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Abstract

Preterm birth is a global epidemic affecting millions of mothers across different ethnicities.
The cause of the condition remains unknown but has recognised health-based implica-
tions, in addition to financial and economic ones. Machine Learning methods have enabled
researchers to combine datasets using uterine contraction signals with various forms of
prediction machines to improve awareness of the likelihood of premature births. This
work investigates the feasibility of enhancing these prediction methods using physiolog-
ical signals including uterine contractions, and foetal and maternal heart rate signals, for
a population of south American women in active labour. As part of this work, the use
of the Linear Series Decomposition Learner (LSDL) was seen to lead to an improvement
in the prediction accuracies of all models, which included supervised and unsupervised
learning models. The results from the supervised learning models showed high prediction
metrics upon the physiological signals being pre-processed by the LSDL for all variations
of the physiological signals. The unsupervised learning models showed good metrics for
the partitioning of Preterm/Term labour patients from their uterine contraction signals
but produced a comparatively lower set of results for the various kinds of heart rate signals
investigated.

1 INTRODUCTION AND
BACKGROUND

Preterm has long been viewed as a global scale epidemic which
is one of the leading causes of death of infants, and where the
select infants who survive the infancy period are left with var-
ious lifelong ailments because of their reduced timeframe in
the womb during gestation [1]. The World Health Organiza-
tion (WHO) guidelines characterise a preterm as birth before
37 weeks of gestation, 37–42 weeks is term, and over 42 weeks
as post term [2].

The underlying causes and physiological manifestations of
preterm births remain the subjects of continuous research,
where known causes of premature delivery include early induc-
tion of the pregnant mother for safety reasons, rupture of the
membrane, as well as spontaneous contractions [3]. To a degree,
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factors such as a rupture of the blood vessels, congenital defor-
mities and overall weakness of the cervix have also been seen
to cause early and preterm delivery in pregnant mothers [1].
Other subtle maternal factors which have been seen to cor-
relate towards preterm births include short intervals between
births, age, low BMI, as well as chronic stress, high alcohol
consumption and smoking [1].

There also exist financial implications of a preterm birth,
the magnitude of which vary depending on the severity of the
preterm delivery, while statistics from England and Wales sug-
gest costs of care of a preterm individual all the way towards
adulthood are in the range of £62 000–£95 000 [1, 4, 5]. An
added source of the societal cost of preterm also stems from
false positive diagnoses due to unreliable means for the predic-
tion of premature pregnancies and has been seen to result in a
cost of approximately $20 000 per patient [1, 4, 5].
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Current means towards detecting preterm pregnancies
include an estimation of the length of the cervix, which has
been seen to be linked towards the duration of pregnancy, and
where ultrasound measurement is used as the auxiliary mea-
surement tool for this method; but this approach has been
seen to be inaccurate due to its qualitative nature [6]. The use
of biochemical markers from emissions from biological fluids
such as urine, cervical mucus and saliva have been tested as
a means towards predicting preterm births to limited success,
with the overarching conclusion being that even a combina-
tion of biomarkers is still insufficient for a reliable prediction
of a premature birth and delivery [7–9]. More recently, meth-
ods analysing the contraction patterns and frequency of the
womb have been used, and highly favoured, as this allows for a
continuous means and platform towards pregnancy monitoring,
which can reduce hospital visits and improve the swiftness in
picking up anomalous incidents during the gestation period [4,
10]. For this approach, measurement tools such as electrohys-
terogram/uterine electromyography, which records bio-electric
signals, and tocogram, which records mechanical displacements
from womb-based contractions, are commonly used tools in
this area, where the challenges associated with this include iden-
tifying effective decoding and signal processing algorithms to
interpret contraction patterns [3, 4, 10].

In terms of uterine contractions, there has been a surge
of research work using machine learning models towards the
development of pattern recognition algorithms that can proac-
tively aid in the diagnosis of preterm predictions [3, 11–16].
These works use contraction signals from patients who are in
varied points of the third trimester of pregnancy, when dis-
tinct contraction signals begin to occur [3, 11–16]. The results
from these model-based prediction exercises showed vastly
impressive results for an array of signal processing, particu-
larly non-linear signal processing and machine learning models.
However, as noted by Nsugbe et al. [3], much of the published
literature in this area has focused on tuning and optimization of
the pattern recognition models used for the identification and
distinguishing of the various pregnancy states, with sparse con-
siderations of how this would fit into a clinical setting with input
from clinical experts, enabling applied human-machine inter-
action. An image of the various signal acquisition setups used
in the collection of the uterine contraction signals with various
physiological instruments can be seen in Figure 1.

In work undertaken towards tackling the shortcoming in pub-
lished literature, Nsugbe et al. adopted principles of hierarchical
cybernetics towards the theoretical assembly of a cybernetic sys-
tem which hosts a prediction machine [3, 19]. This subsequently
feeds its decisions and predictions to the clinical experts in the
loop, who make the final decision on the treatment and care
option for the patient given the immediate evidence from expert
knowledge, as well as the predictions made by the model in the
loop, forming a human-machine decision platform [3, 19]. The
source of the information used by the prediction machine varied
between electrohysterogram (EHG)-tocogram and magneto-
myography (MMG) data via open-source pregnancy databases
[20, 21].

Recent work by López-Justo et al. [22] involved the collec-
tion of data from a group of Hispanic patients in active labour,
where specific emphasis was placed on the analysis of both the
foetal and maternal heart rates. In that study, a link was seen to
exist between the beat-to-beat heart rate signals and the delivery
of term/preterm foetuses, using a complexity theory approach
[22].

This work aims to use a range of machine learning to quantify
the extent to which these signal sources can be used to pre-
dict preterm deliveries for a group of Hispanic women in active
labour. This work also presents a novel insight into preterm
prediction exercises with data collected from a large group of
Hispanic women based on published research. Thus, explicitly
speaking, the contributions of this research paper are as follows:

∙ Preterm prediction of Hispanic women in active labour using
the Raw acquired EHG, Foetus Beat-to-Beat Signal, and
Maternal Beat-to-Beat Signal;

∙ Preterm prediction of Hispanic women in active labour using
EHG, Foetus Beat-to-Beat Signal, and Maternal Beat-to-Beat
Signal alongside the Linear Series Decomposition Learner;

∙ Comparison of the Machine Learning model prediction per-
formance across the following supervised learning machine
learning algorithms: decision tree, linear discriminant anal-
ysis, logistic regression, support vector machines (i.e. linear
SVM), quadratic SVM, cubic SVM, fine Gaussian SVM, and
k-nearest neighbour;

∙ Pilot exploration and contrast on the use of self-learning
unsupervised algorithms observing the self-sorting of preg-
nancy states purely from physiological data.

