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The effect of time-periodic electric field modulation on electroconvection in a compactly packed
dielectric liquid-permeable layer is investigated using the small perturbation method coupled with
the regular perturbation method. The dielectric constant is assumed to be a linear function of
temperature. For small amplitude electric field modulation, the critical correction Rayleigh number
is determinedusing the regular perturbation method. The critical Rayleigh number is obtained in
terms of the electrical Rayleigh number, Vadasz number, normalized porosity, and the modulation
frequency to determine the stability of the system. It is found that electric field modulation at low
frequencies can create subcritical convective motion. The impact of Vadasz number is shown to be
akin to that of the dielectrophoretic force. The stabilizing influence of normalized porosity is more
pronounced when the frequency of electric field modulation is modest and large. The study reveals
that time-varying electric fields and a densely packed porous layer may have implications for the
control of electroconvection in heat transfer applications involving dielectric fluids as working media.
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I. INTRODUCTION

The simultaneous movement of mass and electric
charge is important in many areas of science and
technology, and applications range from improving heat
and mass transfer in nuclear reactors to inkjet printi-
ng and coalescence [1, 2]. Several studies have been
conducted to investigate how the electric field affects
natural convection, since there are many practical
problems involving dielectric fluids which have poor
conductivity and whose motion is governed mainly by
electric forces rather than magnetic forces. Considering
the dielectric constant and electrical conductivity as li-
near functions of temperature, Roberts [3] conducted the
first individual study of electrohydrodynamic convection.
A theoretical framework has been developed for studying
thermocapillary and/or buoyancy instabilities in earth
laboratories for electrically conducting fluid layers under
an ac electric field by Takashima and Aldridge [4], Martin
and Richardson [5], Maekawa et al. [6], and Douiebe et al.
[7]. According to Smorodin [8], an alternating electric fi-
eld of arbitrary frequency affects the stability of convecti-
on of a dielectric fluid in a vertical layer. With the
help of the Floquet theory, the stability thresholds are
determined linearly. During the study of electroconvecti-
ve instability in a dielectric fluid, Maruthamanikandan
[9] investigated the effect of internal heat generati-
on, surface tension, radiation, and viscoelasticity. While
some research has been done on anisotropic media, most
is conducted on isotropic media. Again, Maruthamani-
kandan and Smita [10] investigated how the second
sound influences the onset of Rayleigh—Bénard instabi-
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lity in a dielectric fluid subjected to alternating verti-
cal electric fields and vertical temperature gradients si-
multaneously. The problem of convection in a thermally
radiating dielectric fluid saturating a porous medium was
considered by Smita and Maruthamanikandan [11]. In
order to convert radiative heat flux into thermal heat
flux, the Milne-Eddington approximation is used. It is
made clear that as the radiation parameter increases, the
fundamental temperature profile increases exponentially,
delaying the onset of electroconvection.

The Darcy—Bénard convection occurs when buoyancy
causes heat to flow uniformly through a porous layer
heated from below. As thermal convection occurs
naturally in porous fluid-saturated media, extensive
studies have been conducted on its effects on a variety of
scientific, engineering, and technological fields, including,
but not limited to, medicine and aerospace engineering
[12, 13]. There are many applications of this configurati-
on, such as in biomedical engineering, drying processes,
thermal insulation, radioactive waste disposal, transpi-
ration cooling, geophysics, transport of contaminants in
groundwater, ceramic processing, and solid matrix heat
exchangers. It is well documented in the literature that
various developments in this field have occurred; see
for instance Bear [14], Rees [15, 16], Bejan et al. [17],
Nield and Bejan [18], Vafai [19], Nield and Simmons [20].
When magnetic fluids and couple stresses are involved,
Saravanan and Yamaguchi [21, 22] studied the same
problem.
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According to Bhatta et al. [23], a horizontal mushy
layer saturating a porous medium exhibits steady
magnetoconvection. When the fluid is dielectric, the
electric force drives the motion more than the magnetic
force. Swamy [24] performed linear and nonlinear stabili-
ty analysis for a porous layer saturated with a dielectric
fluid in the presence of a vertical ac electric field and
time-periodic vertical oscillations. A fluid semiconductor
layer that has an open unstable surface was investigated
by Smorodin et al. [25] for its effect on the instabili-
ty of a first quasi-equilibrium fluid caused by intermi-
ttent temperature fluctuations. The number of Raylei-
gh numbers and the frequency of the electric field play
an important role in destabilizing and stabilizing the
ground state, according to Smorodin [26]. It is only
the positive response to the electric field that is consi-
dered in the horizontal layer. In the fluctuation period,
the dielectrophoretic force does not change its direction
because it does not depend on the direction of the electric
field [27-29]. Rudresha et al. [30, 31] investigated thermo-
electroconvection in a dielectric fluid subjected to time-
periodic electric field modulation. It is shown that the
onset of electroconvection can be accelerated or delayed
by proper adjustment of the mechanisms of electric field
modulation, electric force and couple stresses.

