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EULERIAN FRACTIONS AND STIRLING, BERNOULLI
AND EULER FUNCTIONS WITH COMPLEX ORDER

PARAMETERS AND THEIR IMPACT ON THE
POLYLOGARITHM FUNCTION

Paul Butzer, Tian-Xiao He∗ and Clemens Markett

We first study some generalizations of Eulerian fractions with complex order

parameter and investigate their interrelationship with likewise generalized

Eulerian functions as well as Stirling functions. We apply the new approach to

polylogarithms of non-integral order, for which only a few values are known in

closed form. In particular, we present a structural solution of the counterpart

of an old conjecture of Mengoli and Euler in the polylogarithm case with the

aid of Riemann’s zeta function and the Dirichlet eta and beta functions.

1. INTRODUCTION

Among the important special functions in analytic number theory, the poly-
logarithm function (also known as Jonquière’s function or Li-function) plays a
prominent role. It is defined for any complex γ and z as the analytic continua-
tion of the Dirichlet series

(1) Liγ(z) :=
∑
k≥1

zk

kγ
(|z| < 1, z, γ ∈ C).
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For γ = 1, the Li-function is just the ordinary logarithm function Li1(z) =
− ln (1− z), while the special cases γ = 2 and γ = 3 are known as Euler’ s diloga-
rithm (also referred to as the Spence’ s function) and the trilogarithm, respectively.
More generally, the polylogarithm is associated with the Lerch transcendent (cf.,
e.g.,§1.11 of [17] and [18])

Ψ(z, γ, ν) =

∞∑
n=0

(ν + n)−γzn,ν ̸= 0,−1,−2, . . . , |z| ≤ 1,Re γ > 0 or z = 1,Re γ > 1,

(2)

in view of the obvious correspondence Liγ(z) = zΨ(z, γ, 1).

Many mathematicians, including Euler, Kummer, Abel, Spence and Nielsen,
have contributed to the theory of polylogarithms. Perhaps more often than in
other fields of mathematics, previously obtained results have been overlooked and
properties repeatedly rediscovered. This topic treated a subject which has regained
considerable interest in the last few decades on account of its applications in sev-
eral fields of pure and applied mathematics, for instance in connection with non-
Euclidean geometry and group theory and in quantum electrodynamics, where the
use of modern computational facilities, in particular formula manipulation, allows
certain multidimensional integrals over rational functions to be expressed in closed
form by means of polylogarithms and related functions. For more materials, one
may see [25, 34, 35].

A major purpose of this paper is to investigate the polylogarithm function
by exhibiting and employing its close relationship with the generalized Eulerian
fractions for complex order parameter. The classical Eulerian fractions

(3) αn(z) =

∞∑
k=0

(k + 1)nzk (n ∈ N0, |z| < 1, z ∈ C)

are obtained in the study of the classical Eulerian numbers and their associated
Eulerian polynomials,

E(n, k) =

k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n (n, k ∈ N0)

An(z) =

n∑
k=0

E(n, k)zk (n ∈ N0, |z| < 1, z ∈ C)

by inverting the Carlitz identity (cf., e.g., [10, 12, 13, 29])

(4) An(z) = (1− z)n+1αn(z).
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Comparing the coefficients of zn on both sides of the identity αn(z) = An(z)(1 −
z)−n−1, we may obtain the Worpitzky’s identity (cf. [29])

(k + 1)n =

n−1∑
i=0

E(n, i)

(
n+ k − i

n

)
.

The functions αn(z) are a powerful tool in many applications as, e.g., in number the-
ory, combinatorics or computational mathematics [9, 13, 16, 19, 20, 22, 21, 33]).
For instance, the particular series αn(1/2) has interesting combinatorial applica-
tions found by Velleman and Call [33] and by Lengyel [24]. Even the partial sums
of the Eulerian fraction series or the sums of the so-called arithmetic-geometric
progression have been studied for a long time due to their important applications,
see, e.g., [9, 16] or [28] in case n = 1 . In addition, various series summation
problems treated in Schwatt’s book [31] are of this form.

The definition (3) of the Eulerian fraction now clearly suggests that its gen-
eralization to a complex order parameter, say αγ(z), γ ∈ C, would lead to new
valuable representations of the polylogarithm (1) by observing that

(5) Liγ(z) = zα−γ(z) (|z| < 1, z, γ ∈ C).

This is carried out in Section 2 (cf. Corollary 4). In addition, we will make use
of the fact that the classical Eulerian fractions are closely related to the Stirling
numbers of the second kind S(n, k) via (cf., e.g., [7] as well as Theorem 8)

(6) αn(z) =

n∑
k=1

k!S(n, k)
zk−1

(1− z)k+1
, n ∈ N.

The quantities S(n, k), also denoted by {n
k
}, count the number of ways to partition

a set of n elements into k nonempty subsets, and are given by (see [13, 23])

S(n, k) =
1

k!
∆kxn

∣∣∣∣
x=0

=
1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jn (n ∈ N0, k ∈ N), S(0, 0) = 1.