2 MATERIALS AND METHODS

2.1 Data collection

The data used as part of this study is from the published work
of López-Justo et al. [22], where physiological readings and
recordings were collected from patients at the “Mónica Pretelini
Sáenz” Maternal-Perinatal Hospital, Toluca, State of Mexico,
Mexico, where the study received ethical consent by the local
ethical committee, and informed consent was obtained from
all patients prior to the collection of the data. Those patients
clinically identified as being in preterm labour were between
32–36 weeks’ gestation, with term labour occurring between
38–40 weeks’ gestation [22]. Active labour was clinically iden-
tified as the onset of four distinct contractions within a period
of 10 minutes, and cervical effacement of 50% with an accom-
panying 4 cm of cervical dilation [22]. Women who had twin
pregnancies, gestational diabetes, hypertensive disorders, epidu-
ral anaesthesia, or chronic degenerative diseases were excluded
from recruitment [22].

Data was collected from term patients and preterm patients
where the heartbeat signals from both the foetuses and mother
were recorded using the Monica AN24 system, designed by
Monica healthcare [23]. This is a system with the ability to
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NSUGBE ET AL. 13

FIGURE 1 Images showing various acquisition settings and protocols from related literature [17, 18].

TABLE 1 Characteristics of both patient cohorts and their delivered
foetuses

Characteristic Term Preterm

Maternal age (years) 21 ± 4 21 ± 4

Weeks of gestation 39 ± 1 34 ± 2

Maternal BMI (kg/cm3) 24.3 ± 1.3 25 ± 2.8

Cervical dilation (cm) 5.9 ± 1.6 5.0 ± 1.7

Cervical effacement (%) 71 ± 12 62 ± 13

New-born birth weight (kg) 2.9 ± 0.4 2.4 ± 0.6

APGAR score 1 min (>7) 96% 80%

APGAR score 5 min (>7) 96% 70%

Head circumference (cm) 33.7 ± 1.73 32.0 ± 2.29

Foetal size (cm) 49.5 ± 2.1 45.1 ± 6.0

Gender percentage 52% 50%

R-R means (ms) 431.2 ± 31.0 413.2 ± 26.9

record foetal cardiac time intervals to a high precision, where
abdominal cardiogram signals have been seen to offer more
reliable recording of the foetal heart rate when compared with
cardiotocography [23]. The EHG data was recorded using elec-
trodes in a bipolar configuration, where alcohol was used to
cleanse and prepare skin beforehand to minimize potential
impedance. The sampling frequency for all acquisitions was seen
to be 900 Hz.

The characteristics of both patient cohorts and foetuses can
be seen in Table 1.

2.2 Signals

2.2.1 EHG

The resulting contraction signals from the uterine wall during
pregnancy—especially during the third trimester—have been
seen to be linked towards the overall state of the pregnancy,
where the dynamic behaviour of the waveform is dependent on

the phase and cycle of the gestation, in addition to several other
physiological factors [24, 25]. On a cellular scale, these bio-
electrical contraction signals can be described by the Hodgkin-
Huxley electrophysiological model, where cellular depolariza-
tion takes place above a set threshold and yields an accompany-
ing electrophysiological burst event which is linked to pregnancy
state, but also influenced by a number of factors [24, 25].

2.2.2 Heartbeat signals

The measure of the heart rate is referred to as the heart rate
variability, which quantifies the amount of time elapsed between
successive heartbeats, and can be a window towards a physiolog-
ically driven means of diagnosing not only heart-based problems
but also psychological issues such as mental illness and psychi-
atric disorders [26]. The normal baseline breathing of a human
being is termed as sinus rhythm, and its name is reflected in the
fact that the human heartbeat is influenced by the respiratory
system and is in tandem with the reflex of the heart and circu-
latory system [26]. An image of the human heart can be seen in
Figure 2.

The human heart has an intrinsic baseline which varies
depending on the activity being carried out at the time, where
a relaxed state is reflected with a slower heartbeat, whereas a
faster heartbeat frequently reflects a state of stress and/or dan-
ger [26]. There also exist times where the heart rate varies due
to the needs of the human body, that is, postprandially, during
periods of exercise, during pregnancy, and as a natural part of
the aging process [26]. The brain controls the heart rate in rela-
tion to those signals it receives as part of the autonomic nervous
system. This feedback loop is controlled with the aid of nerves
which serve as information carriers [26].

2.2.3 Foetal heart rate (FHR)

The heartbeat of a foetus can be heard around six weeks into
the gestation during a sonomyography scan. The heartbeat can
be anticipated to be around 110 beats per minute, increasing to
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14 NSUGBE ET AL.

FIGURE 2 Annotated image of the human heart [27].

around 150–170 beats per minute in and around 10 weeks of
gestation [28].

The foetal heart and circulatory system develop throughout
the three trimesters as part of the maturation process. During
the first trimester, blood vessels form inside the embryo which
eventually grow and develop into the heart and circulatory sys-
tem [28]. This initially resembles a tube, which develops to form
the heart and valves, with circulatory development continuing
until the end of the first trimester, when bone marrow and red
blood cell formation commences [28].

During the second trimester, at approximately 17 weeks ges-
tation, the heartbeat of the foetus shifts from a spontaneous to
a regulated rhythm due to the ongoing developmental activity
the brain [28]. As part of this rhythm, newly formed capillar-
ies deliver different types of blood oxygenated to the various
parts of the foetus’s body, while deoxygenated blood is returned
to the placenta for oxygenation via the umbilical arteries [28].
Congenital heart defects may be identified and picked up dur-
ing this trimester using ultrasound instrumentation. During the
third trimester, the heart has sufficiently matured to self-sustain
with increased ability to function successfully outside the womb,
in preparation for birth [28].

An illustration of cardiotocography simultaneously record-
ing the foetus heart and uterine contractions can be seen in
Figure 3.

The heart of the foetus has been acknowledged to work dif-
ferently within the uterus relative to when the baby has been
born. As the foetus does not breathe oxygen directly in the
womb, the lungs are closed prior to birth. The circulatory sys-
tem relies on the oxygenated blood carried in the vein of the
umbilical cord for the steady supply of nutrients [28]. The veins
and arteries of the foetus transport nutrients and waste materials
back to the mother for excretion and removal along the arteries
of the umbilical cord [28].

