
SUMMARY
The fluoride ion has a well-established beneficial role in dentistry 

in protecting the teeth from assault by caries. It is known to contribute to 
the dynamic mineralisation process of the natural tooth mineral, and 
also to become incorporated with the mineral phase, forming a thin 
layer of fluorapatite. This is more resistant to acid attack than the native 
hydroxyapatite, hence protects the tooth against further decay. Other 
recently discovered aspects of the role and uptake of fluoride will also be 
discussed.

One of the widely used dental restoratives, the glass-ionomer dental 
cement, is able to release fluoride in a sustained manner that may continue 
for many years, and this is seen as clinically beneficial. The closely related 
resin-modified glass-ionomer cement, and also the polyacid-modified 
composite resin (“compomer”) are able to do the same. There are also 
fluoride-containing conventional composite resins able to release fluoride.

These various materials are reviewed and the way in which they 
release fluoride are described, as well as the effectiveness of the release at 
the levels involved. Studies of effectiveness of fluoride release from these 
various classes of material are reviewed, and shown to suggest that release 
from conventional and resin-modified glass-ionomers is more beneficial than 
from composite resins. This is attributed to 2 causes: firstly, that it is not 
possible to replace the lost fluoride in composites, unlike glass-ionomers, 
and secondly because the other ions released from glass-ionomers (calcium, 
phosphate) are able to contribute to local remineralisation of the tooth. 
The absence of these other ions in fluoridated composites means that 
remineralisation is able to occur to a lesser extent, if at all.
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The Role of Fluoride against Dental Caries

Fluoride has been known to have a role in the 
prevention of dental caries since early observations in 
the 1930s linked fluorosis in patients with low levels of 
tooth decay1. Over the years, this subject has been studied 
intensively and it is now known that fluoride acts topically 
rather than systemically2. It has also been established that 
long term exposure of the teeth to fluoride is the most 
effective way to exploit this topical effect and to minimise 
dental caries3.

Dental caries arises from 3 interacting factors, 
namely (i) the presence of fermentable sugars in the 
mouth, (ii) the occurrence of bacteria in dental plaque, 
and (iii) the presence of teeth, in particular their mineral 
phase4. Bacteria in the plaque metabolise the sugars, 
producing a cocktail of weak organic acids, of which by 
far the most abundant is lactic acid5.  These acids attack 
the mineral component of the tooth, hydroxyapatite, 
leading to loss of structure. As decay develops, so the 
relative amount of mineral phase is reduced, leaving 
behind only collagen, which discolours and takes on a 
leathery texture4.∗ Presented at the 19th Congress of the BaSS, Belgrade, 2014



of 3 x 10-5 mg/L (30 ppb), under both static and stirred 
conditions, it was found to follow pseudo-first-order 
kinetics13, i.e.

ln(qe – qt)  =  ln(qe)  -  k1t
where qe is the equilibrium uptake (in concentration 

units), qt is the uptake at time t, and k1 is the first-order 
rate constant.

At higher concentrations of fluoride ion, i.e. in the 
range 100-1000 ppm and static conditions, uptake has 
been shown to follow pseudo-second-order kinetics14. 
This means it follows the equation:

t/(qt)  =  1/[k2(qe)2]  +  t/(qe)    
where k2 is the second order rate constant. 
It is not straightforward to relate kinetics of 

adsorption to the mechanism, but in this case, it does 
seem that the pseudo-second-order process relates to 
a change in mechanism, in this case the deposition of 
CaF2. Because of the low but finite solubility of CaF2, 
under low concentration conditions, i.e. in the ppb range, 
any calcium fluoride remains soluble, its solubility 
in water being 1.6 x 10-5 g/cm3 at 20oC15. Hence at 
low concentrations of fluoride ion, little or no CaF2 
precipitates out of solution. This would favour the F-/
OH- exchange mechanism of remineralisation at the 
hydroxyapatite surface. Under higher concentration 
conditions, by contrast, CaF2 is insoluble and is 
precipitated so that the alternative remineralisation 
process is able to occur as well. This is consistent with the 
change in kinetics at higher concentrations14.

