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ASYMPTOTIC EXPANSIONS AND INEQUALITIES
RELATING TO THE GAMMA FUNCTION

Chao-Ping Chen∗ and Cristinel Mortici

We present some asymptotic expansions and inequalities for Γ(x+1)1/x

Γ(x+2)1/(x+1)

and Γ(x+ 1)1/x.

1. INTRODUCTION

The function ϕ (n) = (n!)
1/n

(for n ∈ N := {1, 2, . . .}) has many applications
in pure and applied mathematics. For example, in 1963 Minc [25] (see also [23,
Conjecture 4]) conjectured, then Brégman [9] and Schrijver [30] proved that the
permanent of a (0, 1)-matrix with row sums r1, r2, . . . , rn is less than or equal to
ϕ (r1)ϕ (r2) · · ·ϕ (rn). It is easy to see that

(n+ 1)n

n!
=

(
1 +

1

1

)(
1 +

1

2

)2

· · ·
(
1 +

1

n

)n

≤
(
1 +

1

n

)n2

,

which yields

(1)
n+ 1

n
√
n!

≤
(
1 +

1

n

)n

< e, n ∈ N.
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By using (1), Hardy [18] presented a proof of Carleman’s inequality

∞∑
n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

an,

where an ≥ 0 for n ∈ N and 0 <
∑∞

n=1 an < ∞.

When investigating a conjecture on a upper bound for permanents of (0, 1)-
matrices, in 1964 Minc and Sathre [26] discovered several noteworthy inequalities
involving (n!)1/n. One of them is the following:

(2)
n

n+ 1
<

n
√
n!

n+1
√
(n+ 1)!

< 1, n ∈ N.

It is known in the literature that for r > 0 and n ∈ N,

(3)
n

n+ 1
<

(
1

n

n∑
i=1

ir
/

1

n+ 1

n+1∑
i=1

ir

)1/r

<
n
√
n!

n+1
√
(n+ 1)!

.

When investigating a problem on Lorentz sequence spaces, in 1988 Martins [24]
published the right-hand inequality of (3). The left-hand inequality of (3) was
proved in 1993 by Alzer [4]. In 1994, Alzer [7] showed that if r < 0, the Martins
inequality is reversed. In 2005, Chen and Qi [13] proved that the Alzer inequality
is valid for all real numbers r. Also in [13], these authors posed the following
conjecture: For any given natural number n, the function

f(r) =


(

1
n

∑n
i=1 i

r
/

1
n+1

∑n+1
i=1 ir

)1/r
, r ̸= 0,

n√
n!

n+1
√

(n+1)!
, r = 0

is strictly decreasing on (−∞,∞). As far as we know, this conjecture has not yet
been proved.

The inequalities (2) and (3) have attracted much interest of from many math-
ematicians and have motivated a large number of research papers concerning new
proofs, various generalizations and improvements; see, for example, [1, 4, 5, 6, 7,
13, 14, 17, 21, 22, 27, 28, 29, 31, 32] and the references cited therein. See also
[1] for some historical notes.

Alzer [5] proved that for n ∈ N,

(4)
n+ 1

n+ 2
<

n
√
n!

n+1
√
(n+ 1)!

≤ n+ 1

n+ 2
√
2− 1

.

The lower and upper bounds in (4) are the best possible. Guan [17] presented the
following improvement:

n+ 1

n+ 2
<

n
√
n!

n+1
√
(n+ 1)!

<
n+ 1

n+ 2
(n+ 1)

1/n(n+1)
, n ≥ 2.
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Chen [10] proved that for n ∈ N,(√
2πn

) 1
n(n+1)

(
1− 1

n+ a

)
<

n
√
n!

n+1
√
(n+ 1)!

≤
(√

2πn
) 1

n(n+1)

(
1− 1

n+ b

)
with the best possible constants

a =
1

2
and b =

1

23/4π1/4 − 1
= 0.807 . . . .

Alzer [6] also proved the following continuous version for every real number
x ≥ 2:

x+ 2

x+ 1
<

(Γ (x+ 1))
1/x

(Γ (x+ 2))
1/(x+1)

,

where Γ denotes the gamma function. Mortici [28] proved that for x ≥ 2,

L1(x) <
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

< M1(x),(5)

where

L1(x) =
x+ 1

2 ln(2π)−
1
2

x+ 1
2 ln(2π) +

1
2

x
1

2x(x+1)

and

M1(x) =
x+ 1

2 ln(2π)−
1
2

x+ 1
2 ln(2π) +

1
2

x
1

2x(x+1) exp

{
1
4 ln

2(2π)− 1
2 ln(2π) +

2
3

x2(x+ 1)

}
.