This study aims at analyzing the combined effect of
small amplitude electric field modulation on the onset of
electroconvection in a horizontal densely packed porous
fluid layer with a wide range of values of the frequency
of modulation besides the Vadasz number, the Raylei-
gh number, the electric Rayleigh number, and normali-
zed porosity. The Darcy model is taken into account
because the fluid layer under consideration is treated as
a permeable one. The outcomes of this work are expected
to be helpful for crystal development under microgravity
conditions.

II. MATHEMATICAL FORMULATION

The electric force per unit volume acting on the fluid
is represented as follows:

1 1

fe:peE—§ (E-E)Ve+ V- <2pap (EE)> (1)
The Coulomb force owing to a free charge is the first term
on the right. It is the most powerful term of the EHD
force and generally takes precedence when dc electric fi-
elds are present. The second term is determined by the
gradient of ¢ and takes precedence when an ac electric
field acts on the dielectric fluid. The application of a dc
electric field causes the dielectric fluid to accumulate free
charges. The free charge has no time to accumulate when
an ac electric field is supplied at a frequency substantially
greater than the reciprocal of the electric relaxation peri-
od. Furthermore, the electrical relaxation durations of
most dielectric fluids appear to be long enough to exclude
free charge accumulation at typical power frequencies. At
the same time, the dielectric loss at these frequencies is
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so little that it has little effect on the temperature field
[4]. Under these conditions, only the force caused by the
non-uniformity of the dielectric constant is taken into
account. The last term in Eq. (1), known as electrostri-
ction force, may be summed up with the pressure term
and has no effect on an incompressible dielectric fluid.

We investigate a densely packed porous layer of a
dielectric fluid that spreads between infinite horizontal
surfaces z = 0 and z = d under the influence of a verti-
cally acting electric field and a varying electric potential
with time t.

Polarized dielectric fluid z
in a porous medium

LT
k-

@ =U((1 + nacos@t)
Fig. 1. Physical configuration

On the boundaries of the horizontal layer, ¢ =
+U (n1 +n2 coswt) (see Fig. 1) is achieved, where U is
the magnitude of the modulation of the electric potenti-
al, w is the frequency of modulation and, 7; and 7y are
the relative amplitudes of the components of constant
and alternating potential difference. We assume that
the dielectric fluid constant ¢ is a linear function of
temperature, the fluid is incompressible, and the porous
medium is densely packed. The governing equations for
the problem of convection in a densely packed porous
layer saturated with an incompressible dielectric Boussi-
nesq fluid are as follows [3, 4, 30]

Jq 1
POS E-FS(Q'V)Q
= Vpipg-tq-iE® BV (3)
=-Vp+pg— d-; g,
A%Jr(q-V)T:nv?T, (4)

where E is the electric field, T is the temperature, g is
the gravitational acceleration ¢ is the dielectric constant,

p*=p—3p55 (E-E)and A = gﬁi)"}

ratio, po is the density at reference temperature, p is the
density of the fluid, § is the porosity of the porous medi-
um, g is the fluid viscosity, K is the porous permeabi-
lity,  is the thermal diffusivity. Assuming that the free
charge density is negligibly small, the relevant Maxwell
equations are

is the specific heat

V- [cE] =0, (5)
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VxE=0=E=-Vo, (6)

where ¢ is the electric potential and, p and ¢ are
assumed to be a linear function of temperature of the
form

p=po[l —a(T—-T), (7)