Modern Restorative Materials

Modern dental restoratives are based on either 
composite resin or glass-ionomer systems16, each 
with their own subsets of material17. Briefly, they are 
classified as follows:

(i)	 Composite resins.  These are based on large organic 
monomers, mainly bisphenol glycidyl methacrylate 
(bis-GMA) or urethane di-methacrylate, plus other 
lower viscosity monomers, such as tri-ethylene glycol 
di-methacrylate (TEGDMA). They are filed with inert 
particulate filler of varying particle size, which are bonded 
to the organic matrix by silane coupling agents. Modern 
composite materials are typically single paste systems that 
polymerize by photo-initiation.

The resulting material has excellent aesthetics, 
but does not bond to the tooth surface.  Instead, it needs 
bespoke bonding agents18, the subject of which is beyond 
the scope of the present article. Composite resins are 
not inherently fluoride-releasing, but can be made so by 
adding fluoride compounds19.

(ii)	 Polyacid-modified composite resins.  These materials 
were developed in an attempt to make a composite resin 

Dental caries can be viewed as a disturbance to 
the demineralisation-remineralisation balance in the 
hydroxyapatite phase of the tooth2. A healthy tooth 
surface is maintained by a balance between dissolution 
of hydroxyapatite into saliva (demineralisation) and 
precipitation of hydroxyapatite from the saliva onto the 
tooth surface (remineralisation). Under healthy conditions, 
these 2 chemical processes occur at the same rate, and 
the net effect is that the mineral phase of the tooth is 
maintained in a functioning and fully intact form.

The presence of lactic acid at the tooth surface 
alters this balance, enhancing the rate of demineralisation 
relative to that of remineralisation2. Consequently 
hydroxyapatite is lost from the mineral phase and the 
tooth decays.

Fluoride’s principal role in inhibiting decay is 
now considered to be its effect on the remineralisation 
process6,7. Specifically, it promotes this process, thereby 
re-establishing the mineral phase of the affected tooth2,6-

9. Remineralisation involves inducing hydroxyapatite 
crystals to grow by precipitation of Ca2+ and PO4

3- ions 
from saliva onto the surface of the mineral phase10. The 
mechanism is complex, involving dynamic activity 
mainly between the tooth and the saliva. Fluoride 
ions appear to influence this process by 2 possible 
mechanisms, namely substitution of hydroxyl ions into 
hydroxyapatite and formation of calcium fluoride11. Both 
take place in solution close to the tooth surface, but lead 
to the formation of substances of low solubility, which 
consequently precipitate onto the tooth surface.

The 2 reactions may be summarised as:
10Ca2+ + 6PO4

3- + 2F-Ca10(PO4)6F2 

Ca2+ + 2F-  CaF2 
Reaction (ii) generates a slight excess of hydroxyl 

groups in solution, which would otherwise have 
precipitated as hydroxyapatite, and which are alkaline. 
However, they are readily buffered in vivo. They may 
also be useful in neutralizing the organic acids produced 
by the oral bacteria. Reaction (ii) precipitates an insoluble 
species that can act as a nucleation site for hydroxyapatite 
growth and thus promote remineralisation of the 
biomineral. 

The initial precipitate appears to be amorphous, but 
seems to generate crystals at a reasonable rate and this 
contributes to remineralisation. The new mineral phase 
includes some fluoride, mainly as a thin surface layer. 
Molecular dynamics calculations have shown that these 
layers are no more than 3 atom layers thick9. The new 
precipitated phase is less soluble than the fluoride-free 
hydroxyapatite, but this difference in solubility is no 
longer considered to be the principal mechanism by which 
fluoride inhibits caries12.

Uptake of fluoride by hydroxyapatite has been 
shown to follow 2 different kinetic models, depending on 
concentration. At very low concentrations, of the order 
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in order to bring about addition polymerization of the 
HEMA, and this is typically a photo-initiator sensitive to 
blue light at 470 nm28-30.

Certain brands of resin-modified glass-ionomer 
contain modified polymers which are based on 
poly(acrylic acid) but contain a minority of branches 
that are terminated in vinyl groups. These undergo 
co-polymerization with the HEMA when irradiated with 
blue light, so that the set material contains organic cross-
links when cured, in addition to the ionic cross-links 
formed by the acid-base reaction30. Like conventional 
glass-ionomers, resin-modified glass-ionomers are able to 
form strong adhesive bonds to both enamel and dentine29. 
They also release fluoride. 