FIGURE 3 An illustration of simultaneous monitoring of both foetus
heartbeat and uterine contraction [29].

2.2.4 Maternal heart rate (MHR)

As part of the female physiological system adaptations to car-
rying a foetus, the cardiovascular system goes through a degree
of adaptation whilst maintaining a functional baseline based on
haemodynamic demands [30–32]. Further, the resting heart rate
of a pregnant patient has been identified as around 15 beats
per minute greater than their non-pregnant counterparts, with
an associated increase in stroke volume due to the increased
maternal blood volume [30–32].

A reduction in peripheral vascular resistance, as well as the
emergence of low resistance circuits to the placenta, leads to
a decrease in the resting arterial blood pressure up until the
end of the second trimester of pregnancy [30–32]. Around 10–
20 weeks into the gestation process, blood volume begins to
increase in constituents, which has been approximated to about
1500 ml [30–32].

The resting cardiac output—which is a product of stroke
volume and heart rate—increases at around the fifth week of
gestation and continues to steadily rise, where it peaks in the
third trimester at around 30–50 % above that of a non-pregnant
patient [30–32]. The resting heartbeat increases further during
the latter part of the third trimester as labour approaches, with
a distinct sense of heightening occurring during the labour pro-
cess, due to a combination of factors including intense uterine
muscle contractions, bodily exertion, physical pain and resultant
activation of the sympathetic nervous system [30–32].

A good level of fitness during pregnancy may help to ease the
transition to a higher cardiac baseline and thus it is encouraged
for physical activity to be maintained antenatally as reduced fit-
ness could lead to a higher level of cardiovascular strain during
the delivery process, and as a result could present an avenue for
cardiac-based disease [30–32]. The maternal heart rate can be
viewed as a window towards assessing the level of strain encoun-
tered during the labour process, where the heart rate reflects an
increment in the demand for oxygen due to rapid contractions
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NSUGBE ET AL. 15

of the uterine muscles, as well as the demands from the stri-
ated muscles, and isometric contractions during pushing, which
is why Valsalva manoeuvres have fallen out of favour [30–32].

2.3 Dataset and pre-processing

The uterine contraction signals were obtained from the Mon-
icaSDK software, which is the supporting post-processing
software associated with the physiological instrumentation.
From this, data from a single optimal channel was exported to
produce an envelope—and therein a down-sampled version of
the uterine contraction signal—with a 2-second epoch averag-
ing scheme. The final exported files from the software varied in
length due to the duration of the data collected from the various
women, thus the files were down-selected to ensure that 4 sec-
onds worth of uterine contraction data was available for the files
which were used for the analysis. Using this selection criteria, a
total of 47 patients’ data was used for the final signal process-
ing exercise, with 27 of them being term and 20 being preterm.
The SMOTE synthetic sample generation algorithm was used
for class balancing purposes [33].

For the heart rate variability (Maternal and Foetus), the fil-
tered beat-to-beat signal was exported from the MonicsSDK
software where, like the uterine contraction, an optimal channel
was exported, but this time with the readings in milliseconds.
From the exported signals, select patient data files which had
a minimum of 3 ms in the case of the MHR and 4 ms for the
FHR were used, therein leading to 46 patients’ data used for the
maternal heart beat (22 preterm and 26 term), and 45 patients
(17 preterm and 28 term) for the foetus heartbeat.

For both the uterine contraction signals and the various
heartbeat signals, a windowing scheme of 10 disjointed windows
was used, which divided each candidate signal into 10 equal
windowed slices.

2.4 Signal decomposition method

Signal decomposition methods are signal processing methods
which contribute towards a systematic separation of parts and
components of a signal in order to minimise redundancy and
boost overall signal quality [34]. Different kinds and modes
of signal decomposition methods exist, while in this work we
applied the Linear Series Decomposition Learner (LSDL) which
stems from the area of metaheuristics; a subset of Artificial
Intelligence. Using a set of heuristics and a linear basis func-
tion, it is capable of iteratively decomposing a signal in order
to obtain an optimal region, which maximises the information
quality embedded within a signal while minimising redundancy
in the process [35–38].

The original inception case study for the LSDL was honed
towards source separation for a powder mixture using structural
borne high frequency acoustic emission signals, in order to infer
and estimate the particle size distribution of a sample heteroge-
nous mixture, where the decomposition prowess and prediction
performance was seen to surpass that of the wavelet decom-

TABLE 2 Optimal threshold region for EHG

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Upper threshold 2.1231 2.1326 2.1355 2.1368

Lower threshold 2.2506 2.3212 2.3194 2.1926

position method when dealing with non-linear and stochastic
signals [36, 39–41]. Recent published work has seen applica-
tion in the analysis and decomposition of physiological signals
from various aspects of clinical medicine including rehabilita-
tion, preterm pregnancy, surgical anaesthesia and psychiatric
medicine, all with the inclusion of the LSDL as a pre-processing
step and mechanism prior to modelling and prediction [15, 42,
43].

The embedded cost function employed as part of the evalua-
tion of the decomposed series to assess the information quality
and discriminatory power of a decomposed section of a signal
was the normalised variant of the Euclidean distance which—
given two sets of samples from different classes—estimates the
separation between the two samples in Euclidean space [44].
The mathematical formulation for the normalised variant of the
Euclidean distance is as shown in Equations (1)–(3):

ED
(

p, q
)
=

√
(p1 − q1)2

+ (p2 − q2)2
, (1)

œ =

√∑Nw
w=1 (rw − 𝜇)2

Nw
, (2)

J =
(

p, q
)
=

ED
(

p, q
)

𝜎m
, (3)

where ED is the Euclidean distance given coordinates p and q,
w is the wth feature in a feature vector Nw , while rw is a specific
feature within a feature vector, 𝜇 is the mean of the features, and
𝜎m is the mean of the standard deviations of the various features
being considered.

Further insight and description of the LSDL can be seen in
Nsugbe and Sanusi [15] and Nsugbe et al. [42].