Here, ∆ is the forward difference operator, ∆f(x) = f(x+ 1)− f(x), and ∆k+1 =
∆(∆k), k ∈ N. There is a huge literature connected with these numbers. For

instance, in [32], the numbers L
(r)
n , generated by the Taylor expansion(

z

ln (1 + z)

)r

=
∑
n≥0

L(r)
n

zn

n!
(|z| < 1)

satisfy the remarkable formula
(
m−1
n

)
L
(m)
n = S(m,m− n) for n ∈ N0,m ∈ N such

that 0 ≤ n ≤ m− 1. In order to extend the identities (4) and (6) to complex order
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γ ∈ C, we need appropriate generalizations of the Eulerian numbers and functions,
E(γ, k) and Aγ(z), as well as of the Stirling numbers of the second kind, S(γ, j).
These latter quantities have been defined already for γ ∈ R [4] and later for general
γ ∈ C [8]. Moreover, we will investigate two more types of Eulerian fractions which,
besides S(γ, j), depend on an additional parameter a ∈ R (see Proposition 2.10).

It has always been of great interest and an enormous challenge to represent
the polylogarithm function Liγ(z) for particular entries of either the argument z
or the order γ, but still very few of these values are known in closed form. Another
aim of this paper, as pursued in Section 3, is to investigate the polylogarithm with
imaginary arguments Liγ(±i). Here we restrict ourselves to the parameter range
Re γ > 1 to be sure that the representations described in the Corollaries 2.3 and
2.8 can be continued to the boundary values z = ±i. Moreover, we will make use
of the fact that the polylogarithm is linked, as a function of its order γ, to the
Riemann zeta-function

(7) ζ(γ) := Liγ(1) =

∞∑
k=1

1

kγ
, Re γ > 1,

as well as to the Dirichlet eta function (or alternating zeta function)

(8) η(γ) := −Liγ(−1) =

∞∑
k=1

(−1)k−1

kγ
, Re γ > 0.

These two functions are also connected with the lambda function

λ(γ) :=

∞∑
k=0

1

(2k + 1)γ
, Re γ > 1,

in view of the two obvious identities

(9) λ(γ) = (1− 2−γ)ζ(γ), ζ(γ) = (1− 21−γ)−1η(γ),

which implies λ(γ) = 2−γζ(γ) + η(γ). Finally, the Dirichlet (or Catalan) beta
function is defined by

β(γ) :=

∞∑
k=0

(−1)k

(2k + 1)γ
, Re γ > 0.

This function is particularly interesting for us because of the following connection
with the zeta and eta functions (7) and (8) (cf. 5.4 of [34]).

Lemma 1. Let γ ∈ C, Re γ > 1. The polylogarithm (1) with imaginary arguments
satisfies

Liγ(±i) = −2−γη(γ)± iβ(γ) = −2−γ(1− 21−γ)ζ(γ)± iβ(γ).(10)
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Proof. By definition (1), one has

Liγ(±i) =
∞∑
k=1

(±i)k

kγ
=

∞∑
n=1

(−1)n

(2n)γ
± i

∞∑
n=0

(−1)n

(2n+ 1)γ
= −2−γη(γ)± iβ(γ),

which yields the second identity in (10) in view of (9).

If the parameter γ is an even integer, the zeta function and thus also the eta
and lambda functions (see p. 125 of [1]) may be stated in closed form in terms of
the Bernoulli numbers Bn, while for γ being an odd integer, the beta function is
linked to the Euler numbers En. This is due to the two famous identities already
established by Euler in 1735 and 1747,

ζ(2m) =(−1)m+1(2π)2m
B2m

2(2m)!
(m ∈ N),(11)

β(2m+ 1) =(−1)m
(π
2

)2m+1 E2m

2(2m)!
(m ∈ N).(12)

Here the Bernoulli and Euler numbers are the particular values Bn ≡ Bn(0) and
En ≡ 2nEn(1/2) of the Bernoulli and Euler polynomials, Bn(x) and En(x) , which
are usually defined via their exponential generating functions

wexw

ew − 1
=

∞∑
n=0

Bn(x)
wn

n!
(|w| < 2π)(13)

2exw

ew + 1
=

∞∑
n=0

En(x)
wn

n!
(|w| < π)(14)

for w ∈ C and x ∈ R . By expanding the left-hand sides of (13) and (14) as
products of two power series, it is easy to see that

Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k, En(x) =

n∑
k=0

(
n

k

)
En−k2

k−n

(
x− 1

2

)k

(n ∈ N0).

In particular, when inserting the first non-vanishing values of the Bernoulli and
Euler numbers

B2 =
1

6
, B4 = − 1

2 · 3 · 5
, B6 =

1

2 · 3 · 7
, B8 = − 3

2 · 5 · 9
, B10 =

5

2 · 3 · 11
,

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385,

into the formulas (11) and (12), it follows that
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ζ(2) =
20

3!
π2, ζ(4) =

1

3
· 2

2

5!
π4, ζ(6) =

1

3
· 2

4

7!
π6, ζ(8) =

3

5
· 2

6

9!
π8, ζ(10) =

5

3
· 28

11!
π10,

β(1) =
1

22
π, β(3) =

1

242!
π3, β(5) =

5

264!
π5, β(7) =

61

286!
π7, β(9) =

1385

2108!
π9.