We find by Maple software that Mortici’s approximation

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

≈
x+ 1

2 ln(2π)−
1
2

x+ 1
2 ln(2π) +

1
2

x
1

2x(x+1) , x → ∞

is better than Guan’s approximation

(6)
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

≈ x+ 1

x+ 2
(x+ 1)

1/x(x+1)
, x → ∞,

since
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

=
x+ 1

2 ln(2π)−
1
2

x+ 1
2 ln(2π) +

1
2

x
1

2x(x+1) +O

(
1

x3

)
and

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

=
x+ 1

x+ 2
(x+ 1)

1/x(x+1)
+O

(
lnx

x2

)
.



382 Chao-Ping Chen and Cristinel Mortici

By mainly using the following asymptotic formula:

(7) ln Γ(x+ 1) = x lnx− x+ ln
√
2πx+O(x−1), x → ∞,

we find that

Γ(x+ 1)1/x

Γ(x+ 2)1/(x+1)
≈
(√

2πx
) 1

x(x+1)

.(8)

In this paper, we develop the approximation formula (8) to produce various
asymptotic expansions. Based on the obtained expansions, we prove new upper
and lower bounds for Γ(x + 1)1/x/Γ(x + 2)1/(x+1). We also consider asymptotic
expansions and inequalities for Γ(x+ 1)1/x.

2. LEMMAS

The following lemmas are required in our present investigation.

Lemma 1 (See [15, Corollary 1]). It follows that

exp

 ∞∑
j=1

pj
xj

 ∼ 1 +

∞∑
j=1

qj
xj

, x → ∞,

ln

1 +

∞∑
j=1

qj
xj

 ∼
∞∑
j=1

pj
xj

, x → ∞,

the coefficients pj and qj have the following relations:

qj =
∑

k1+2k2+···+jkj=j

pk1
1 pk2

2 · · · pkj

j

k1!k2! · · · kj !
,

summed over all nonnegative integers kj satisfying the equation

k1 + 2k2 + · · ·+ jkj = j,

and

pj =
∑

k1+2k2+···+jkj=j
k1+k2+···+kj=k

1≤k≤j

(−1)k−1(k − 1)!
qk1
1 qk2

2 · · · qkj

j

k1!k2! · · · kj !
,

where the summation is over all nonnegative integral solutions (k1, k2, . . . , kj) of
the equations

k1 + 2k2 + · · ·+ jkj = j, k1 + k2 + · · ·+ kj = k, k = 1, 2, . . . , j.
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Lemma 2 (See [11]). Let

A(x) ∼
∞∑
j=1

ajx
−j , x → ∞

be a given asymptotical expansion. Then the composition exp(A(x)) has asymptotic
expansion of the following form

exp(A(x)) ∼
∞∑
j=0

bjx
−j , x → ∞,

where

b0 = 1, bj =
1

j

j∑
k=1

kakbj−k, j ∈ N.

3. ASYMPTOTIC EXPANSIONS

Theorem 3 develops the approximation formula (8) to produce a complete
asymptotic expansion.

Theorem 3. As x → ∞, we have

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼
(√

2πx
) 1

x(x+1) exp

 ∞∑
j=1

αj

xj

(9)

with the coefficients αj given by

(10) α1 = −1, α2 = 0, αj = (−1)j−1

j−3∑
k=0

1

k + 2

(
(−1)kBk+2

k + 1
+ 1

)
, j ≥ 3,

where Bn (n ∈ N0 := N ∪ {0}) are the Bernoulli numbers defined by the following
generating function:

(11)
z

ez − 1
=

∞∑
n=0

Bn
zn

n!
, |z| < 2π.