2.5 LSDL Optimal threshold seeking results
for EHG, MHR and FHR

For the search of the optimal threshold regions for the vari-
ous signals listed in Tables 3–5, four iterations per threshold
were applied for the decomposition of the signals in both the
upper and lower threshold regions, which resulted in a total
of 24 iterations across the three kinds of signals. The optimal
threshold regions are highlighted in bold in Tables 2–4, where
the optimal region for the EHG signal is seen to be within
the second iteration of the lower threshold, therein implying
that the medium scale amplitude events from the EHG signals
carried the rich information which maximised discriminatory
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16 NSUGBE ET AL.

TABLE 3 Optimal threshold region for MHR

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Upper threshold 2.0087 2.7624 n/a n/a

Lower threshold n/a n/a n/a n/a

TABLE 4 Optimal threshold region for FHR

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Upper threshold 2.1467 2.1402 2.0947 2.1327

Lower threshold n/a n/a n/a n/a

capabilities for the signal. The optimal region for the mater-
nal heart rate is seen to be in the upper threshold region with
the medium scale amplitudes within that region. Finally, the
foetal heart rate signal results reflected that the optimal thresh-
old region was seen to be in the upper region within the signal,
insinuating that a broader dynamic range of signals are required
towards obtaining a high discriminatory prowess, potentially
due to the relatively low amplitude associated with this signal,
as well as a generally fine scaled nature.

2.6 Feature extraction

The list of features extracted from all the physiological signals
represents a concatenation of a diverse range of features which
have been used in prior study for the modelling and identifica-
tion of highly variable, non-linear and stochastic physiological
signals [45]. The ensemble comprises features from statistics,
frequency, as well as non-linear and chaos-based features which
allow for a robust and effective characterisation of a signal,
despite the degree of variability and underlying non-linearity in
the signal [46, 47].

The list of features is as follows: mean absolute value (MAV),
waveform length (WL), zero-crossing (ZC), slope sign change
(SSC), root mean square (RMS), fourth order autoregression
(AR), sample entropy (SampEN), cepstrum (Ceps), maximum
fractal length (MFL), median frequency (MedFrq), peak fre-
quency (PeakFrq), number of peaks (NP), simple squared
integral (SSI), and variance (VAR). For all features which require
a threshold, 1 µv was utilised, as adopted from prior studies;
while in the case of entropy, 0 and 0.2 values were chosen for m
and r, respectively [46, 47].

2.7 Machine learning models

As part of this study, supervised and unsupervised learning
methods were applied as part of the pattern recognition and
classification exercises. The supervised learning methods and
models work with an iterative learning scheme upon being
supplied with class labels; while on the other hand, the unsu-
pervised learning is capable of automated partitioning of data

clusters with respect to a performance index, and represents
a greater degree of intelligence and learning, which runs off
less human intervention in contrast to the supervised variant
[48].

2.7.1 Supervised learning

∙ Decision Tree (DT): is a class of grey-box models which are
underpinned by a Boolean-like logic towards the partition-
ing of data into various classes using a tree and hierarchical
flow fashion [49]. Their model configuration implies that they
are interpretable and therein carry a level of transparency
associated with their decision making process [49].

∙ These classification models refer to grey-box models whose
classification method is based around the use of a Boolean
logic-like approach towards the sorting of data into different
classes in a tree-like hierarchical fashion [49]. The white-box
characteristic of the DT implies that it carries interpretability,
thus its decision-making process is transparent to a degree.

∙ Linear Discriminant Analysis (LDA): is a statistically driven
machine learning method which utilises a lower dimensional
projection of the data towards the placement of class bound-
aries, and makes the assumption that the data is normally
distributed while being Gaussian. This version of the method
utilises a linear boundary towards the separation of data
classes and is recognised for being computationally efficient
due to its model architecture [46].

∙ Logistic Regression (LR): is a parametric classification model
which is based upon a statistically driven framework, where
the output of the classification process ranges from 0–1, with
data classes determined as a function of a given threshold
[50]. Due to its non-linear and sigmoidal function, this clas-
sification model is more robust towards dealing with outliers
when compared with its linear regression counterpart [50].

∙ Support Vector Machine (SVM): this classification model is
based around the higher dimensional projection of data into
a feature space where class boundaries are instilled in an iter-
ative fashion, and subsequently followed by a downscale and
downward projection of the data while preserving the struc-
ture of the class boundaries implemented from the higher
dimension in a feat which is regarded as a ‘kernel trick’ [51].
Due to the iterative nature and high dimensional projection
required as part of the functionality of the model, the SVM
is typically viewed as a computationally intense model [51].
Four different variants of the SVM model were employed
as part of this study to provide different kinds of class
boundaries to the data in question, including; linear SVM-
LSVM, quadratic SVM-QSVM, cubic SVM-CSVM, and fine
Gaussian SVM-FGSVM.

∙ K-Nearest Neighbour: represents a type of non-parametric
classification model which hinges upon a majority vote with
respect to the nearest neighbours, before classes are assigned
to samples [52]. In this work, K was selected to be 1,
which means the process of class assignment involves a com-
putationally efficient class assignment process, where the
Euclidean distance was utilised as the chosen distance metric.

 20533713, 2023, 1-2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/htl2.12044, W

iley O
nline L

ibrary on [02/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NSUGBE ET AL. 17

All classification models were designed using the MAT-
LAB Classification Learner application, which—given model
options—automatically tunes the hyperparameters for the opti-
mal values as part of the training process. The models were
validated at the end using the K-fold cross validation approach,
with K chosen as 10 to obtain the final performance metric for
the classification model.

2.7.2 Unsupervised learning

∙ K-Means: involves the iterative sorting of data into various
classes based on the Euclidean distance metric. The approach
is based on the expectation-maximization (EM) algorithm
where the E step includes the cluster assignment process
using an objective function, while the M step is the model
update phase with respect to the cluster centroid [53].

∙ Gaussian Mixture Models (GMM): is an unsupervised learn-
ing method which is based off probabilistic reasoning as a
means towards cluster and data partitioning [54]. The model
builds from the K-Means approach towards clustering and
utilises a mixture of Gaussians with distinct mixture propor-
tions, and is characterised by a distinct mean and covariance
[54]. The learning process of the GMM also uses the EM in
an iterative fashion alongside the maximum likelihood esti-
mation method. The options implemented as part of the
GMM in this paper involved the use of a full covariance
option with a regularisation value of 0.1.

For both models, the number of clusters was selected to be
two, on the basis of the knowledge that the exercise involved a
binary prediction between term and preterm pregnancies.

3 RESULTS AND DISCUSSION

3.1 Supervised learning

Four key statistical metrics were utilised towards the character-
isation of the performance of the various designed models, as
adopted from previous work, as follows: accuracy (Acc), sensi-
tivity (Sens), specificity (Spec) and area under the curve (AUC)
[11].