Already in 1650, Mangoli [26] raised the question of evaluating ζ(2m + 1).
Some numerical approximation and computational results of ζ(2m+1) can be found
in [14, 15] and their references. The Mangoli’s problem was successfully attached
by the first-named author in joint work with M. Hauss and M. Leclerc [6]. In order
to find an appropriate counterpart of identity (11) for odd integer values, they
first extended the classical Fourier series of the Bernoulli polynomials to Bernoulli
functions with complex index γ ∈ C, Reγ > 1,

(15) Bγ(x) = −2Γ(γ + 1)

∞∑
k=1

cos(2πkx− γπ/2)

(2πk)γ
(0 ≤ x < 1)

and then defined the conjugate Bernoulli functions as their Hilbert transforms

(16) B∼
γ (x) = −2Γ(γ + 1)

∞∑
k=1

sin(2πkx− γπ/2)

(2πk)γ
(0 ≤ x < 1)

This led to a far-reaching generalization of identity (11) involving the Bernoulli
numbers Bγ := Bγ(0) and their conjugates B∼

γ := B∼
γ (0) with complex order γ

(see Proposition 3.5). In particular, they arrived at

(17) ζ(2m+ 1) = (−1)m(2π)2m
B∼

2m+1

2(2m+ 1)!
(m ∈ N).

For a detailed examination of the values B∼
2m+1 see [2].

Shortly afterwards, a similar approach was used in [3] to generalize the rep-
resentation (12) of the beta function at odd integers to complex order values. Here,
the final result (see Proposition 3.6) is based on defining the Euler functions and
their conjugates for γ ∈ C, Reγ > −1. On the interval 0 ≤ x < 1, their Fourier
series read

Eγ(x) =4Γ(γ + 1)

∞∑
k=0

sin((2k + 1)πx− γπ/2)

((2k + 1)π)γ+1
,(18)

E∼
γ (x) =− 4Γ(γ + 1)

∞∑
k=1

cos((2k + 1)πx− γπ/2)

((2k + 1)π)γ+1
.(19)
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Now define the generalized Euler numbers by Eγ := 2γEγ(1/2) and their conjugates
by E∼

γ := 2γE∼
γ (1/2). Then the latter quantities yield

(20) β(2m) = (−1)m
(π
2

)2m E∼
2m−1

2(2m− 1)!
(m ∈ N).

Finally we notice that in view of (15) and (18), and even for γ ∈ C\Z+, x ∈
C\R−

0 (cf. Theorem 3.7 of [3]), the Euler functions can be expressed in terms of
the Bernoulli functions by

Eγ(x) =
2γ+1

γ + 1

{
Bγ+1

(
x+ 1

2

)
−Bγ+1

(x
2

)}
(0 ≤ x < 1).

Analogously, it follows from (16) and (19) that the conjugates of the Euler
and Bernoulli functions are related to each other by

E∼
γ (x) =

2γ+1

γ + 1

{
B∼

γ+1

(
x+ 1

2

)
−B∼

γ+1

(x
2

)}
(0 ≤ x < 1).

Consequently, the generalized Euler numbers and their conjugates satisfy

Eγ−1 = 2γ−1Eγ−1

(
1

2

)
=

22γ−1

γ

{
Bγ

(
3

4

)
−Bγ

(
1

4

)}
,

E∼
γ−1 = 2γ−1E∼

γ−1

(
1

2

)
=

22γ−1

γ

{
B∼

γ

(
3

4

)
−B∼

γ

(
1

4

)}
.

(21)

In Section 3, we use Lemma 1 together with the relationships between the
zeta and beta functions, on the one hand, and the generalized Bernoulli and Euler
numbers and their conjugates, on the other hand, to establish further representa-
tions of the Li-function at the values ±i.

2. EULERIAN FUNCTIONS AND FRACTIONS, STIRLING
FUNCTIONS AND THE POLYLOGARITHM

In order to generalize the classical Eulerian fractions to complex order pa-
rameters, we can use mixed techniques shown in [4, 5, 11, 9, 19, 20, 22, 21]. In
[5], the Eulerian numbers (1.1) and the (slightly modified) Eulerian polynomials
(1.2) have been extended already to the fractional situation

(22)

E(γ, k) =

k∑
j=0

(−1)j
(
γ + 1

j

)
(k+1−j)γ , Aγ(z) =

∞∑
k=0

E(γ, k)zk (γ ∈ R, |z| < 1).
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But the functions Aγ(z) are also valid for complex values of the order parameter
γ. In fact, the generalized binomial coefficient in the definition of E(γ, k) can be
estimated by (cf. (1.51) of Samko, Kilbas, and Marichev [30])

∣∣∣∣(γ + 1

j

)∣∣∣∣ := |(γ + 1)γ . . . (γ − j + 2)|
j!

≤ A

jRe γ+2
(γ ∈ C, γ ̸= −2,−3, . . .)

with some constant A > 0, and

|(k + 1− j)γ | = |(k + 1− j)Re γeiIm γ log(k+1−j)| = (k + 1− j)Re γ , 0 ≤ j ≤ k.

Substituting now E(γ, k) into the power series of Aγ(z), interchanging the order of
summation and using the generalized binomial theorem, we obtain

Aγ(z) =

∞∑
k=0

k∑
j=0

(−1)j
(
γ + 1

j

)
(k + 1− j)γzk =

∞∑
j=0

∞∑
k=j

. . .

=

∞∑
j=0

(−1)j
(
γ + 1

j

)
zj

∞∑
k=0

(k + 1)γzk

= (1− z)γ+1
∞∑
k=0

(k + 1)γzk.

Since both sums in the second line are convergent within the unit disk |z| < 1 for
any γ ∈ C, we can even extend the parameter γ of the Eulerian function Aγ(z) to
the whole complex plane. This enables us to generalize the classical identity (4) as
follows.

