;5)Ip f 1617 dz imaginary

part of [ W*Dd>1dz+[1—M1 )]P f |p|?dz —

aRr /2M1(1 M—)

g

imaginary part off w*D®,dz.  (53)

Now multiplying Eq. (28) by its complex conjugate and
integrating over the vertical range of z by parts, for a
suitable number of times, by making use of the boundary
conditions in Eq. (31) and then by equating the real parts
on both sides, we obtain

J,(ID?612 + 2a?|D6|? + a*|6|2)dz +
+ 20, B, [, (ID6]? + a?|6|2)dz +

1 1
+10|?R? [,16|2dz = a*R [, |w|*dz . (54)
Since ¢ >0, it follows from Eq. (54) that
1,12 a’R 1 o
Jy161%dz < P21l Jo Iwl?dz . (55)

Combining the inequalities in Eqs (42) and (55), we obtain

aRl/Z
Prlol

(Fwdz) ", e

(f01|qu1|2dz)1/2 <

On similar lines, from the inequalities in Eqgs (43) and (46),
we obtain

1 1/2 Rz, 4 1/2
(fyipe,f2dz) " < s (flwizdz) . 67)

aR1/2M1(1 —Ms)

Now - imaginary part of f w*D®,dz



§ sciendo

< aRY?My(1 - M) |> f; w* D, dz

aRY/2 My(1-Msg)
loil

J, lw* D@, | dz

aRY/2 My (1-M5) f1|W||D<I> | dz
0 1

loil
aRY2 My (1-Ms) ( (1, o \Y? (1 2 4 \1/?
S (folwl dz) (folDd)ll dz)
(using Schwartz inequality)

a?RM; (1-Ms) f lw

|?dz
Pyr.lollo;l

(utilizing the inequality in Eq. (56)). (58)
aRr; K 2M1(1 —)
Further, - ——— "5/ jmaginary part of f w*D®,dz
g
e
aRr; 2m]
< t-] Jy w*Dd,dz|
L loil
ar /2M1 ——‘
= —f lw||D®,| dz

loil

(P wiras) (G Ipesttas) "

(using Schwartz inequality)

aRl/zM'|1—
S 1

lol

a? RSM{|1— L

Ms‘ J'Ollwlzdz

Pi.olloyl

(utilizing the inequality in Eq. (57)). (59)
Multiplying Eq. (29) by ¢" and integrating the resulting
equation by parts, for an appropriate number of times
over the vertical range of z, and then from the imaginary
part of the final equation, we obtain

Jylpl2dz =

1
aRg /2
~ oy IP’

f N Wdz|

_lg o f|¢||w|dz

1
- |¢>|2d) (fywizdz) .
(using Schwartz inequality)

a R 2
= Jollo; |;’2f wl*dz

_IG IP

(utilizing the inequality in Eq. (46)). (60)
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Thus, utilizing the inequalities in Eqs (58)—(60) in Eq. (53),
we finally obtain

1
RM'|1——‘
1 R M{(1-M sVt Ty
Jy IDw|?dz + a*| 1 - X .5)— o
Prlol|oil Py |ollo;l
1
ro1-ti (15|
Ms 1 2
-—4 wl|“dz +
lollo;|Pf. f0| |

+ [1+ M, (1 - Ms)IP. [}16]2dz < 0,

which clearly implies that

o202 < {BMUMs) 4 R 4oy |1 -
¢ Py Py

D)f

The above theorem may be stated, from a physical point of
view, as: the complex growth rate of an arbitrary oscillatory
perturbation of growing amplitude in ferrothermohaline
convection, for the case of rigid boundaries, must lie
inside the region represented by the inequality in Eq. (61).
Note: It may be noted that the parametric value M
which represents the ratio of salinity effect on magnetic
field to pyromagnetic coefficient, varies between 0.1
and 0.5 for most of the ferrofluids which are formed by
changing ferric oxides and carrier organic fluids like
kerosene, alcohol, hydrocarbon, etc. (Finlayson [2] and
Gupta and Gupta [3]), so that the condition 1-M_>0, and
hence, 1-(1/M,) <0 remain valid.

Ms

- M (1 (61)

4 Conclusion

The linear stability theory has been used to derive the
bounds for the complex growth rates in ferrothermohaline
convection heated and salted from below in the presence
of a uniform vertical magnetic field. Further, the results
derived herein involve only dimensionless quantities and
are wave number independent; thus, the present results
are of uniform validity and applicability.
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