3.1.1 EHG

The results for the EHG signals can be seen in Table 5 for both
the raw and LSDL decomposed signals where, as expected, the
LSDL supersedes the raw data in predictions of term/preterm
patients in active labour. The best performing models, high-
lighted in bold, are seen to be the LDA and logistic regression
models, which are statistically driven models and therein show
compatibility of the LSDL both with this kind of data, along
with the aforementioned classification models. Contrasting this
with prior work on the prediction of preterm using uterine con-
traction signals, the high prediction accuracy obtained here is

due to the fact that the women are in active labour, where uter-
ine contractions are more intense and regular than prior points
within the third trimester, and produce distinct signals that can
be used towards the high prediction accuracy of preterm preg-
nancies, as can be seen in Table 5 [3]. The immediate findings
from these results suggest that the presented approach with the
EHG signal could allow for an alarm-based system which fore-
warns clinicians and midwives of potential preterm pregnancies
in real-time during active labour, with a high prediction power
and model integrity.

3.1.2 MHR

The utilisation of the heart rate signal for the inference of the
state of a pregnancy has not been studied deeply in the machine
learning literature, while the physiological literature suggests
that during the onset of labour, the maternal heart rate adapts
from its baseline in order to accommodate the imminency of
labour [22]. However, it is not known if the dynamics of the
heart rate during a preterm labour are distinct enough from
that of a mother who is in a term labour. This investigation
and associated results present a data-driven means towards the
observation of the extent to which maternal heart rate dynamic
differs during term and preterm labour.

The raw data, first of all, show some encouraging results
in the preterm predictions from the maternal heart rate, with
the best prediction in that case coming from the KNN model.
Similar to the prior scenario with the EHG signals, the LSDL
provides a notable increase in the prediction accuracy provided
by a model upon its application, as can be seen in Table 6,
where the LR an QSVM provided the best prediction accura-
cies in this case. The high result from the QSVM implies that
non-linear boundaries are favourable for this classification exer-
cise to a degree, thus providing quantitative evidence to suggest
that machine learning models can indeed distinguish between
term and preterm labour pregnancies using acquired heart rate
signals. Furthermore, it can be noted from Section 2 that the
sample segment relevant towards the model build for the heart
rate-based prediction models is substantially smaller than that of
the uterine contraction, implying that quicker predictions could
be made in a shorter time span with less data using the maternal
heart rate when compared with the uterine contraction.

3.1.3 FHR

Table 7 shows the results for the preterm prediction exercises
using the foetal heart rate, where it can be seen that the results
provide a marginal, yet important, improvement on the figures
from the predictions using maternal heart rate. The LDA and
LR provided the best prediction statistics, as highlighted with
the AUC values. The utilisation of heart rate physiological mea-
surement as an indicator for preterm appears to show positive
results, which have been noted to produce positive results after
pre-processing with the LSDL. This can be further developed,
exploited and used as a means towards not only the moni-
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18 NSUGBE ET AL.

TABLE 5 EHG results for raw data and LSDL decomposed signals

Model

Raw-Acc

(%)

LSDL-Acc

(%)

Raw-Sens

(%)

LSDL-Sens

(%)

Raw-Spec

(%)

LSDL-Spec

(%)

Raw-AUC

(%)

LSDL-AUC

(%)

DT 73.5 94 74 92 71 97 72 94

LDA 71.3 100 71 100 71 100 71 100

LR 71.9 100 71 100 73 100 72 100

LSVM 73.7 96 72 96 76 97 74 96

QSVM 82.8 99 83 99 83 99 83 99

CSVM 83.9 98 82 98 86 99 84 98

FGSVM 87.4 97 91 97 84 97 87 97

KNN 84.3 97 82 97 87 97 84 97

TABLE 6 MHR results for raw data and LSDL decomposed signals

Model

Raw-Acc

(%)

LSDL-Acc

(%)

Raw-Sens

(%)

LSDL-Sens

(%)

Raw-Spec

(%)

LSDL-Spec

(%)

Raw-AUC

(%)

LSDL-AUC

(%)

DT 70 76 69 76 68 78 68 77

LDA 55 94 55 99 55 91 55 95

LR 55 98 56 100 55 97 55 98

LSVM 57 94 58 100 56 90 57 95

QSVM 68 97 70 100 68 96 69 98

CSVM 77 96 76 98 80 96 78 97

FGSVM 77 79 86 89 73 73 79 81

KNN 80 74 80 73 82 75 81 74

TABLE 7 FHR results for raw data and LSDL decomposed signals

Model

Raw-Acc

(%)

LSDL-Acc

(%)

Raw-Sens

(%)

LSDL-Sens

(%)

Raw-Spec

(%)

LSDL-Spec

(%)

Raw-AUC

(%)

LSDL-AUC

(%)

DT 66 87 65 88 67 88 66 88

LDA 62 100 62 100 62 100 62 100

LR 63 100 63 100 63 100 63 100

LSVM 61 99 61 100 62 99 61 99

QSVM 68 99 67 100 71 99 69 99

CSVM 69 98 67 98 72 98 69 98

FGSVM 75 85 90 97 68 79 79 88

KNN 73 86 69 83 79 90 74 86

toring of the state of the heart during labour and birth for
the mother and foetus, but also modelled further for the con-
tinuous monitoring and prediction of heart related conditions
that could occur during labour and birth, therein forming a
cardiovascular/cardiac decision support monitoring platform.

As part of further work, research would involve the investi-
gation of what specific heart rate conditions could be inferred
from the obtained maternal and foetal heart rate physiological
signals as part of a broader decision support platform that is
capable of providing insight on both term/preterm as well as
selected conditions and diseases of the heart.

A principal component analysis (PCA) visualisation of the
data sample and class separation for all the three physiological
signals considered in this study, contrasting the raw signal with
the LSDL decomposed signal, can be seen in Figure 4, where
the first two PCs have been plotted.

From the PCA plot, a first comparison of the Raw plot with
the LSDL decomposed shows a greater cluster separability in
the LSDL plot relative to the Raw, due to the signal decomposi-
tion act of the LSDL. For the LSDL FHR, a nicely decomposed
and linear projection is achieved for both clusters with a notable
visual separation between the two data classes, implying that the
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NSUGBE ET AL. 19

FIGURE 4 PCA visualisation plot of the various data classes.

decomposed signals have low noise and a good degree of sepa-
rability. In the final case of the LSDL MHR, the projections also
appear to be projected nicely with minimal noise in the data post
LSDL decomposition, although unlike the FHR, there appears
to be a slight overlap between the two clusters.