Resin-modified glass-ionomers were originally 
designed for use as liners and bases in dentistry though 
they have since been formulated for use as complete 
restoratives30. In addition, they can be used for core build-
up and for luting, though in the latter application, they 
are not photocured but are prepared with a 2-part initiator 
that forms free radicals when the components are mixed. 
This means that they are able to set in the dark. They 
are widely used, particularly in paediatric dentistry as 
alternatives to amalgam27.

It has been suggested that the presence of HEMA 
in these materials compromises their biocompatibility31. 
Studies have shown that HEMA is released from resin-
modified glass-ionomers, especially in the first 24 hours32, 
and it is able to diffuse through the dentine and affect the 
pulp, where is has been found to be cytotoxic33. There is 
also the possibility of systemic effects, including contact 
dermatitis34 and sensitisation35 on dental personnel. Safety 
precautions have been recommended when using these 
materials31, mainly ensuring good ventilation of the work 
place and avoiding the intake of HEMA vapour from the 
uncured resin-modified glass-ionomer material. 

(v)	 Giomers and glass carbomers.  2 other tooth-
coloured materials are available in modern clinical 
dentistry that are claimed to be innovative, namely the 
giomers and the glass carbomers.  In fact, these are each 
types of established material, as already described.  

Giomers are a type of flowable composite resin, but 
contain as at least part of their filler, pre-reacted ionomer 
glass treated with poly(acrylic acid)36. As such, they are 
moderately fluoride-releasing37, due to the pre-reaction at 
the glass surface of the filler particles, but in all important 
particulars they are composite resins. Their fluoride 
release has been associated with their anti-bacterial 
characteristics38.

The other type of modern material, the glass 
carbomer, is a type of complex glass-ionomer cement39. 
It is based in glass-ionomer cement chemistry, but has 
been modified in order for the set cement to promote 
mineralisation within the tooth40. The glass carbomer 
contains nano-scale particles of powder and also 

with the fluoride-releasing capability of conventional 
glass-ionomer cements17. They are composed of the same 
type of components as conventional composite resins, 
i.e. large monomer molecules, diluents, and particulate 
inorganic fillers. In addition, they contain acid-functional 
monomers and small amount of reactive alumina-
silicate glass as filler20. The primary setting reaction is 
polymerization, brought about by the photo-sensitive 
initiators on application of light of the appropriate 
wavelength from a dental curing lamp. Following this, 
in the mouth, they are able to draw in small amounts of 
water, and this triggers the acid-base reaction, and makes 
the fluoride originally present in the glass filler available 
for transport to the outside of the restoration20. There is 
also some diminution in mechanical properties of these 
materials on exposure to moisture21, indicating that the 
acid-base reaction does not contribute to strength. The 
fluoride-releasing nature of these restoratives means that 
they have become widely used in children’s dentistry20.

(iii)	 Glass-ionomer cements.  Conventional glass-
ionomers are based on a calcium (or strontium) 
fluoroalumino-silicate glass powder, which is reacted 
with a polyalkenoic acid, typically poly(acrylic acid) to 
make a cement16,17. This material sets rapidly to form 
a porcelain-like substance that adheres to the tooth 
structure, and can release fluoride, as well as other ions 
(calcium or strontium, sodium, silicate and phosphate)22. 
The physical properties and appearance of the set cement 
are considered acceptable for most clinical applications, 
though the overall aesthetics is less good than the 
composite resins.

The ability of these materials to release ions is 
important as this process is involved in the development 
of long-term durable bonds with the tooth. Studies have 
shown that ions can move from the cement and from the 
tooth into the interfacial region to create an ion-exchange 
layer that proves highly durable in clinical service23,24.

Mechanical properties of set cements are acceptable 
for many clinical applications, as shown by the range 
of conditions treated using the ART technique25. This 
technique, involving removal of caries by hand-held 
scoops only, and no dental drill, is only possible with 
glass-ionomers, as it requires a material capable of 
forming natural adhesive bonds to the tooth. Despite these 
successes, many authorities are cautious about the wide 
use of glass-ionomers in restorative dentistry26, and these 
materials are often used mainly in children’s dentistry27, 
where their ability to release fluoride is considered 
particularly advantageous.