Definition 2. For γ ∈ C, the generalized Eulerian function is defined by

(23) Aγ(z) = (1− z)γ+1aγ(z), aγ(z) =

∞∑
k=0

(k + 1)γzk (|z| < 1, z ∈ C).

Here, the function aγ(z) is called the generalized Eulerian fraction. In terms of the
Lerch transcendent (2), it is given by αγ(z) = Ψ(z,−γ, 1).

By definition of αγ(z), we readily obtain the following statements.

Corollary 3. Let γ ∈ C. The generalized Eulerian fraction satisfies the differenti-
ation formula

d

dz
[zaγ(z)] = aγ+1(z) (|z| < 1, z ∈ C).
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Corollary 4. Let γ ∈ C. The polylogarithm (1) is related to the generalized Eule-
rian fraction and thus to the generalized Eulerian numbers by

Liγ(z) :=za−γ(z) = z(1− z)γ−1A−γ(z)

=(1− z)γ−1
∞∑
k=0

E(−γ, k)zk+1 (|z| < 1, z ∈ C).
(24)

Applying again the generalized binomial theorem, the latter expression is equivalent
to

Liγ(z) =

∞∑
k=0

∞∑
j=0

(−1)j
(
γ − 1

j

)
E(−γ, k)zj+k+1

=

∞∑
j=0

{
j∑

k=0

(−1)j−k

(
γ − 1

j − k

)
E(−γ, k)

}
zj+1 (|z| < 1, z ∈ C).

(25)

Remark 5. Alternatively, we obtain identity (25) by observing that for all j ∈ N0,
the inner sum is equal to

j∑
k=0

(−1)j−k

(
γ − 1

j − k

) k∑
n=0

(−1)k−n

(
1− γ

k − n

)
(n+ 1)−γ

=

j∑
n=0

(−1)j−n(n+ 1)−γ

j∑
k=n

(
γ − 1

j − k

)(
1− γ

k − n

)

=

j∑
n=0

(−1)j−n(n+ 1)−γδj−n,0 = (j + 1)−γ .

If γ = −n, n ∈ N, the sum in the second identity of (24) terminates since
E(n, k) = 0, k ≥ n. As was shown already by Wood [34], the identity (24) then
reduces to

Li−n(z) = (1− z)−n−1
n∑

k=1

E(n, k − 1)zk.

In particular, one has

Li0(z) =za0(z) =
z

1− z
,

Li−1(z) =za1(z) = z
d

dz

[
1

1− z

]
=

z

(1− z)2
,

Li−2(z) =za2(z) = z
d

dz
[za1(z)] =

z(1 + z)

(1− z)3
.
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Theorem 6. For γ ∈ C, Re γ > 0, µ ∈ [0, 1), |z| < 1, and |t| < 1, there holds

(26)

∞∑
n=0

αγ+nµ(z)
tn

n!
=

∞∑
k=0

(k + 1)γzk exp((k + 1)µt).

In particular, if γ = 0 and µ → 1, one arrives at the generating function of
the classical Eulerian fractions defined in (4), namely

∞∑
n=0

αn(z)
tn

n!
=

et

1− etz
.

Proof. Using the definition of the generalized Eulerian fractions on the left-hand
side of identity (26) and interchanging the order of summation in the resulting
double sum, we immediately arrive at the right-hand side of (26).

We now present the connection of the Eulerian fractions with the numbers
S(γ, k), γ ∈ C, that generalize the classical Stirling numbers defined in (6).

Definition 7. ((7.1) of [8]) The generalized Stirling numbers of the second kind
with complex parameter γ ∈ C are defined by

(27) S(γ, k) :=
1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jγ (γ ̸= 0, k ∈ N),

while S(0, 0) = 1, S(0, k) = 0, k ∈ N, and S(γ, 0) = 0 (γ ̸= 0).

It is not surprising, that these numbers naturally arise in this context: As
was shown already for positive real γ in Theorem 6 of [5], the generalized Stirling
numbers are mutually related to the Eulerian numbers E(γ, k) by two summation
formulas, which clearly hold for any γ ∈ C and k ∈ N0

E(γ, k) =

k∑
j=0

(−1)k−j

(
γ − j − 1

k − j

)
(j + 1)!S(γ, j + 1)

=

k∑
j=0

(
k − γ

k − j

)
(j + 1)!S(γ, j + 1)

(28)

(k + 1)!S(γ, k + 1) =

k∑
j=0

(
γ − j − 1

k − j

)
E(γ, j)

Notice that the second line in (28) follows since (−1)m
(
b

m

)
=

(
m− b− 1

m

)
,

b ∈ C,m ∈ N0.
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Theorem 8. For γ ∈ C, γ ̸= 0, let αγ(z) be the generalized Eulerian fraction (23),
and S(γ, k), the generalized Stirling numbers of the second kind defined in (27).
Then

(29) αγ(z) =

∞∑
k=1

k!S(γ, k)
zk−1

(1− z)k+1
(|z| < 1,Re z <

1

2
).

In particular, if γ is replaced by n ∈ N, identity (29) reduces to (6).

Proof. Substituting the definition (27) of S(γ, k) on the right-hand side of (29),
and interchanging the order of the double sum, we obtain

∞∑
k=1


k∑

j=1

(−1)k−j

(
k

j

)
jγ

 zk−1

(1− z)k+1
=

∞∑
j=1

∞∑
k=j

. . .