:Eo[l—e(T—To)], (8)

where e (> 0) denotes the thermal expansion coeffici-
ent of the dielectric constant and « is the thermal
expansion coefficient of the temperature. For example,
for 10 cs silicone oil, e = 2.86 x 107'K™® and
e=26x10""F -m~! 6]

III. BASIC STATE

The ground state is at rest and is given by % = 0;
A=qv(2) =0 T=Ty(2);p=ps(2); p=pp(2); €=
e (2); 6 = 61 (2); E = By, = [0,0, By (2)], where the
suffix represents the basic state. Using these in equations
(2) though (8), we obtain

0=—Vp,+ppg— %EE Ves, (9)
Ty =Ty — Bz, (10)

oy = po [1+af2], (11)

ey =¢0 [1+eB2] (12)

with E, = —V¢, and the solution of Eq. (10) using the
boundary conditions T, = Ty at z = 0 and T, = T} at
z = 1, we obtain

bp = _ego log(14+eB2)+U(ni+mnacoswt) (13)
and
EbZQU(nl—l—;gcoswt) (1-eB2), (14)
where Ey = ZU(q;;r(?izgsdu; DB and = Togl,

IV. LINEAR STABILITY ANALYSIS

To study the stability of the basic state, we superi-
mpose infinitesimally small perturbations on the basic
state in the form q = q' = (v, v, w');p = pp + 9/, T =
T, +T e =¢cp,+¢,0=¢p+ ¢, E=E,+E. Substituti-
ng these into equations (2) through (8), linearizing and
eliminating the pressure term, we obtain

V- q =0, (15)

E'=-V¢ (16)
pl=—apT, (17)
g =—eeyT'. (18)

The perturbed equations of the study at hand are the
following

@Q 2.\ _ 2 Moo o 410 ooy

5ot (V) = amgVie gpViuts Sp g (V)
2A

+ %VfTC (19)

5., —2U(n1+n2coswt) edT’

= 2

v ’ )
!

A%T —Buw' =Kk V3T, (21)

where A} = 2U (91 +nacoswt)eBeo, Vi = 02/02% +

0?)0y?, f=coswt, V2 =0%/02*+ 0?/0y*+ 0%/0 2%

Equations (19) through (21) are rendered dimensionless

through the following transformations (z*,y*, 2*) =

(5.4,3); 6" = srorrosear 7 = 275 U = 4

w* = “’Td to obtain the following dimensionless equati-
s (after omitting the asterisks for simplicity)

(18 + 1) Viw = |:R+Re(1 +"73f)2

Va ot
+ R (1+773f) Vig, (22)
10 9

~2 )1 = 2

(X oY > v (2
orT

2p = 24
vio= -2, (21)
where R = 0"’01# is the Darcy-Rayleigh number,

4e2U2%B%eqdn’ K .
Va= Md is the Vadasz number, R, = eﬁ# is

the electrlcal Rayleigh number, x = 47 is the normali-

zed porosity, n, = Z—i is the ratio of amplitudes. The

appropriate boundary conditions are
w=T=D¢p=0 at z=0,L1 (25)
Combining equations (22) through (24) yields

Vaot at

= [RV2+R6V%<1+’I73COSWt)2} Viw. (26)

v2> Viw

Equation (26) must be solved under the dimensionless
homogeneous boundary conditions [31, 32]

Pw  Ftw
=——=—+=0atz=0,1. 27
0z2 0zt =0 (27)
We employ the regular perturbation method to derive an
expression for the correction critical Rayleigh number.
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V. PERTURBATION PROCEDURE WITH
SMALL AMPLITUDE APPROXIMATION

We search for the fundamental temperature profile
which deviates from the linear profile by measures of
order 773. We, therefore, assume that the solution of
equation (26) has the form

(w, R) = (’LU()7 Ro)+7}3 (wl, R1)+77§ (’LUQ7 R2)+. R (28)
Substituting equation (28) into (23) and equating the

coefficients of like powers of 73, we obtain the following
system of equations

Lwy =0, (29)

Lwi =R V2V2wy+ 2R, f V3w, (30)
Lwy = R V*Viw; + Ry V?Viwg

+ 2Refv411w1+Ref2v%w0a (31)

where

_ ig lg_ 2 4 272 4
L_<Va6t+1> <X \Y )V RoV2V?— RV,
(32)

It is necessary to determine wg, wi, and wy using the
boundary conditions in equation (27).