(iv)	 Resin-modified glass-ionomers.    Resin-modified are 
similar to conventional glass-ionomers in that they contain 
a basic ion-leachable glass powder, and also a water-
soluble polymeric acid28. However, they also contain 
the water-soluble organic monomer 2-hydroxyethyl 
methacrylate, HEMA. An initiator system is also required, 
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results show an excellent fit with this equation, with a 
correlation coefficient of 0.9987 for Ketac Fil (ESPE, 
Seefeld, Germany)43.

Amounts of fluoride released are relatively low, even 
in the early stages of release. They have often been quoted 
relative to the surface area of the cement specimens, i.e. 
as μg/mm2 26, which is not helpful in determining likely 
local concentrations in vivo. Another complicating factor 
is that in vitro studies have typically been carried out into 
deionised water43 or even tap water42, and fluoride release 
is suppressed in both artificial saliva44 and real saliva45.

Of the studies that have quoted fluoride 
concentrations, Creanor et al46 found a fall from 15-155 
ppm at 24 hours to 0.9-4 ppm at day 60. In another 
study, Perrin et al47 showed that after 1 year, the steady 
state fluoride release was in the range 0.5-7 ppm. The 
high early value has been confirmed in several other 
studies48-51.

Fluoride release from conventional glass-ionomers 
has been demonstrated in vivo45. Immediately after 
placement of between 1 and 6restorations the fluoride 
concentration in unstimulated saliva was found to rise 
from a baseline of around 0.04 ppm to between 0.8 and 
1.2 ppm.  After 1 year, the level was found to be 0.3 
ppm, almost 10 times greater than the baseline values, 
thus demonstrating that sustained release of fluoride also 
occurs in vivo51.

Conventional glass-ionomers not only release 
fluoride, they are also capable of taking it up under 
appropriate conditions. This phenomenon has been called 
“fluoride re-charge”41 and was first suggested by Walls 
in a review of conventional glass-ionomer cements for 
clinical dentistry54. Since this time, there have been 
numerous studies to demonstrate the effect experimentally.

For example, Preston et al studied re-fluoridation by 
exposing glass-ionomers to a 500 ppm fluoride solution 
13 times over a 2-year period, and showed that on each 
occasion fluoride release increased following re-charge55. 
Similarly Goa et al56 demonstrated that conventional 
glass-ionomers designed for use in the ART technique 
released increased amounts of fluoride following exposure 
to a re-charge fluoride solution. Increased fluoride 
release following exposure to fluoride solutions has been 
confirmed in numerous other studies57-61. It has also 
been shown for glass-ionomers following exposure to 
fluoridated toothpastes62 and fluoride gels63.

These studies have typically measured fluoride 
uptake indirectly. Fluoride uptake has been assumed to 
occur when the glass-ionomer specimens were exposed 
to the fluoride solutions because of the enhanced release 
when they were moved into pure water. 2 studies that 
have measured fluoride uptake directly have given 
extra insights into the process. Both studies used similar 
approaches, measuring reduction in fluoride concentration 
in recharge solutions in the presence of specimens of 
hardened glass-ionomer cement.

hydroxyapatite and fluorapatite as secondary fillers. 
The reactive glass powder is modified with dialkyl 
siloxanes, and the liquid is aqueous poly(acrylic acid). 
The manufacturers recommend treating the newly placed 
material with a high-energy dental curing lamp, though 
the material does not set by photo-polymerization.  
Rather, the lamps exert a heating effect40.

Glass carbomers are designed for use as either 
restorative materials or as fissure sealants, and as 
part of their function when placed, they promote 
mineralisation. This partly arises from the presence of 
calcium fluorapatite nanocrystals, which act as nucleating 
agents, and partly from the presence of hydroxypatite, 
which is a source of mineralising ions. The setting of 
glass carbomers has been shown to resemble that of 
glass-ionomers closely, especially in the behaviour of 
aluminium. This element is present in the glass powder 
in 4-co-ordination, but changes to 6-co-ordination in the 
matrix of the set material39.

Fluoride Release Patterns 

In terms of fluoride release, glass-ionomers have 
been studied the most, and are inherently fluoride-
releasing, as a result of the composition of the glass 
component.  For this reason, their release will be 
considered first in this section, followed by the various 
types of composite resins.