=

∞∑
j=1

jγzj−1

(1− z)j+1

∞∑
k=0

(−1)k
(
k + j

j

)
zk

(1− z)k
=

∞∑
j=1

jγzj−1 ≡ αγ .

Here we used the generalized binomial theorem to evaluate the inner sum over k as

∞∑
k=0

(
k + j

k

)(
z

z − 1

)k

=

(
1− z

z − 1

)−j−1

= (1− z)j+1

(∣∣∣∣ z

z − 1

∣∣∣∣ < 1

)
.

If γ = n ∈ N, the sum in (29) is finite since S(n, k) = 0 for each k > n. This yields
identity (6).

Corollary 9. Let γ ∈ C.γ ̸= 0. In terms of the generalized Stirling numbers of the
second kind, the polylogarithm (1) is given by

(30) Liγ(z) := za−γ(z) =

∞∑
k=1

k!S(−γ, k) zk

(1− z)k+1
(|z| < 1,Re z <

1

2
).

From (30) it follows that

Liγ(z) =

∞∑
k=1

∞∑
j=0

(
j + k

j

)
k!S(−γ, k)zj+k

=

∞∑
j=1

{
j∑

k=1

(
j

j − k

)
k!S(−γ, k)

}
zj (|z| < 1, z ∈ C).

(31)

Notice that the identity (31) can be proved directly by evaluating the inner
sum. In fact, since(

j

j − k

)(
k

n

)
=

(
j

n

)(
j − n

k − n

)
, 0 ≤ n ≤ k ≤ j <∞,
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we arrive at

j∑
k=1

(
j

j − k

) k∑
n=1

(−1)k−n

(
k

n

)
n−γ =

j∑
n=1

(
j

n

)
n−γ

j∑
k=n

(−1)k−n

(
j − n

k − n

)

=

j∑
n=1

(
j

n

)
n−γδj−n,0 = j−γ .

We close this section by introducing an even more general type of Eulerian
fraction. To this end we replace the right-hand side of (29) by a sum containing
the generalized Stirling numbers S(γ, k) and, in addition, some formal power series
B(z), |z| < 1. Roughly speaking, we use a symbolic operator approach which, in
a wider sense, proceeds from the generating function of the generalized Sheffer
polynomials (cf. [19]).

Definition 10. Let B(z) be a formal power series convergent in |z| < 1 with
B(0) = 1, and let the generalized Stirling numbers S(γ, k) be defined as in (27). In
terms of B(z), the generalized Eulerian fraction of type-one with order γ ∈ C, γ ̸= 0,
is defined by

αγ(z;B(z)) :=

∞∑
k=1

S(γ, k)B(k)(z)zk−1 (|z| < 1).

If B(z) =

∞∑
j=0

zj = (1−z)−1, the function αγ(z;B) coincides with the original

αγ(z) in (29), since B(k)(z) = k!(1− z)−k−1, k ∈ N, We are particularly interested
in the two situations

(32) B1(z, a) = (1 + z)a, B2(z, a) = (1− z)−a−1, a ∈ R,

which give rise to the following kinds of generalized Eulerian fractions of type-one.

Proposition 11. For a ∈ R we have

αγ(z; (1 + z)a) =

∞∑
k=1

(
a

k

)
k!S(γ, k)zk−1

(1 + z)k−a
(|z| < 1),(33)

αγ(z; (1 + z)−a−1) =

∞∑
k=1

(
a+ k

k

)
k!S(γ, k)zk−1

(1− z)a+k+1
(|z| < 1,Re z <

1

2
).(34)

Proof. Denoting the falling and rising factorials, respectively, by

[a]k := a(a− 1) . . . (a− k + 1) =

(
a

k

)
k!,
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(a+ 1)k := (a+ 1)(a+ 2) . . . (a+ k) =

(
a+ k

k

)
k!,

the identities (33) and (34) follow since B
(k)
1 (z, a) = [a]k(1 + z)a−k, B

(k)
2 (z, a) =

(a+ 1)k(1− z)−a−k−1.

In the cases γ = n ∈ N, the corresponding type-one Eulerian fractions (33)-
(34) have been defined and treated in [22].

In the following, we focus on the choice B(z) ≡ B2(z, a) in (32).

Definition 12. Let γ ∈ C, γ ̸= 0, and let αγ(z; (1− z)−a−1), a ∈ R, be the gener-
alized Eulerian fractions of type-one given in (34). The corresponding generalized
Eulerian functions and numbers of type-one are defined, respectively, by

Aγ(z; (1− z)−a−1) = (1− z)a+γ+1αγ(z; (1− z)−a−1) (|z| < 1),(35)

E(γ, k; (1− z)−a−1) =
[
zk

]
Aγ(z; (1− z)−a−1) (k ∈ N0).(36)

Theorem 13. Following Definition 12, one has

Aγ(z; (1− z)−a−1)

=

∞∑
k=1

(−1)kzk−1


k∑

j=1

(−1)j
(
a+ j

j

)(
γ − j

k − j

)
j!S(γ, j)


=

∞∑
k=1

zk−1


k∑

j=1

(
a+ j

j

)(
k − γ − 1

k − j

)
j!S(γ, j)

 (|z| < 1),

(37)

E(γ, k; (1− z)−a−1)

= (−1)k+1
k+1∑
j=1

(−1)j
(
a+ j

j

)(
γ − j

k − j + 1

)
j!S(γ, j)

=

k+1∑
j=1

(
a+ j

j

)(
k − γ

k − j + 1

)
j!S(γ, j) (k ∈ N0).