When studying convection in a horizontal, dielectric,
fluid-saturated, tightly packed porous layer exposed to
a uniform electric field, equation (29) is utilized, and it
should be only minimally stable. The marginally stable
solution for that problem is

wo = sin7z. (33)
The corresponding eigenvalues are given by
a? + 7 - R.a*
o Gl (34)

a? (a? + 72)

Equation (34) expresses the thermal Rayleigh number as
a function of wavenumber o and the electric Rayleigh
number R.. It is identical to that obtained by Nagouda
and Maruthamanikandan [33] in the case of the non-
classical heat conduction effect being absent.

In the absence of electric force (i.e., when R, = 0),
Eq. (34) reduces to

(% + 72)?

Ry =
o?

which is exactly the same relation as available in the
literature [19, 20].

In Fig. 2, the thermal Rayleigh number Ry is plotted
against wave number « for different values of the electric
Rayleigh number R.. The destabilizing effect of the di-
electrophoretic force is evident from Fig. 2.
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Fig. 2. Variation of the thermal Rayleigh number Ry with
the wavenumber « for different values of the electric Rayleigh
number R,

We take the solution of w in the form w(x,y,z2,t) =

w(z,t) et (@=®+t¥) and thus obtain VZw = —a?w.
Equation (32) now becomes
Le "'sinnnz = L (w,n) e *“ sinnrz, (35)
where
L(w,n)= s (n?m* + a2)2 + (n?n* + a2)3
’ xVa
— Roa® (n*n* +0®) — Rea' (36)

—tw {‘2(”27724_0‘2)3"‘i(n27‘r2+a2)2}-

The above equation is inhomogeneous and its solution
poses a problem because of the presence of a resonance
term. The mathematical properties and solvability condi-
tions of the differential equations with time periodic
coefficients have been extensively discussed by Yakubo-
vich and Starzhinskii [34]. If this equation is to have
a solution, the right-hand side must be orthogonal to
the null space of the operator L. This requires that the
time-independent part of the right-hand side should be
orthogonal to its steady state solution wy. It follows that
all the odd coefficients R1, R3 Rs,... in equation (28)
are zero because a change of the sign of 73 shifts the ti-
me origin by half period but does not change the physical
problem.

We now solve equation (30) by inverting the operator
L term by term and obtain the expression for w; in the
form

o0

1 . .
w1 =2R.a*Re E — e Wlginnmz

L(w,n) (37)

n=1

It is not essential to solve equation (31) for wsy since we
are only concerned with identifying the value of Ry, the
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non-zero correction of R. The continuity of the right-
hand side of equation (31) must be orthogonal to sin 7z
in order for it to be solvable. It follows that

equation (30) and (37) in equation (38) yields

1 2R2a° = C,
—2R. a? - Ry = ——— —, (39)
Rz:ﬁ Q/fwlsinmdz . (39) (a +72) ;Dn
0
where the overbar indicates the time average. Using  where
J
lw? 5, 22 2,_2 2)3 2 (2 2 2 4
C'n:;%( ™ +a?)" = (n*r® +a®)" + Roa® (n*m° +o®) + Rea

and

2
D, = [1w(n27r2 + a2)2 — (n27r2 + a2)3 + Ry a? (n2772 + a2) +R,a*

+a2)2}2.

x Va

of 1 2_2 23 1,9 o
+ w {Va(nw +a) —|—¥(n

VI. RESULTS AND DISCUSSION

Analytical research involving the linear stability
theory is done on the simultaneous impact of the time-
periodically varying electric field and a porous medi-
um on the initiation of thermal convection in a hori-
zontal dielectric fluid layer. The critical Rayleigh number
Rs. and the wave number are determined using the
regular perturbation approach, which is based on a li-
mited amplitude of modulation. The expression for the
critical correction Rayleigh number Rs. is computed as
a function of the frequency of modulation, the Ray-
leigh number, the Vadasz number, the electrical Rayleigh
number, and the normalized porosity, and the impact of
these parameters on the stability of the system is di-
scussed.