(i)	 Fluoride release from glass-ionomers.      Fluoride 
release is considered one of the important clinical 
advantages of glass-ionomers of both types (conventional 
and resin-modified)38. This release has been shown, 
for conventional glass-ionomers, to last for at least 5 
years39. Release occurs by 2 mechanisms, a relatively 
rapid dissolution process from the surface layers and a 
slower process that relies on diffusion of the fluoride ions 
through the bulk cement38,41. Having diffused through 
the cement, these ions are released into the surrounding 
aqueous solutions. The latter process is identified from 
kinetics based on the square root of time, t½42.

The overall process of fluoride release has been 
shown for both conventional and resin-modified glass-
ionomers to follow the equation43:

	 [F]c  =  [F]It/(t + t½)  +  βt½
The first term is the early dissolution process, 

sometimes called “early washout”, though it continues for 
some time, possibly up to 4 weeks following exposure of 
the glass-ionomer cements to the aqueous medium43. The 
second term, in t½, is the one describing the diffusion part 
of the process. The term [F]c is the cumulative fluoride 
release at time t, the term [F]I is the total amount of 
fluoride available for release, t½ is the time to release half 
of this total amount and β is a constant. The experimental 
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(e.g. PO4
3, SiO3

2-). Under acidic conditions, calcium (as 
Ca2+ ions) is also released22. All ions, including fluoride, 
are released in greater quantities in acid than in neutral 
conditions, and this is associated with increased rates of 
overall degradation of the glass-ionomer as indicated 
by increases in roughness and decreases in hardness on 
storage in acid66. Resin-modified glass-ionomer cements 
have also been shown to release increased levels of 
fluoride and other ions under acidic conditions67,68.

As active caries typically has a pH of about 4.969, 
the ability to release increased amounts of fluoride may 
be advantageous67. Greater amounts of fluoride have been 
suggested to have an increased preventative effect in vivo 
for these materials. However, under acidic conditions, 
there is greater likelihood of the fluoride being complexed 
and not available as free F- ions.  The reduced pH, with 
extra H+ ions available, may lead to the formation of 
un-dissociated HF, and the increased release of Al3+ leads 
to the possibility of the occurrence of such complexed 
species as AlF2+, AlF2

+70 or even AlF4
-71. Experimental 

results with a fluoride ion selective electrode have 
suggested that under acidic conditions almost all of the 
fluoride is complexed in some way22.  

A study to examine the effect of such complexation 
confirmed the absence of free fluoride in acid extracts 
from glass-ionomer cements, despite the overall higher 
levels of fluoride released compared with neutral 
conditions72. Exposure of these solutions to synthetic 
hydroxyapatite powders showed rapid depletion in 
fluorine levels, demonstrating that the mineral is capable 
of taking up fluoride readily, whatever state (free or 
complexed) it is in solution72. It was also found that, 
despite the increased levels of aluminium released into 
acidic solutions, there was no significant amount of 
aluminium deposited onto the hydroxyapatite surface. 
This, in turn, suggests that the aluminium does not 
become involved in the remineralisation process72. 
Overall, this study confirmed the suggestion of Forss67 
that increased fluoride release under acidic conditions is 
probably of clinical benefit.

(ii)	 Fluoride release from composite resin materials.   
Composite resins are not inherently capable of releasing 
fluoride, but may become so if appropriate fluoride-
containing compounds are added to them. These include 
inorganic salts (e/g. NaF or SrF2), fluoridated glasses 
or organic fluoride compounds. Longer-term sustained 
release requires only sparingly soluble fluoride salts, 
such as SrF2 orYbF3, or leachable glass fillers43. Fluoride 
release from these substances requires water to diffuse 
into the composite resin, a process that is slow, due to 
the hydrophobic nature of the resin polymer system73. It 
is, however, accelerated by the presence of hydrophilic 
or ionic additives74 so that it occurs at a sufficient rate to 
promote the release of fluoride from the restoration.