(38)

Proof. In view of (35) and (36)), we find that,

Aγ(z; (1− z)−a−1) = (1− z)a+γ+1αγ(z; (1− z)−a−1)

=

∞∑
j=1

(
a+ j

j

)
(1− z)γ−jj!S(γ, j)zγ−1

=

∞∑
j=1

(
a+ j

j

) ∞∑
k=0

(−1)k
(
γ − j

k

)
j!S(γ, j)zk+j−1
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=

∞∑
j=1

(
a+ j

j

) ∞∑
k=j

(−1)k−j

(
γ − j

k − j

)
j!S(γ, j)zk−1

=

∞∑
k=1

(−1)kzk−1
k∑

j=1

(−1)j
(
a+ j

j

)(
γ − j

k − j

)
j!S(γ, j).

The interchange of the order of the summation in the last step is clear. This implies
both (37) and (38). The second identities in (37) and (38) just follow as in (28).

Remark 14. In particular, if a = 0, (37) reduces to

Aγ(z; (1− t)−1) =

∞∑
k=1

(−1)kzk−1

 k∑
j=1

(−1)j
(
γ − j

k − j

)
j!S(γ, j)


=

∞∑
k=1

zk−1


k∑

j=1

(
k − γ − 1

k − j

)
j!S(γ, j)

 ,

while (38) coincides with the identities stated in (28), namely

E(γ, k; (1−t)−1) =

k+1∑
j=1

(−1)k+1−j

(
γ − j

k + 1− j

)
j!S(γ, j) =

k+1∑
j=1

(
k − γ

k + 1− j

)
j!S(γ, j).

Substituting (27) into (35) and (36) and taking into account that

k∑
j=n

(
a+ j

j

)(
γ − j

k − j

)(
j

n

)
=

(
a+ n

n

) k∑
j=n

(
a+ j

j − n

)(
γ − j

k − j

)
=

(
a+ n

n

)(
γ + a+ 1

k − n

)
,

we obtain the following results.

Corollary 15. Let Aγ(z; (1− z)−a−1) and E(γ, k; (1− z)−a−1) (γ ∈ C, γ ̸= 0, k ∈
N0) be defined by (35) and (36), respectively. Then

Aγ(z; (1− z)−a−1) =

∞∑
k=1

(−1)kzk−1
k∑

n=1

nγ(−1)n
(
a+ n

n

)(
γ + a+ 1

k − n

)

=

∞∑
k=1

zk−1
k∑

n=1

nγ
(
a+ n

n

)(
k − n− γ − a− 2

k − n

)
(|z| < 1),

E(γ, k; (1− z)−a−1) = (−1)k+1
k+1∑
n=1

nγ(−1)n
(
a+ n

n

)(
γ + a+ 1

k − n+ 1

)

=

k+1∑
n=1

nγ
(
a+ n

n

)(
k − n− γ − a− 1

k − n+ 1

)
(k ∈ N0).
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3. REPRESENTATIONS OF THE POLYLOGARITHM FUNCTION
WITH IMAGINARY ARGUMENT

As far as we know, there are only eight values of z for which Li2(z) can be
given in closed form. Setting ω := (1 +

√
5)/2, these are [27]

Li2(0) = 0, Li2(1) =
π2

6
, Li2(−1) = −π

2

12
, Li2

(
1

2

)
=
π2

12
− 1

2
log2 2,

Li2(−ω) = −π
2

10
+

1

2
log2 ω, Li2(1− ω) =

π2

15
+

1

2
log2 ω,

Li2(ω − 1) =
π2

10
− log2 ω, Li2(2− ω) =

π2

15
− log2 ω.

The only known full values for z =
1

2
seem to be

Li1

(
1

2

)
= log 2, Li2

(
1

2

)
=
π2

12
−1

2
log2 2, Li3

(
1

2

)
=

7

8
ζ(3)−π

2

12
log 2+

1

6
log3 2, . . .

In the following, we apply the various results of the preceding sections to
represent the values Liγ(±i) with complex order parameter γ. Throughout we
assume that Re γ > 1, which guarantees that the fundamental relationship Liγ(z) =
zα−γ(z), |z| < 1, can be continued to z = ±i, analytically (cf. (5), Definition 2, and
the proof of Lemma 1). Moreover, it suffices to treat the case z = i. The results
for Liγ(−i) then follow analogously.

To begin with, we employ the identity (25) to express Liγ(i) in terms of the
generalized Eulerian numbers E(−γ, k).

Theorem 16. For γ ∈ C, Re γ > 1, let E(−γ, k) be given as in (22). Then

Liγ(i) =

∞∑
n=0

{
2n+1∑
k=0

(−1)n−k

(
γ − 1

2n+ 1− k

)
E(−γ, k)

}

+ i

∞∑
n=0

{
2n∑
k=0

(−1)n−k

(
γ − 1

2n− k

)
E(−γ, k)

}
=: I1 + iI2,

(39)
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where

I1 =

∞∑
n=0

{
2n+1∑
k=0

(−1)n−k

(
γ − 1

2n+ 1− k

)
ReE(−γ, k)

−
2n∑
k=0

(−1)n−k

(
γ − 1

2n− k

)
ImE(−γ, k)

}
,

I2 =

∞∑
n=0

{
2n∑
k=0

(−1)n−k

(
γ − 1

2n− k

)
ReE(−γ, k)

+

2n+1∑
k=0

(−1)n−k

(
γ − 1

2n+ 1− k

)
ImE(−γ, k)

}
.