Contrasting the three physiological signals, the heart-based
signals appear to be less noisy once decomposed by the LSDL,
as can be seen and as discussed, which may present a reli-
able alternative towards uterine contraction-based monitoring
for preterm pregnancies. As the uterus is a complex bio-
logical system—as well as an anatomical tissue within the
body—its electrophysiological signals are prone to crosstalk
and biological-based interferences, which are reflected in the
acquired EHG signal. However, the dynamics of the heart are
different. It is an organ which, although it is a complex system,
appears to produce signals with less interferences for the pre-
diction of preterm pregnancies. This could potentially be due to
the fact that all patients were in active labour and thus the phys-
iology was actively adapting to the labour process. Further work
should involve the acquisition of the heartbeat signals earlier in
the third trimester, allowing for the conducting of prediction
exercises in order to further evaluate and assess the feasibil-
ity of using heartbeat signals as a reliable means towards the
prediction of a preterm pregnancy.

3.2 Unsupervised learning

Although the results from the prior section showed largely
positive results—particularly after pre-processing with the
LSDL—it is worth noting that these results were obtained using

TABLE 8 Results of EHG unsupervised learning exercise

Model Preterm (%) Term (%) Overall accuracy (%)

GMM n/a* n/a* n/a*

K-Means 88 54 71

*n/a represents a model error obtained during the running of the GMM

TABLE 9 Results of MHR unsupervised learning exercise

Model Preterm (%) Term (%) Overall accuracy (%)

GMM 87 25 56

K-Means 74 42 58

the supervised learning models which rely on the prerequisite
of labelled data from expert knowledge. In a clinical setting,
this accounts for further expenditure of resources; and from the
viewpoint of the intelligence complexity hierarchy, it represents
a form of “weak intelligence” due to the dependency of external
input labels. The use of unsupervised learning represents a supe-
rior form of artificial intelligence which allows for self-sorting
and partitioning with reduced human supervision and input,
albeit with the challenging task of efficient partitioning of data
with complex geometries and dispersions. Tables 8–10 show the
results of the use of two effective unsupervised learning meth-
ods, that is, GMM and K-Means, towards the self-sorting of data
samples based on the acquired physiological signals. It should
be noted that the final results presented were the maximum
obtained after five repetitions of running the clustering exercise.
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20 NSUGBE ET AL.

TABLE 10 Results of FHR unsupervised learning exercise

Model Preterm (%) Term (%) Overall accuracy (%)

GMM 98 37 67

K-Means 53 50 51

3.2.1 EHG

The results of the EHG unsupervised learning exercise can be
seen in Table 8, with an overall clustering result of 71 %. It can
be seen that the best cluster assignment was that of the clus-
ter containing the preterm samples, where an accuracy of 88 %
was obtained, while the term cluster produced a slightly lower
accuracy of 54 %. This shows reasonable results for a fully auto-
mated partitioning of the various states of pregnancy, albeit with
a degree of bias towards the labelling and partitioning of data in
the preterm cluster.

That being said, working with the law of ergodicity and the
overall sample partitioning accuracy, a supervised learning algo-
rithm robust to noisy labels and outlier detections could be
utilised towards building supervised prediction models based
on the labels provided by the K-Means model as part of a
multi-stage model building stage.

3.2.2 MHR

For the case of the maternal heart rate, the preterm cluster
appears to be the best sorted cluster for both clustering algo-
rithms, with a relatively lower accuracy when compared with the
uterine contraction signals, therein highlighting the compatibil-
ity of the EHG signals with the applied clustering algorithm. For
the case of the GMM, the preterm cluster is partitioned with a
high accuracy, as can be seen in Table 9, while the term cluster
dips heavily and suffers from a poor clustering result, hence the
final accuracy.

In the case of the K-Means method, the same trend is shown
with the higher accuracy belonging to the partitioning obtained
for the preterm cluster. Although the clustering of the term clus-
ter provided a relatively higher accuracy in comparison with the
results from the GMM—hence the slightly improved score—
the accuracy figures are considerably lower than that of the
supervised learning exercise from the prior section, therein sug-
gesting that the unsupervised learning method may not suffice
for the maternal heart rate-based separation of the preterm and
term pregnancies.

3.2.3 FHR

The foetal heart-rate clustering exercise to predict preterm pro-
duced a slightly improved set of results in the case of the GMM,
where the trend continued, as seen in Table 10. In particular, a
high partitioning accuracy was obtained for the preterm clus-
ter at 98%, alongside a slightly lower figure for the term data

class, with an overall accuracy of 67%. For the case of the GMM,
this provides signs to suggest that the clustering methods could
have some potential towards being utilised for an automated
class labelling. In contrast, the K-Means produced lower accu-
racy metrics for this clustering exercise while recording a slightly
higher metric for the preterm cluster, as was seen to be the trend
with the acquired physiological data.

4 CONCLUSIONS AND FUTURE WORK

The preterm epidemic is one which has been seen to cause a
large number of deaths in infants, as reported by the WHO,
and which brings not only health implications with significant
financial impacts to the economy. There continues to be active
research for effective and optimal means towards the reliable
prediction of a premature birth.

The use of uterine contraction signals alongside machine
models is a method that has seen a substantial amount of
research, yielded positive results, and forms a part of what has
been investigated as part of this paper. The use of EHG, FHR
and MHR physiological signals were investigated to observe the
extent to which they can be used to predict the delivery of a
premature foetus in a group of Hispanic patients, who were in
active labour. As part of the prediction exercises, the pattern
recognition models used involved the utilisation of supervised
learning models which are reliant upon the supply of labels; and
also unsupervised learning which represents an advanced form
of intelligence that is capable of self-learning from data.

In terms of the results for the array of supervised learning
models tested it was seen that the LSDL provided a consider-
able improvement in the prediction accuracy. In the case of the
EHG, the LDA and LR provided the best prediction metrics.
For the MHR, the LR and QSVM produced the best prediction
metrics, while in the case of the FHR, the LDA and LR pro-
duced the best metrics. Thus, either one of these physiological
signals can be utilised towards the prediction of preterm deliv-
eries with women who are in active labour. However, the heart
rate signals were seen to use a much smaller time window and
therein less data, and their models can also be expanded towards
the monitoring of cardiac-based diseases from the same sig-
nal source. For the unsupervised learning, the K-Means results
showed that the EHG data could be partitioned and sorted as
part of a self-learning setup, whereas for the case of the MHR
and FHR a relatively low clustering result was achieved, therein
showing its ineffectiveness in self partitioning of information
from these signals.