The first of these studies showed that potassium 
fluoride solutions corresponding to 100 and 1000 ppm 
fluoride ion uptake by immature cements followed 
pseudo-first order kinetics64, i.e. 

	 ln(qe  -  qt)  = ln (qe)  +  k1t,
where qe is the equilibrium uptake, qt is the uptake at 

time t, and k1 is the first order rate constant. The cements 
employed had been cured at 37oC for only 10 minutes 
prior to exposure to fluoride solution, and most of the 
uptake was complete with a few hours64.  Subsequent 
exposure of the specimens to water showed that they 
released very little of the fluoride taken up in their first 24 
hours in water.

The second study examined the effect of maturation 
on fluoride uptake65 (Tab. 1). 4 commercial restorative 
grade glass-ionomers were used and the fluoride 
concentrations of solutions containing a small specimen 
were determined after 24 hours. The storage solution was 
nominally 1000 ppm in fluoride, but measurement showed 
it actually to be 978.0 ± 5.7 ppm. Specimens of cement 
that had been matured for 1 month prior to exposure to 
this fluoride solution made little or no difference to this 
concentration, as shown in the table. This contrasted 
substantially with the results for specimens cured for 
24 hours, leading to the conclusion that, as maturation 
proceeds, glass-ionomers lose their capacity to take 
up fluoride, at least from neutral solutions. This in 
turn suggests that glass-ionomers are less effective at 
undergoing fluoride recharge than has been widely 
assumed, and that in clinical conditions there is no 
effective recharge at all for the majority of glass-ionomer 
restoration’s service life.

Table 1.  Fluoride concentration of storage solutions after 24 
hours (ppm) (Standard deviations in parentheses)65

Material Cure time
Fluoride 

concentration 
at 24 hr/ppm

Equivalent 
uptake/ppm

None

Fuji IX Extra

Fuji IX Fast

Ketac Molar 
Quick

Chemflex

-

24 hr
1 month

24 hr
1 month

24 hr
1 month

24 hr
1 month

978.0 (5.7)

880.0 (17.6)
965.2 (4.7)

902.4 (4.5)
983.6 (2.3)

892.4 (7.8)
982.2 (5.1)

911.1 (3.1)
965.4 (8.8)

0.0

98.0
12.8

77.6
-5.6

87.6
-4.2

66.9
12.6

Studies have shown that Na, Al, P and Si are also 
released in neutral conditions22, either as free positively 
charged ions (Na+, Al3+) or as negatively charged oxy-ions 
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that neither polyacid-modified composites nor giomers are 
capable of any significant fluoride recharge85.

Clinical Effects of Fluoride Release

Fluoride is provided to individuals mainly 
from fluoridated oral health care products, including 
toothpastes, and drinking water. Fluoridated toothpastes 
contain high amounts of fluoride, generally at least 1000 
ppm but possibly up to 5000 ppm86, though this level is 
diluted on application, and clears from the mouth after 
about an hour87. Drinking water typically provides 
fluoride at concentrations of around 0.7 - 1.0 ppm88, 
and this also clears fairly quickly after consumption. 
However, regular exposure to these fluoridated substances 
may result in long-term changes in the baseline fluoride 
concentration in saliva89, with increases from around 0.02 
ppm to between 0.10 and 0.20 ppm having been measured 
in some subjects90. As we have already seen, fluoride 
levels attributable to release from glass-ionomer cement 
rose following placement of restorations, but only to 0.8-
1.2 ppm immediately, to 0.3-0.5 ppm after 6 weeks47 and 
0.3 ppm after 1 year53.  

Restorative materials therefore contribute only small 
additional amounts of fluoride, compared with toothpastes 
and drinking water. Against that, it is sustained, and of the 
same order as the shift in concentration due to sustained 
use of fluoridated oral care products. It also occurs close 
to the tooth surface, which increases its chances of having 
positive effects.

In principle, fluoride may have antibacterial 
properties and there is certainly evidence that, even at 
low concentrations, sufficient is released from restorative 
materials to reduce bacterial growth and interfere with 
bacterial metabolism91,92. However, this has not always 
been found, and results seem to be sensitive to precise 
details of the experiments and the release conditions93,94. 
In general, it seems that the level of fluoride release, even 
from conventional glass-ionomers, is too low to have 
a consistent effect on the dental plaque, leading to the 
conclusion that such effects are minor compared with the 
effect of fluoride on the mineral phase of the tooth26.