Similarly, the identity (29) leads to a counterpart of Theorem 16 in terms of
the generalized Stirling numbers of the second kind S(−γ, k).

Theorem 17. For γ ∈ C, Re γ > 1, let S(−γ, k) be given via Definition 7. Then

Liγ(i) =

∞∑
n=1

(−1)n

{
2n∑
k=1

(
2n

k

)
k!S(−γ, k)

}

+ i

∞∑
n=0

(−1)n

{
2n+1∑
k=1

(
2n+ 1

k

)
k!S(−γ, k)

}
=: J1 + iJ2,

(40)

where

J1 =

∞∑
n=1

(−1)n

{
2n∑
k=1

(
2n

k

)
k!ReS(−γ, k)−

2n+1∑
k=1

(
2n+ 1

k

)
k!ImS(−γ, k)

}
,

J2 =

∞∑
n=1

(−1)n

{
2n+1∑
k=1

(
2n+ 1

k

)
k!ReS(−γ, k) +

2n∑
k=1

(
2n

k

)
k!ImS(−γ, k)

}
.

If γ ∈ R, both double sums in the representations (39) and (40) are real, so
that the two Theorems 16 and 17, when combined with the relationship (10) in
Lemma 1, give rise to the following representations of the zeta and beta functions.

Corollary 18. Let γ ∈ R, γ > 1, and cγ := −2γ(1− 21−γ)−1. Then

ζ(γ) := cγRe [Liγ(i)] = cγ

∞∑
n=0

{
2n+1∑
k=0

(−1)n+1−k

(
γ − 1

2n+ 1− k

)
E(−γ, k)

}

= cγ

∞∑
n=0

(−1)n+1

{
2n∑
k=1

(
2n

k

)
k!S(−γ, k)

}(41)
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and

β(γ) := Im [Liγ(i)] =

∞∑
n=0

{
2n∑
k=0

(−1)n−k

(
γ − 1

2n− k

)
E(−γ, k)

}

=

∞∑
n=0

(−1)n

{
2n+1∑
k=1

(
2n+ 1

k

)
k!S(−γ, k)

}
.

(42)

If γ is real, we can also proceed directly from identity (24) to achieve

Liγ(i) = (1− i)γ−1
∞∑
k=0

E(−γ, k)ik+1

= 2(γ−1)/2

{
cos

(γ − 1)π

4
− i sin

(γ − 1)π

4

}
{ ∞∑

n=0

(−1)n+1E(−γ, 2n+ 1) + i

∞∑
n=0

(−1)nE(−γ, 2n)

}
.

Alternatively to the first lines of (41) and (42), this yields the following expansions.

Corollary 19. Let γ ∈ R, γ > 1, and cγ := −2γ(1− 21−γ)−1. Then

ζ(γ) = cγRe [Liγ(i)]

= cγ2
(γ−1)/2

∞∑
n=0

(−1)n
{
sin

(γ − 1)π

4
E(−γ, 2n)− cos

(γ − 1)π

4
E(−γ, 2n+ 1)

}
,

β(γ) = Im [Liγ(i)]

= 2(γ−1)/2
∞∑

n=0

(−1)n
{
cos

(γ − 1)π

4
E(−γ, 2n) + sin

(γ − 1)π

4
E(−γ, 2n+ 1)

}
.

Next we express the occurring zeta and beta functions in terms of the gen-
eralized Bernoulli and Euler functions and their conjugates, which were defined in
(15), (16) and (18), (19), respectively.

Proposition 20. (Theorem 5.1 a), b) of [2]). Let γ ∈ C,Re γ > 1. There hold

a) ζ(γ) = − sec
(γπ

2

) (2π)γBγ

2Γ(γ + 1)
(γ ̸= 2m+ 1,m ∈ N),(43)

b) ζ(γ) = csc
(γπ

2

) (2π)γB∼
γ

2Γ(γ + 1)
(γ ̸= 2m,m ∈ N).(44)

By choosing γ = 2m in identity (43), Euler’s classical formula (11) is recovered,
while in the case γ = 2m+ 1 identity (44) reduces to the formula (17).

Proposition 21. Let γ ∈ C,Re γ > 1. There hold

a) β(γ) = csc
(γπ

2

)(π
2

)γ Eγ−1

2Γ(γ)
(γ ̸= 2m, m ∈ N),(45)
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b) β(γ) = sec
(γπ

2

)(π
2

)γ E∼
γ−1

2Γ(γ)
(γ ̸= 2m+ 1, m ∈ N).(46)

Choosing γ = 2m + 1 in identity (45) yields Euler’s classical formula (12), while
formula (20) is the particular case γ = 2m of identity (46).