Proof. It follows from Stirling’s series for the gamma function (see [2, p. 257, Eq.
(6.1.40)]) that

(12) ln Γ(x+ 1) ∼ ln
√
2πx+ x lnx− x+

∞∑
j=1

Bj+1

j(j + 1)xj
, x → ∞,
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where Bn are the Bernoulli numbers defined by (11). Using (12), we find that for
x → ∞,

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

=
1

x2

(
1 +

1

x

)−1 [
ln Γ(x+ 1)− x lnx− x ln

(
1 +

1

x

)]

∼
∞∑
j=2

(−1)j

xj

ln√2πx− x+

∞∑
j=1

Bj+1

j(j + 1)xj
−

∞∑
j=0

(−1)j

(j + 1)xj


∼

∞∑
j=2

(−1)j

xj

ln√2πx− x− 1 +

∞∑
j=1

1

j + 1

(
Bj+1

j
− (−1)j

)
1

xj

 ,

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

∼
∞∑
j=2

(−1)j ln
√
2πx

xj
− 1

x
+

∞∑
k=2

(−1)k

xk

∞∑
j=1

1

j + 1

(
Bj+1

j
− (−1)j

)
1

xj

∼ − 1

x
+

∞∑
j=2

(−1)j ln
√
2πx

xj
+

∞∑
j=3

j−3∑
k=0

(−1)j−k−1

k + 2

(
Bk+2

k + 1
+ (−1)k

)
1

xj
.

We then obtain

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

(13)

∼ − 1

x
+

∞∑
j=2

(−1)j

[
ln
√
2πx−

j−3∑
k=0

1

k + 2

(
(−1)kBk+2

k + 1
+ 1

)]
1

xj
,

where an empty sum is (elsewhere throughout this paper) understood to be nil.

Noting that

1

x(x+ 1)
=

∞∑
j=2

(−1)j

xj
, x ≥ 1,(14)

from (13) we deduce (9). The proof is complete.

Here, from (9), we give the following explicit asymptotic expansion:

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

(15)

∼
(√

2πx
) 1

x(x+1) exp

(
− 1

x
+

7

12x3
− 11

12x4
+

419

360x5
− 491

360x6
+ · · ·

)
.



Asymptotic expansions and continued fraction approximations 385

By Lemma 2, we deduce from (15) that

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼
(√

2πx
) 1

x(x+1)

(
1− 1

x
+

1

2x2
+

5

12x3
− 35

24x4
+ · · ·

)
.(16)

We call the representation
(√

2πx
) 1

x(x+1) the kernel of asymptotic expansion

of Γ(x+1)1/x

Γ(x+2)1/(x+1) . The emergence of the kernel
(√

2πx
) 1

x(x+1) has a superiority, the

coefficients of asymptotic expansions of Γ(x+1)1/x

Γ(x+2)1/(x+1) are rational numbers, see (15)

and (16).

Stirling’s series for the gamma function is given (see [2, p. 257, Eq. (6.1.40)])
by

Γ(x+ 1) ∼
√
2πx

(x
e

)x
exp

( ∞∑
m=1

B2m

2m(2m− 1)x2m−1

)
, x → ∞.(17)

The following asymptotic formula is due to Laplace:

Γ(x+ 1) ∼
√
2πx

(x
e

)x(
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ · · ·

)
(18)

as x → ∞ (see [2, p. 257, Eq. (6.1.37)]).

The expression (18) is sometimes incorrectly called Stirling’s series (see [16,
pp. 2–3]). The formula (9) is an interesting analogue of Stirling’s series (17), while
the formula (16) is an interesting analogue of the Laplace formula (18). Stirling’s
formula

Γ(x+ 1) ≈
√
2πx

(x
e

)x
is in fact the first approximation to the asymptotic formula (18), while the formula
(8) is the first approximation to the asymptotic formula (16).

Recall that a function f is said to be completely monotonic on (0,∞) if it
has derivatives of all orders on (0,∞) and satisfies the following inequality:

(−1)nf (n)(x) ≥ 0 for x ∈ (0,∞) and n ∈ N0.

Alzer [8] first proved in 1997 that for every m ∈ N0, the function
(19)

Rm(x) = (−1)m

ln Γ(x)− (x− 1

2

)
lnx+ x− ln

√
2π −

m∑
j=1

B2j

2j(2j − 1)x2j−1


is completely monotonic on (0,∞). In 2006, Koumandos [19] gave a simpler proof of
the complete monotonicity property of Rm(x). In 2009, Koumandos and Pedersen
[20, Theorem 2.1] strengthened this result.
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Some computer experiments led us to conjecture that for every m ∈ N \ {1},
the function

Fm(x) = (−1)m

ln Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

− ln
√
2πx

x(x+ 1)
−

m∑
j=1

αj

xj


is completely monotonic on (0,∞), where αj are given in (10). This conjecture is
similar to the complete monotonicity property of Rm(x) in (19). However, we have
not been able to verify it.