The analysis presented in this work is based on the
assumptions that the amplitude of the electric field
modulation is very small compared to the mean electric
field and that the convective currents are weak so that
nonlinear effects may be neglected. The violation of these
assumptions would alter the results significantly only
when the modulating frequency w is low. This is due to
the perturbation method’s requirement that the ampli-
tude of n3w; should not be more than that of wg, whi-
ch results in the condition w > n3. Thus, the value of
the frequency of the modulation determines the appli-
cability of the results achieved here. The boundaries of
the fluid are affected by the modulation of the electric
field when w is sufficiently small (i.e., when the peri-
od of the modulation is large). High frequencies, on the
other hand, correspond to a renormalization of the static
modulation of the electric field, which means that for
large values of w, the influence of the modulation is restri-
cted to a thin border layer close to the boundary. As a

2

[

result, the buoyancy force takes an average value outside
of this layer thickness, resulting in the non-modulated
case’s equilibrium state.

Since the modulation amplitude is an externally
controllable variable, it is possible to prevent finite ampli-
tude instabilities by preventing it from growing too large.
Although it cannot be controlled, the nonlinear interacti-
ons are used to determine the magnitude of the convecti-
on currents. In order to maintain the notion that the
nonlinear terms are tiny, it is significantly more crucial
that the flow fields under discussion remain of modest
amplitude at some point in a modulation cycle.

For a densely packed porous dielectric fluid layer, Fi-
gs. 3 through 5 show the frequency dependence of the
critical correction Rayleigh number Rsy.. These figures
demonstrate that across a narrow range of values w,
Ry, is negative, showing that the system is destabi-
lised by the application of electric field modulation,
with electroconvection occurring at an earlier point when
compared with the unmodulated system. However, the
critical correction Rayleigh number is positive for modest
and large values of the frequency of modulation indicat-
ing that the electric field modulation has a stabilizing
impact on the system with convection occurring at a later
point in comparison with the unmodulated system. In
addition, we discover that the critical Rayleigh number
magnitude rises with rising w, reaches a peak value at
some frequency w = w*, and then falls with rising w. The
magnitude of the electric force determines the frequency
at which the critical Rayleigh number peaks. Figure 3
demonstrates the effect of the electrical Rayleigh number
on the correction Rayleigh number with fixed values of
the Vadasz number and normalized porosity. The fixed
values are taken to be Va = 50 and y = 0.5.
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Fig. 4. Variation of Ry, with w for different values of Va for
the Darcy porous layer

It is observed that the value of the critical correction
Rayleigh number increases negatively with the electri-
cal Rayleigh number at low frequencies, but positively
with the electrical Rayleigh number at moderate and hi-
gh frequencies, indicating that the effect of the electri-
cal Rayleigh number is to destabilize the system at low
frequencies while stabilizing the system at moderate and
high values of frequency of the electric field modulation.

The impact of the Vadasz number Va on the stability
system is seen in Fig. 4. The size of the critical correction
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Rayleigh number Rj. intensifies adversely with cumulati-
ve Va when the value of w is large. The tendency does,
however, sharply reverse itself. As a result, when the
frequency is low, an increase in the Vadasz number
destabilizes the system and when the frequency is high,
it enhances the stability of the system. It is noteworthy
that the critical correction Rayleigh number Ry, begins
to positively decline over a period of Va for adequately
large w values, showing that the electric field modulation
has the stabilizing effect for this range of frequencies.

500

400

300}

200

100

0 .,-.-..-E-J-M-'A'-:_' . .
-4 =2 0 2 4
Rac
Fig. 5. Variation of Ry, with w for different values of y for
the Darcy porous layer

Figure 5 illustrates the effect of normalized porosity x
on the stability of the system in the presence of electric
field modulation. we discover that the impact of x on
the stability of the system is less significant for small
values of w. However, normalized porosity x tends to
stabilize the dielectric fluid layer when w is moderate and
large. As a result, electroconvection can be postponed
with increasing values of yx provided frequency of the
electric field modulation is not small enough.