Studies of precipitation of fluoride suggest it forms 
a calcium fluoride-like layer on the surface of the mineral 
phase of the tooth95. This layer facilitates the precipitation 
of mineral phase, fluorapatite or fluoro-hydroxyapatite, 
thus promoting remineralisation and preventing further 
loss of mineral phase96. The literature is unclear what 
this calcium fluoride-like precipitate is, but the solubility 
of calcium fluoride as estimated from its solubility 
product (3.9 x 10-11mol2 dm-6 at 20oC15) suggests that 
this it is not CaF2, because this substance would not 
precipitate until the fluoride concentration exceeded 8.0 
ppm. The substance may be a mixed hydroxide-fluoride 

The amount of fluoride released by composites tends 
to be much lower than that released by glass-ionomer 
cements of either type. It is also lower than that released 
by polyacid-modified composite resins. This may be 
because the simple water uptake/dissolution process is 
less effective at providing fluoride than the mechanisms 
in glass-ionomers or compomers; or it may reflect lower 
fluoride loadings in the composite formulation55,75,76.

Fluoride release tends to show no “early burst” 
from composite resins, and also there appears to be little 
capacity for fluoride recharge in most systems, though 
recharge has been demonstrated for an experimental 
composite system77. On the other hand, fluoride has been 
shown to be released over long periods of time, at least a 
year having been reported in a number of studies78,79.

Kinetics of fluoride release from composite resins are 
less clear than those of glass-ionomers59. Systems have 
shown a variety of types of behaviour, including fluoride 
release directly proportional to time and approximately 
proportional to the logarithm of time or to the inverse 
square root of time, t-½ 79,80.

Like fluoridated composite resins, polyacid-modified 
composite resins shown no initial burst of fluoride52,81,82, 
but deliver a sustained release that continues for 
considerable periods of time45,52. Fluoride release has 
been shown59 to follow the kinetic equation:

	 [F]c  =  [F]It/(t + t½)  +  αt
Values of the constant, α, vary with the material and 

can be considered as a measure of the driving force for the 
release process26,83.

Levels of fluoride release from polyacid-modified 
composite resins vary with brand, and can be comparable 
with those of conventional glass-ionomer cements in 
certain cases26. There is, though, a fundamental difference 
in fluoride release between these 2 materials as polyacid-
modified composite resins have to take up moisture to 
promote the secondary setting reaction before fluoride can 
be released from the filler20, and is able to move out of the 
material. In some brands of polyacid-modified composite 
resin, fluoride levels are augmented with added fluoride 
salts, such as YbF3, but even in these materials there 
has to be diffusion of water into the material to dissolve 
out the fluoride salt, and this process takes a finite time. 
These delayed processes mean that polyacid-modified 
composites may release very little fluoride when newly 
placed83, even if they are eventually capable of releasing 
amounts of fluoride that match those of conventional 
glass-ionomers in the long term (up to 3 years)81,83.

The final group of composites, the giomers, have 
also been studied for their fluoride release behaviour. 
It has been confirmed that they can release fluoride for 
extended periods of time52,84, though, like other types of 
composite, there is no early burst of release. Amounts of 
fluoride released are lower than for other composites, and 
this may be a reflection of the relatively small amount of 
available fluoride within these materials. Studies suggest 
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composite resins. They include the relatively new 
proprietary materials giomers and glass carbomers, which 
are shown to be specialised types of composite resin and 
glass-ionomer respectively.

The interaction of fluoride with the tooth mineral 
(hydroxyapatite) is reviewed.  Findings are presented 
to demonstrate that low levels of fluoride are able to 
promote remineralisation via precipitation of fluorapatite 
or a calcium fluoride-like substance, both of which lead to 
increased crystallisation and incorporation of fluoride into 
the mineral phase.

Despite these known remineralisation mechanisms, 
the current literature remains unclear as to whether 
fluoride-releasing restoratives are clinically beneficial. 
The physico-chemical studies discussed suggest that it 
is likely that they are, but so far clinical studies have 
not confirmed this point. Rather, they have come to 
conflicting conclusions about the effectiveness of these 
materials. Further clinical studies are needed to answer 
this question unambiguously, as it is important clinically, 
especially for groups such as children and special care 
patient groups with poor oral hygiene.
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