Theorem 4 develops Guan’s approximation formula (6) to produce a complete
asymptotic expansion.

Theorem 4. As x → ∞, we have

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ x+ 1

x+ 2
(x+ 1)

1
x(x+1) exp

− lnx

2x(x+ 1)
+

∞∑
j=2

bj
xj

 ,(20)

where

b2 = ln
√
2π − 3

2
, bj = (−1)j

(
ln
√
2π − 2j − 1

j
−

j−3∑
k=0

(−1)kBk+2 − 1

(k + 1)(k + 2)

)
, j ≥ 3.

(21)

Proof. We find that for x → ∞,

ln

(
x+ 1

x+ 2
(x+ 1)

1
x(x+1)

)
(22)

=
1

x2

(
1 +

1

x

)−1

lnx+
1

x2

(
1 +

1

x

)−1

ln

(
1 +

1

x

)
+ ln

(
1 +

1

x

)
− ln

(
1 +

2

x

)
=

∞∑
j=2

(−1)j

xj
lnx+

∞∑
k=2

(−1)k

xk

∞∑
j=1

(−1)j−1

jxj
+

∞∑
j=1

(−1)j(2j − 1)

j

1

xj

=

∞∑
j=2

(−1)j

xj
lnx+

∞∑
j=3

j−3∑
k=0

(−1)j−1

k + 1

1

xj
+

∞∑
j=1

(−1)j(2j − 1)

j

1

xj

= − 1

x
+

∞∑
j=2

(−1)j

(
lnx−

j−3∑
k=0

1

k + 1
+

2j − 1

j

)
1

xj
.
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From (13) and (22), we obtain that

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

− ln

(
x+ 1

x+ 2
(x+ 1)

1
x(x+1)

)
(23)

∼
∞∑
j=2

(−1)j−1

(
ln

√
x

2π
+

2j − 1

j
+

j−3∑
k=0

(−1)kBk+2 − 1

(k + 1)(k + 2)

)
1

xj
.

Noting that (14) holds, we deduce from (23) that

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

− ln

(
x+ 1

x+ 2
(x+ 1)

1
x(x+1)

)
∼ − lnx

2x(x+ 1)
+

∞∑
j=2

bj
xj

,(24)

where bj are given in (21). The formula (24) can be written as (20). The proof is
complete.

Remark 5. The formula (20) can be rewritten as

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ x+ 1

x+ 2

(√
x+

1√
x

) 1
x(x+1)

exp

 ∞∑
j=2

bj
xj

 , x → ∞,

where bj are given in (21). Namely,

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ x+ 1

x+ 2

(√
x+

1√
x

) 1
x(x+1)

(25)

× exp

(
−

3
2 − ln

√
2π

x2
+

23
12 − ln

√
2π

x3
−

19
6 − ln

√
2π

x4
+ · · ·

)
.

It follows form (25) that

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

≈ x+ 1

x+ 2

(√
x+

1√
x

) 1
x(x+1)

, x → ∞,

which is better than Guan’s approximation (6), since

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

=
x+ 1

x+ 2

(√
x+

1√
x

) 1
x(x+1)

+O

(
1

x2

)
.

Remark 6. Noting that (14) holds, we deduce from (23) that

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ x+ 1

x+ 2

(√
2πx

(
1 +

1

x

)) 1
x(x+1)

exp

 ∞∑
j=2

cj
xj

 ,
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where cj are given by

c2 = −3

2
, cj = (−1)j−1

(
2j − 1

j
+

j−3∑
k=0

(−1)kBk+2 − 1

(k + 1)(k + 2)

)
, j ≥ 3.

Namely,

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ x+ 1

x+ 2

(√
2πx

(
1 +

1

x

)) 1
x(x+1)

(26)

× exp

(
− 3

2x2
+

23

12x3
− 19

6x4
+

1991

360x5
− 3521

360x6
+ · · ·

)
.

By Lemma 2, we deduce from (26) that

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ x+ 1

x+ 2

(√
2πx

(
1 +

1

x

)) 1
x(x+1)

(
1− 3

2x2
+

23

12x3
− 49

24x4
+ · · ·

)
.