VII. CONCLUSIONS

The effect of electric field modulation on the onset
of convection in a horizontal dielectric fluid layer and
a fluid-densely packed porous layer is examined using
the perturbation method. The following conclusions are
drawn:

1. Subcritical instability is noticeable due to the
electric field modulation for low frequency of the
modulation.

2. Dielectrophoretic force tends to destabilize the
system for low frequency of the modulating electric

field and the opposite is true for moderate and large
values of the frequency.
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3. The impact of the Vadasz number on the stability
of the system is akin to that of the dielectrophoretic
force.

4. The system is stabilized only slightly due to
the normalized porosity for low frequency of the

modulation.

5. Electroconvection can be delayed by the normali-

zed porosity for moderate and large values of the
frequency of the modulation.

In summary, electric field modulation in a horizontal
dielectric fluid layer saturating a Darcy porous medium
induces or delays electroconvection in a porous medium.
As a result, the mechanism of electric field modulation
could be employed to control convection in compactly
packed porous media saturated with dielectric fluids.
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C. RUDRESHA, C. BALAJI, V. VIDYA SHREE, S. MARUTHAMANIKANDAN

BUHUKHEHHS EJIEKTPOKOHBEKIIII B KOMIIAKTHO YIIAKOBAHOMY
AIEJIEKTPUTYHOMY ITIPOHUKHOMY AJIf PIAVMHUN IITAPI 3 MOAYJIBOBAHVM
EJIEKTPUTYHUM ITOJIEM

Y. Pyapewa, Y. Banapki, B. Bigpa IIIpee, C. Mapyrramanikanan
Daxyavmem mamemamury, IIpesudenmevkul ynisepcumem,
Bansanrop, Kaprnamaxa, Inoia

Metomom Maux 30ypeHb y MOETHAHHI 3 METOIOM PEryIsipHUX 30y PEeHb TOCIIYKEHO BILJIHB TePiOguIHON
B Yacl MOIYJAIl eJIeKTPUIHOTO TOJIS Ha €JeKTPOKOHBEKIIO B KOMIIAKTHO YIAKOBAHOMY Ji€JIEKTPUIHO-
My TPOHMKHOMY /s piaunm 1mapi. BBaxkaeTnbcs, M0 AieTeKTpUIHA MPOHUKHICTD € JIHIAHOI (YHKITE
remmeparypu. s Momynanii eIeKTPUYHOrO MOJis MaJiol aMILIITYAd KPUTHUYHE MTOIPaBKOBe 4ucyio Pe-
Jiest BU3HAYAIOTH 33 JOTMOMOTOI0 METOY peryiaspuux 30ypenb. Kpuruune anciio Penes orpumyiors depes
enekTpuune umcio Pemes, unciao Bagaca, HopMOBaHY MOPHCTICTH 1 9aCTOTY MOMYJAMil A1 BU3HAYEH-
e crabinbHocTi cucremu. Busgpieno, mo MOAyJsIis €JIeKTPUIHOrO MOJs HA HU3bKUX 9aCTOTAX MOXKE
crBopioBaru CyOKkpuTuuHuii Kousektupauil pyx. llokazano, mo Bius uucna Bajgaca cxoxwuii Ha BIIUB
mieekrpodopernyanol cuym. Crabimi3yoBabHuil BILIMB HOPMAJIi30BAHOI MIOPUCTOCTI GBI BUPAYKEHUH,
KOJTW YaCTOTA MOJIYJIAIIl €JIEKTPUIHOTO TOJIsI MoMipHa i Beiuka. ocaizKeHHs MOKa3ye, M0 eIeKTPUYHI
[OJIst, 10 3MIiHIOIOTHCS B 4Yaci, i MILUIbHO yIaKOBAaHUM MOPUCTUI ITIAp MOXKYTb MATHU HACJIJAKU JIJIS KOH-
TPOJIIO €JIEKTPOKOHBEKIIT B IIporpaMax Terjionepeaadi, 10 BKJIYATh JieJeKTPUYHi piguan sik pobodi
CepeJIoBUIIA.

KarouoBi caoBa: mozens Jlapci, gienekTpudHa piinHA, €TEKTPUIHE MOJIE, MOPUCTE CEPEIOBUIIE,
[IOPUCTICTh 1 MOYJISAIISA.
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