Further work in this area would involve continuous research
in the use of unsupervised methods towards feature extrac-
tion, along with the further tuning of the parameters of the
unsupervised learning models used in this work for potential
improved model performance. Along with an application of a
wider range of unsupervised learning techniques where possi-
ble, that is, Spectral Clustering, and further validation exercises
of the designed supervised learning models. [43]. In addition to
this, the use of patient health records acquired through preg-
nancy all the way towards delivery would be utilised as a means
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NSUGBE ET AL. 21

towards the investigation of non-physiological signal methods
towards the prediction of preterm births during labour [14,
55]. The main limitation associated with this study is the con-
strained amount of data which pertains to a single ethnicity.
Which although provides pilot information to better interpret
physiological manifestations, cannot be generalised due to the
sample size used.
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various linear and non-linear signal processing techniques to separate uter-
ine EMG records of term and pre-term delivery groups. Med. Biol. Eng.
Comput. 46(9), 911–922 (2008).

21. Escalona-Vargas, D., Govindan, R.B., Furdea, A., Murphy, P., Lowery,
C.L., Eswaran, H.: Characterizing the propagation of uterine electrophys-
iological signals recorded with a multi-sensor abdominal array in term
pregnancies. PLoS One 10(10), e0140894 (2015)

22. López-Justo, C., Pliego-Carrillo, A.C., Ledesma-Ramírez, C.I., Mendieta-
Zerón, H., Peña-Castillo, M.Á., Echeverría, J.C., et al.: Differences in the
asymmetry of beat-to-beat fetal heart rate accelerations and decelerations
at preterm and term active labor. Sensors (Basel) 21(24), 8249 (2021)

23. Dormed Hellas: Monica AN24 - Fetal monitor portable. https://dormed.
gr/en/product/monica-an24/

24. Rihana, S., Terrien, J., Germain, G., Marque, C.: Mathematical modeling of
electrical activity of uterine muscle cells. Med. Biol. Eng. Comput. 47(6),
665–675 (2009).

25. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve. J. Physiol.
117(4), 500–544 (1952).

26. Cleveland Clinic: Heart rate variability (HRV): What it is and how
you can track it. https://my.clevelandclinic.org/health/symptoms/21773-
heart-rate-variability-hrv

27. Premium Vector: An hand drawn illustration of anatomy of the human
heart with indicated major parts. vector illustration in cartoon style.
https://www.freepik.com/premium-vector/hand-drawn-illustration-
anatomy-human-heart-with-indicated-major-parts-vector-illustration-
cartoon-style_22787167.htm

28. de Bellefonds, C.: How your baby’s heart develops. https://www.
whattoexpect.com/pregnancy/fetal-development/fetal-heart-heartbeat-
circulatory-system/

29. Merritt, J.: Electronic fetal heart rate monitoring [ppt video online
download]. Available from: https://slideplayer.com/slide/10836792/

30. Clapp, J.F.: Maternal heart rate in pregnancy. Am. J. Obstet. Gynecol. 152(6
Pt 1), 659–660 (1985)

31. Sherman, D.J., Frenkel, E., Kurzweil, Y., Padua, A., Arieli, S., Bahar, M.:
Characteristics of maternal heart rate patterns during labor and delivery.
Obstetrics Gynecol. 99(4), 542–547 (2002).

32. Tejera, E., Jose Areias, M., Rodrigues, A., Ramõa, A., Manuel Nieto-
Villar, J., Rebelo, I.: Artificial neural network for normal, hypertensive, and
preeclamptic pregnancy classification using maternal heart rate variability
indexes. J. Matern. Fetal Neonatal. Med. 24(9), 1147–1151 (2011)

33. Sample generator used in SMOTE-like samplers — Version 0.9.1. https://
imbalanced-learn.org/stable/auto_examples/over-sampling/plot
_illustration_generation_sample.html

 20533713, 2023, 1-2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/htl2.12044, W

iley O
nline L

ibrary on [02/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0674-1611
https://orcid.org/0000-0003-0674-1611
https://www.who.int/news-room/fact-sheets/detail/preterm-birth
https://www.who.int/news-room/fact-sheets/detail/preterm-birth
https://www.glowm.com/section-view/item/206
https://onlinelibrary.wiley.com/doi/10.1002/ail2.34
https://dormed.gr/en/product/monica-an24/
https://dormed.gr/en/product/monica-an24/
https://my.clevelandclinic.org/health/symptoms/21773-heart-rate-variability-hrv
https://my.clevelandclinic.org/health/symptoms/21773-heart-rate-variability-hrv
https://www.freepik.com/premium-vector/hand-drawn-illustration-anatomy-human-heart-with-indicated-major-parts-vector-illustration-cartoon-style_22787167.htm
https://www.freepik.com/premium-vector/hand-drawn-illustration-anatomy-human-heart-with-indicated-major-parts-vector-illustration-cartoon-style_22787167.htm
https://www.freepik.com/premium-vector/hand-drawn-illustration-anatomy-human-heart-with-indicated-major-parts-vector-illustration-cartoon-style_22787167.htm
https://www.whattoexpect.com/pregnancy/fetal-development/fetal-heart-heartbeat-circulatory-system/
https://www.whattoexpect.com/pregnancy/fetal-development/fetal-heart-heartbeat-circulatory-system/
https://www.whattoexpect.com/pregnancy/fetal-development/fetal-heart-heartbeat-circulatory-system/
https://slideplayer.com/slide/10836792/
https://imbalanced-learn.org/stable/auto_examples/over-sampling/plot_illustration_generation_sample.html
https://imbalanced-learn.org/stable/auto_examples/over-sampling/plot_illustration_generation_sample.html
https://imbalanced-learn.org/stable/auto_examples/over-sampling/plot_illustration_generation_sample.html


22 NSUGBE ET AL.

34. Humphreys, D.A.: A beginner’s guide to convolution and deconvo-
lution. Signal Processing Seminar (2006). http://resource.npl.co.uk/
docs/science_technology/scientific_computing/ssfm/documents/
20060623_d_humphreys.pdf