(27)

It follows form (27) that

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

≈ x+ 1

x+ 2

(√
2πx

(
1 +

1

x

)) 1
x(x+1)

, x → ∞,

which is better than Guan’s approximation (6), since

(28)
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

=
x+ 1

x+ 2

(√
2πx

(
1 +

1

x

)) 1
x(x+1)

+O

(
1

x2

)
.

In view of (28), we now introduce the approximations family:

Γ(x+ 1)1/x

Γ(x+ 2)1/(x+1)
≈ x+ a

x+ b

(√
2πx

(
1 +

c

x

)) 1
x(x+1)

,(29)

where a, b, c ∈ R are parameters. Setting

(a, b, c) =

(
−1

2
,
1

2
,
2

3

)
in (29), we find (by Maple software) the following higher approximation:

Γ(x+ 1)1/x

Γ(x+ 2)1/(x+1)
=

2x− 1

2x+ 1

(√
2πx

(
1 +

2

3x

)) 1
x(x+1)

+O

(
1

x4

)
.(30)

Likewise, we find (by Maple software) that

Γ(x+ 1)1/x

Γ(x+ 2)1/(x+1)
=

2x− 1

2x+ 1

(√
2πx exp

(
2

3x

)) 1
x(x+1)

+O

(
1

x4

)
.(31)

Theorem 7 develops the approximation formula (31) to produce a complete
asymptotic expansion.
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Theorem 7. As x → ∞, we have

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ 2x− 1

2x+ 1

√2πx exp

 ∞∑
j=1

pj
xj

 1
x(x+1)

(32)

with the coefficients pj given by

pj = βj + βj+1, j ∈ N(33)

and

βj = αj+1 +
1− (−1)j−1

(j + 1) · 2j+1
, j ∈ N,

where αj given in (10). Namely,

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ 2x− 1

2x+ 1

[√
2πx exp

(
2

3x
− 1

4x2
+

187

720x3
− 3

16x4
+ · · ·

)] 1
x(x+1)

.

(34)

Proof. We first express (32) as follows:

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

∼
∞∑
j=1

(−1)j − 1

j · 2j
1

xj
+

ln(
√
2πx)

x(x+ 1)
+

1

x(x+ 1)

∞∑
j=1

pj
xj

.(35)

Write (9) as

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

∼ ln(
√
2πx)

x(x+ 1)
+

∞∑
j=1

αj

xj
.(36)

It follows from from (35) and (36) that

∞∑
j=1

(−1)j − 1

j · 2j
1

xj
+

1

x(x+ 1)

∞∑
j=1

pj
xj

∼
∞∑
j=1

αj

xj
,

∞∑
j=1

pj
xj

∼ x(x+ 1)

∞∑
j=1

(
αj +

1− (−1)j

j · 2j

)
1

xj
,

∞∑
j=1

pj
xj

∼
∞∑
j=1

(
αj+2 +

1− (−1)j

(j + 2) · 2j+2
+ αj+1 +

1− (−1)j−1

(j + 1) · 2j+1

)
1

xj
.(37)

Equating coefficients of equal powers of x in (37) we obtain (33). The proof is
complete.
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Theorem 8 develops the approximation formula (30) to produce a class of
complete asymptotic expansions.

Theorem 8. Let r ̸= 0 be a given real number. The following asymptotic expansion
holds:

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ 2x− 1

2x+ 1

√2πx

1 +

∞∑
j=1

qj(r)

xj

1/r


1
x(x+1)

, x → ∞(38)

with the coefficients qj ≡ qj(r) given by

qj =
∑

k1+2k2+···+jkj=j

rk1+k2+···+kj
pk1
1 pk2

2 · · · pkj

j

k1!k2! · · · kj !
, j ∈ N,

where pj given in (33).

Proof. We first express (38) as follows:

ln
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

∼
∞∑
j=1

(−1)j − 1

j · 2j
1

xj
+

ln(
√
2πx)

x(x+ 1)
+

1

rx(x+ 1)
ln

1 +

∞∑
j=1

qj(r)

xj

 .

(39)

It follows from from (35) and (39) that

ln

1 +

∞∑
j=1

qj
xj

 ∼
∞∑
j=1

rpj
xj

.(40)

By Lemma 1, we have

qj =
∑

k1+2k2+···+jkj=j

rk1+k2+···+kj
pk1
1 pk2

2 · · · pkj

j

k1!k2! · · · kj !
,

where pj given in (33). The proof is complete.