Proof. Part a) is established in Theorem 3.12 of [3]. Concerning part b), it follows
from Lemma 2.4 of [3] that

E∼
γ−1 =2γ−1E∼

γ−1

(
1

2

)
=2γΓ(γ)

{
cos

γπ

2
ψγ−1

(
1

2

)
− sin

γπ

2
ϕγ−1

(
1

2

)}
,

where ψγ−1 and ϕγ−1 take the values (cf. Proposition 2.3 of [3])

ψγ−1

(
1

2

)
:=

2

πγ

∑
k≥0

sin((2k + 1)π/2)

(2k + 1)γ

=
2

πγ

∑
k≥0

(−1)k

(2k + 1)γ
=

2

πγ
β(γ),

ϕγ−1

(
1

2

)
:=

2

πγ

∑
k≥0

cos((2k + 1)π/2)

(2k + 1)γ
= 0.

Hence, E∼
γ−1 = 2γΓ(γ) cos

γπ

2

2

πγ
β(γ), which implies the identity (46).

Finally, we apply the Propositions 20 and 21 to the relationship (10) to get
the following representations of the polylogarithm at z = i.

Theorem 22. Let γ ∈ C,Re γ > 1. Then

a) Liγ(i) =
sec(γπ/2)

2Γ(γ + 1)

(π
2

)γ {
2(2γ−1 − 1)Bγ + iγE∼

γ−1

}
(γ ̸= 2m+ 1,m ∈ N),

b) Liγ(i) =
csc(γπ/2)

2Γ(γ + 1)

(π
2

)γ {
2(1− 2γ−1)B∼

γ + iγEγ−1

}
(γ ̸= 2m,m ∈ N),

c) Li2m(i) =
(−1)m

(2m)!

(π
2

)2m {
(22m−1 − 1)B2m + imE∼

2m−1

}
(m ∈ N),

d) Li2m+1(i) =
(−1)m

2(2m+ 1)!

(π
2

)2m+1 {
2(1− 22m)B∼

2m+1 + i(2m+ 1)E2m

}
(m ∈ N0).
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Proof. For γ ̸= 2m+ 1,m ∈ N, we insert (43) and (46) into (10) to get

Liγ(i) = −2−γ(1− 21−γ)ζ(γ) + iβ(γ)

= 2−γ(1− 21−γ) sec
(γπ

2

) (2π)γBγ

2Γ(γ + 1)
+ i sec

(γπ
2

)(π
2

)γ E∼
γ−1

2Γ(γ)
.

This yields part a) and, by substituting γ = 2m,m ∈ N, also part c). Similarly, for
γ ̸= 2m,m ∈ N, we use (44) and (45) to arrive at part b) and, if γ = 2m+1,m ∈ N0,
at part d).

In Proposition 21, the (generalized) Euler numbers and their conjugates can
be substituted in view of the two identities in (21) as follows.

Corollary 23. Let γ ∈ C,Re γ > 1. There hold

a) Liγ(i) =
sec(γπ/2)

Γ(γ + 1)

(π
2

)γ
{
(2γ−1 − 1)Bγ + i22γ−2

[
B∼

γ

(
3

4

)
−B∼

γ

(
1

4

)]}
(γ ̸= 2m+ 1,m ∈ N),

b) Liγ(i) =
csc(γπ/2)

Γ(γ + 1)

(π
2

)γ
{
(1− 2γ−1)B∼

γ + i22γ−2

[
Bγ

(
3

4

)
−Bγ

(
1

4

)]}
(γ ̸= 2m,m ∈ N).

Choosing γ = 2m in part a) and γ = 2m + 1 in part b), we immediately
obtain counterparts of Theorem 22, parts c) and d), respectively.

Of course, the representations of Liγ(i) stated in Theorems 16, 17, and 22
can also be combined to end up with the following identities.

Corollary 24. For γ ∈ C,Re γ > 1, there holds

Liγ(i)

=

∞∑
n=0

{
2n+1∑
k=0

(−1)n−k

(
γ − 1

2n+ 1− k

)
E(−γ, k)

}

+ i

∞∑
n=0

{
2n∑
k=0

(−1)n−k

(
γ − 1

2n− k

)
E(−γ, k)

}

=

∞∑
n=1

(−1)n

{
2n∑
k=1

(
2n

k

)
k!S(−γ, k)

}
+ i

∞∑
n=0

(−1)n

{
2n+1∑
k=1

(
2n+ 1

k

)
k!S(−γ, k)

}

=


πγ sec[γπ/2]

2γ+1Γ(γ + 1)

{
2(2γ−1 − 1)Bγ + iγE∼

γ−1

}
, γ ̸= 2m+ 1,m ∈ N,

πγ csc[γπ/2]

2γ+1Γ(γ + 1)

{
2(1− 2γ−1)B∼

γ + iγEγ−1

}
, γ ̸= 2m,m ∈ N.

For m ∈ N, the above identities reduce to

∞∑
n=0

{
2n+1∑
k=0

(−1)n−k

(
2m− 1

2n+ 1− k

)
E(−2m, k)

}
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=

∞∑
n=1

(−1)n+1

{
2n∑
k=1

(
2n

k

)
k!S(−2m, k)

}
= (−1)m(22m−1 − 1)

(π
2

)2m B2m

(2m)!
,

∞∑
n=0

{
2n∑
k=0

(−1)n−k

(
2m

2n− k

)
E(−2m− 1, k)

}

=

∞∑
n=0

(−1)n

{
2n+1∑
k=1

(
2n+ 1

k

)
k!S(−2m− 1, k)

}
= (−1)m

(π
2

)2m+1 E2m

2(2m)!
.
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