35. Ryan, M.: What is wavelet and how we use it for data science.
Medium (2019). https://towardsdatascience.com/what-is-wavelet-and-
how-we-use-it-for-data-science-d19427699cef

36. Nsugbe, E.: Particle size distribution estimation of a powder agglomera-
tion process using acoustic emissions. Thesis, Cranfield University (2017).
http://dspace.lib.cranfield.ac.uk/handle/1826/14378

37. Yang, X.S.: Metaheuristic optimization. Scholarpedia. 6, 11472 (2011)
38. Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69,

S36–S40 (2017)
39. Nsugbe, E., Starr, A., Foote, P., Ruiz-Carcel, C., Jennions, I.: Size differen-

tiation of a continuous stream of particles using acoustic emissions. IOP
Conf Ser: Mater Sci Eng. 161, 012090 (2016)

40. Nsugbe, E., Ruiz-Carcel, C., Starr, A., Jennions, I.: Estimation of fine
and oversize particle ratio in a heterogeneous compound with acoustic
emissions. Sensors 18(3), 851 (2018)

41. Nsugbe, E., Starr, A., Jennions, I.K., Ruiz-Cárcel, C.: Particle size distribu-
tion estimation of a mixture of regular and irregular sized particles using
acoustic emissions. Procedia Manuf. 11, 2252–2259 (2017)

42. Nsugbe, E., Williams Samuel, O., Asogbon, M.G., Li, G.: Contrast of multi-
resolution analysis approach to transhumeral phantom motion decoding.
CAAI Trans. Intell. Technol. 6(3), 360–375 (2021)

43. Nsugbe, E.: On the application of metaheuristics and deep wavelet scatter-
ing decompositions for the prediction of adolescent psychosis using EEG
brain wave signals. Digital Technolog. Res. Appl. 1(2), 9–24 (2022)

44. Gower, J.C.: Properties of Euclidean and non-Euclidean distance matrices.
Linear Algebra Appl. 67, 81–97 (1985)

45. Arce, G.R.: Nonlinear Signal Processing: A Statistical Approach, p. 459.
Wiley-Interscience, Hoboken, NJ (2005)

46. Nsugbe, E., Phillips, C., Fraser, M., McIntosh, J.: Gesture recognition for
transhumeral prosthesis control using EMG and NIR. IET Cyber-Syst.
Robot. 2(3), 122–131 (2020)

47. Nsugbe, E., Samuel, O.W., Asogbon, M.G., Li, G.: Phantom motion intent
decoding for transhumeral prosthesis control with fused neuromuscular
and brain wave signals. IET Cyber-Systems and Robotics. 3(1), 77–88
(2021)

48. Donalek, C.: Supervised and unsupervised learning. Available from:
https://sites.astro.caltech.edu/∼george/aybi199/Donalek_classif1.pdf

49. Patel, B.R., Rana, K.K.: A survey on decision tree algorithm for clas-
sification. Int. J. Eng. Develop. Res. 2(1), 1–5 (2014). Available from:
https://www.ijedr.org/papers/IJEDR1401001.pdf

50. Wright, R.E.: Logistic regression. In: Reading and Understanding Mul-
tivariate Statistics, pp. 217–244. American Psychological Association,
Washington, DC (1995)

51. Noble, W.S.: What is a support vector machine? Nat Biotechnol. 24(12),
1565-1567 (2006)

52. Sarkar, M., Leong, T.Y.: Application of K-nearest neighbors algorithm on
breast cancer diagnosis problem. Proc AMIA Symp. 759–63 (2000)

53. Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm.
Pattern Recognit. 36(2), 451-461 (2003)

54. Reynolds, D.: Gaussian Mixture Models. In: Li SZ, Jain A (eds.) Ency-
clopedia of Biometrics, pp. 659–663. Springer US, Boston, MA (2009).
http://link.springer.com/10.1007/978-0-387-73003-5_196

55. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: Current
issues and guidelines. Int. J. Med. Inf. 77(2), 81–97 (2008)

How to cite this article: Nsugbe, E., Reyes-Lagos, J.J.,
Adams, D., Samuel, O.W.: On the prediction of
premature births in Hispanic labour patients using
uterine contractions, heart beat signals and prediction
machines. Healthc. Technol. Lett. 10, 11–22 (2023).
https://doi.org/10.1049/htl2.12044

 20533713, 2023, 1-2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/htl2.12044, W

iley O
nline L

ibrary on [02/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://resource.npl.co.uk/docs/science_technology/scientific_computing/ssfm/documents/20060623_d_humphreys.pdf
http://resource.npl.co.uk/docs/science_technology/scientific_computing/ssfm/documents/20060623_d_humphreys.pdf
http://resource.npl.co.uk/docs/science_technology/scientific_computing/ssfm/documents/20060623_d_humphreys.pdf
https://towardsdatascience.com/what-is-wavelet-and-how-we-use-it-for-data-science-d19427699cef
https://towardsdatascience.com/what-is-wavelet-and-how-we-use-it-for-data-science-d19427699cef
http://dspace.lib.cranfield.ac.uk/handle/1826/14378
https://sites.astro.caltech.edu/~george/aybi199/Donalek_classif1.pdf
https://www.ijedr.org/papers/IJEDR1401001.pdf
http://link.springer.com/10.1007/978-0-387-73003-5_196
https://doi.org/10.1049/htl2.12044

	On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines
	Abstract
	1 | INTRODUCTION AND BACKGROUND
	2 | MATERIALS AND METHODS
	2.1 | Data collection
	2.2 | Signals
	2.2.1 | EHG
	2.2.2 | Heartbeat signals
	2.2.3 | Foetal heart rate (FHR)
	2.2.4 | Maternal heart rate (MHR)

	2.3 | Dataset and pre-processing
	2.4 | Signal decomposition method
	2.5 | LSDL Optimal threshold seeking results for EHG, MHR and FHR
	2.6 | Feature extraction
	2.7 | Machine learning models
	2.7.1 | Supervised learning
	2.7.2 | Unsupervised learning


	3 | RESULTS AND DISCUSSION
	3.1 | Supervised learning
	3.1.1 | EHG
	3.1.2 | MHR
	3.1.3 | FHR

	3.2 | Unsupervised learning
	3.2.1 | EHG
	3.2.2 | MHR
	3.2.3 | FHR


	4 | CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PERMISSION TO REPRODUCE MATERIALS FROM OTHER SOURCES
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