Remark 9. In fact, the coefficients qj ≡ qj(r) in (38) can be given by the recurrence
relation.

Write (40) as

exp

 ∞∑
j=1

rpj
xj

 ∼ 1 +

∞∑
j=1

qj
xj

.
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By Lemma 2, we have

q0 = 1, qj =
r

j

j∑
k=1

kpkqj−k, j ∈ N,

where pj given in (33).

The representation using recursive algorithm is better for numerical evalua-
tions. Setting r = 1 and r = 1

2 in (38), respectively, we give two explicit asymptotic
expansions:

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ 2x− 1

2x+ 1

[√
2πx

(
1 +

2

3x
− 1

36x2
+

923

6480x3
− 1183

38880x4
+ · · ·

)] 1
x(x+1)

and

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

∼ 2x− 1

2x+ 1

[√
2π

(
x+

4

3
+

7

18x
+

803

3240x2
+

631

4860x3
+ · · ·

)] 1
x(x+1)

.

Allasia et al. [3, Theorem 3] proved that for x ≥ 1,

(41)
x+ 1

[Γ(x+ 1)]1/x
≤
(
1 +

1

x

)x

.

This is a continuous version of the first inequality in (1). Chen and Qi [12] showed
that the inequality (41) is reversed for 0 < x ≤ 1 and equality occurs for x = 1.
Also in [12], the authors proved that for x > 0,

(42)
x

[Γ(x+ 1)]1/x
<

(
1 +

1

x

)x

.

By mainly using the asymptotic formula (7), we find that(
1 +

1

x

)x
Γ(x+ 1)1/x

x
≈
(√

2πx
) 1

x

.(43)

Theorem 10 develops the approximation formula (43) to produce a complete
asymptotic expansion.

Theorem 10. As x → ∞, we have(
1 +

1

x

)x
Γ(x+ 1)1/x

x
∼
(√

2πx
) 1

x

exp

 ∞∑
j=1

ωj

xj

(44)

with the coefficients ωj given by

(45) ω1 = −1

2
, ωj =

(−1)j

j + 1
+

Bj

j(j − 1)
, j ≥ 2,

where Bn are the Bernoulli numbers.
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Proof. Write (44) as

ln

(1 + 1

x

)x
Γ(x+ 1)1/x

x
(√

2πx
) 1

x

 ∼
∞∑
j=1

ωj

xj
.(46)

The Maclaurin series of ln(1 + t) with t = 1
x gives

ln

(
1 +

1

x

)
=

∞∑
j=1

(−1)j−1

jxj
.(47)

Using (12) and (47), we deduce from (46) that for x → ∞,

− 1

2x
+

∞∑
j=2

(
(−1)j

j + 1
+

Bj

j(j − 1)

)
∼

∞∑
j=1

ωj

xj
.(48)

Equating coefficients of equal powers of x in (48) we obtain (45). The proof is
complete.

Here, from (44), we give the following explicit asymptotic expansion:(
1 +

1

x

)x
Γ(x+ 1)1/x

x
∼
(√

2πx
) 1

x

exp

(
− 1

2x
+

5

12x2
− 1

4x3
+ · · ·

)
.(49)

By Lemma 2, we deduce from (49) that(
1 +

1

x

)x
Γ(x+ 1)1/x

x
∼
(√

2πx
) 1

x

(
1− 1

2x
+

13

24x2
− 23

48x3
+ · · ·

)
.(50)

Some computer experiments led us to conjecture that for every m ∈ N, the
function

Gm(x) = (−1)m−1

ln
(1 + 1

x

)x
Γ(x+ 1)1/x

x
(√

2πx
) 1

x

−
m∑
j=1

ωj

xj


is completely monotonic on (0,∞), where ωj are given in (45).

It follows form (50) that(
1 +

1

x

)x
Γ(x+ 1)1/x

x
=
(√

2πx
) 1

x

+O

(
1

x

)
.

We find (by Maple software) the following higher approximation:(
2x+ 1

2x− 1

)x
Γ(x+ 1)1/x

x
=
(√

2πx
) 1

x

+O

(
1

x2

)
.(51)

Theorem 11 develops the approximation formula (51) to produce a complete
asymptotic expansion.
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Theorem 11. As x → ∞, we have(
2x+ 1

2x− 1

)x
Γ(x+ 1)1/x

x
∼
(√

2πx
) 1

x

exp

 ∞∑
j=1

λj

xj

(52)

with the coefficients λj given by

(53) λ1 = 0, λj =
1 + (−1)j

(j + 1)2j+1
+

Bj

j(j − 1)
, j ≥ 2,

where Bn are the Bernoulli numbers.

Proof. Using (47), we have

x ln
2x+ 1

2x− 1
= x

[
ln

(
1 +

1

2x

)
− ln

(
1− 1

2x

)]
= 1 +

∞∑
j=2

1 + (−1)j

(j + 1)2j+1

1

xj
.

Taking the logarithm of (52) yields

∞∑
j=2

1 + (−1)j

(j + 1)2j+1

1

xj
+

1

x

(
Γ(x+ 1)− x lnx+ x− ln(

√
2πx)

)
∼

∞∑
j=1

λj

xj
.(54)

Using (12), we obtain from (54) that

∞∑
j=2

(
1 + (−1)j

(j + 1)2j+1
+

Bj

j(j − 1)

)
1

xj
∼

∞∑
j=1

λj

xj
.(55)

Equating coefficients of equal powers of x in (55) we obtain (53). The proof is
complete.

Remark 12. The asymptotic expansion (52) can be written as

(
2x+ 1

2x− 1

)x
Γ(x+ 1)1/x

x
∼
(√

2πx
) 1

x

exp

 ∞∑
j=1

λ2j

x2j

 ,(56)

where

λ2j =
1

(2j + 1)22j
+

B2j

2j(2j − 1)
, j ∈ N.

Here, from (56), we give the following explicit asymptotic expansion:(
2x+ 1

2x− 1

)x
Γ(x+ 1)1/x

x

∼
(√

2πx
) 1

x

exp

(
1

6x2
+

7

720x4
+

61

20160x6
− 13

80640x8
+ · · ·

)
,
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which deduces that(
2x+ 1

2x− 1

)x
Γ(x+ 1)1/x

x

∼
(√

2πx
) 1

x

(
1 +

1

6x2
+

17

720x4
+

983

181440x6
+

12139

21772800x8
+ · · ·

)
.

4. INEQUALITIES

The formula (34) motivated us to observe the following Theorem 13.

Theorem 13. For x ≥ 1,

L2(x) <
Γ (x+ 1)

1/x

Γ (x+ 2)
1/(x+1)

< M2(x),(57)

where

L2(x) =
2x− 1

2x+ 1

[√
2πx exp

(
2

3x
− 1

4x2

)] 1
x(x+1)

and

M2(x) =
2x− 1

2x+ 1

[√
2πx exp

(
2

3x

)] 1
x(x+1)

.

Proof. It follows from the known result (see [8, Theorem 8]) that for x > 0,

x lnx− x+ ln(
√
2πx) +

1

12x
− 1

360x3
< ln Γ(x+ 1) < x lnx− x+ ln(

√
2πx) +

1

12x
.

(58)

It is well known that

2m∑
j=1

(−1)j−1

j
tj < ln(1 + t) <

2m−1∑
j=1

(−1)j−1

j
tj(59)

for −1 < t ≤ 1 and m ∈ N. The proof of Theorem 13 is based on the inequalities
(58) and (59).

In order to prove the inequality (57), it suffices to show that for x ≥ 1,

ln
2x− 1

2x+ 1
+

ln(
√
2πx)

x(x+ 1)
+

1

x(x+ 1)

(
2

3x
− 1

4x2

)
< ln

Γ (x+ 1)
1/x

Γ (x+ 2)
1/(x+1)

=
1

x(x+ 1)

[
ln Γ(x+ 1)− x lnx− x ln

(
1 +

1

x

)]
< ln

2x− 1

2x+ 1
+

ln(
√
2πx)

x(x+ 1)
+

1

x(x+ 1)

2

3x
.
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By (58), it suffices to show that for x ≥ 1,

ln
2x− 1

2x+ 1
+

1

x(x+ 1)

(
2

3x
− 1

4x2

)
<

1

x(x+ 1)

[
−x+

1

12x
− 1

360x3
− x ln

(
1 +

1

x

)](60)

and

1

x(x+ 1)

[
−x+

1

12x
− x ln

(
1 +

1

x

)]
< ln

2x− 1

2x+ 1
+

1

x(x+ 1)

2

3x
(61)

In order to prove (60) and (61), it suffices to show

f(x) > 0 and g(x) > 0 for x ≥ 1,

where

f(x) = −360x4 + 210x2 − 90x+ 1

360x4(x+ 1)
− 1

x+ 1
ln

(
1 +

1

x

)
− ln

2x− 1

2x+ 1

and

g(x) =
12x2 + 7

12x2(x+ 1)
+

1

x+ 1
ln

(
1 +

1

x

)
+ ln

2x− 1

2x+ 1

By (59), we find that for x ≥ 1,

f ′(x) =
1

(x+ 1)2
ln

(
1 +

1

x

)
− 1440x6 − 720x5 + 120x4 + 1690x3 + 44x2 − 265x+ 4

360x5(x+ 1)2(4x2 − 1)

<
1

(x+ 1)2

(
1

x
− 1

2x2
+

1

3x3

)
− 1440x6 − 720x5 + 120x4 + 1690x3 + 44x2 − 265x+ 4

360x5(x+ 1)2(4x2 − 1)

= −1510x3 + 164x2 − 265x+ 4

360x5(x+ 1)2(4x2 − 1)
< 0

and

−g′(x) =
1

(x+ 1)2
ln

(
1 +

1

x

)
− 48x4 − 24x3 − 44x2 + 21x+ 14

12x3(x+ 1)2(4x2 − 1)

>
1

(x+ 1)2

(
1

x
− 1

2x2

)
− 48x4 − 24x3 − 44x2 + 21x+ 14

12x3(x+ 1)2(4x2 − 1)

=
3 + 49(x− 1) + 32(x− 1)2

12x3(x+ 1)2(4x2 − 1)
> 0.

Hence, the functions f(x) and g(x) are strictly decreasing for x ≥ 1, and we have

f(x) > lim
t→∞

f(t) = 0 and g(x) > lim
t→∞

g(t) = 0 for x ≥ 1.

The proof is complete.
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Remark 14. It is observed from Table 1 that for x ≥ 2,

L1(x) < L2(x) and M2(x) < M1(x).

This shows that the inequality (57) is sharper than the inequality (5).

Table 1. Comparison between inequalities (5) and (57).

x L2(x)− L1(x) M1(x)−M2(x)
2 3.362× 10−2 4.288× 10−3

10 4.629× 10−4 1.260× 10−5

100 5.766× 10−7 1.568× 10−9

1000 5.905× 10−10 1.608× 10−13

10000 5.920× 10−13 1.612× 10−17

The formula (49) motivated us to observe the following Theorem 15.

Theorem 15. For x ≥ 1,

exp

(
− 1

2x

)
<

(
1 +

1

x

)x
Γ(x+ 1)1/x

x
(√

2πx
) 1

x

< exp

(
− 1

2x
+

5

12x2

)
.(62)

Proof. In order to prove the inequality (62), it suffices to show that for x ≥ 1,

− 1

2x
< x ln

(
1 +

1

x

)
+

1

x

[
ln Γ(x+ 1)− x lnx− ln(

√
2πx)

]
< − 1

2x
+

5

12x2
.

By (58), it suffices to show that for x ≥ 1,

F (x) := x ln

(
1 +

1

x

)
+

1

x

(
−x+

1

12x
− 1

360x3

)
+

1

2x
> 0

and

G(x) := x ln

(
1 +

1

x

)
+

1

x

(
−x+

1

12x

)
+

1

2x
− 5

12x2
< 0.

By (59), we find that for x ≥ 1,

F (x) > x

(
1

x
− 1

2x2

)
+

1

x

(
−x+

1

12x
− 1

360x3

)
+

1

2x
=

30x2 − 1

360x4
> 0

and

G(x) < x

(
1

x
− 1

2x2
+

1

3x3

)
+

1

x

(
−x+

1

12x

)
+

1

2x
− 5

12x2
= 0.

The proof is complete.
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Remark 16. The inequality (62) can be written for x ≥ 1 as

x

Γ(x+ 1)1/x

(√
2πx

) 1
x

exp

(
− 1

2x

)
<

(
1 +

1

x

)x

<
x

Γ(x+ 1)1/x

(√
2πx

) 1
x

exp

(
− 1

2x
+

5

12x2

)
.(63)

For x ≥ 1, the lower in (63) is sharper than the lower in (42). For x ≥ 3, the lower
in (63) is sharper than the lower in (41).
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Bd. Unirii 18, 130082 Târgovişte,
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