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ENUMERATION OF HAMILTONIAN CYCLES ON A

THICK GRID CYLINDER � PART II: CONTRACTIBLE

HAMILTONIAN CYCLES

Olga Bodroºa-Panti¢∗, Harris Kwong,

Jelena �Doki¢, Rade Doroslova£ki and Milan Panti¢

Here, in Part II, we proceeded further with the enumeration of Hamiltonian
cycles (HC's) on the grid cylinder graphs of the form Pm+1 ×Cn, where n is
allowed to grow and m is �xed. We proposed two novel characterisations of
the contractible HC's. Finally, we made a conjecture concerning the depen-
dency of the asymptotically dominant type of HC's on the parity of m.

1. INTRODUCTION

Determining and enumerating Hamiltonian cycles in some speci�c grid graphs
(such as thick grid cylinder graphs, which are studied here) is of quite some rel-
evance to statistical physics [6] and polymer science [2]. An ample amount of
references related to this topic may be found in Part I [1]. A few novel applications
of this type of research can be found within the �eld of network systems, which re-
volves around computer network functionality. Hamiltonian cycles play a vital role
there, because they cover all the nodes of the system. In [10] the issue of handling
indeterminacy for interval data under neutrosophic environment is considered. An-
other �eld, which may bene�t from our research, is that of cyber security. There,
digital micro�uidic biochips (DMFBs) are making the transition to the marketplace
for commercial exploitation. For example, the microelectrode dot array (MEDA) is
a next-generation DMFB platform that supports real-time sensing of droplets and
has the added advantage of important security protection [7].
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When m is �xed, the graphs Pm+1 × Cn are referred to as the thick grid
cylinders (see Figure 1a). When n ≥ 2, there are two kinds of Hamiltonian
cycles on such graphs. The �rst kind, denoted by HC nc's, are not contractible
when perceived as closed Jordan curves (see Figure 1b) on the in�nite cylindrical
surface on which the graph Pm+1×Cn is settled. They were examined in Part I [1]
of this series. The second kind of HC's, denoted by HC c's, are the contractible
ones. They are studied in Part II of the series (this exposition). In both parts,
we study the topological properties of the HC's. Based on these properties, we
construct digraphs from which the HC's can be counted. The motivation behind
our investigations is made clear in Part I, together with the reasons why we have
opted for the cell-coding approach.

Contractible HC's are more complicated than the non-contractible ones. These
contractible HC's divide the underlying in�nite cylindrical surface into two separate
regions. The �rst is bounded and is called the interior , whereas the second one
is called the exterior of the HC in question (see Figure 1b-c). Moreover, we refer
to these regions as the zero and non-zero region depending on whether a zero
is assigned to the squares of the interior or the exterior region.
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Figure 1: (a) The graph Pm+1 ×Cn with its cells (windows) labeled by wi,j , where
1 ≤ i ≤ m and 1 ≤ j ≤ n. (b) A non-contractible, closed Jordan curve on an
in�nite cylindrical surface. (c) A contractible, closed Jordan curve on an in�nite
cylindrical surface.

The paper is organised as follows: in Section 2, we examine HC c's whose non-
zero region is the exterior. Section 3 is devoted to HC c's whose non-zero region is
their interior.
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The notations hnc
m (n) and hc

m(n) stand for the number of HC nc's and HC c's,
respectively. Their respective generating functions are

Hnc
m (x)

def
=

∑
n≥1

hnc
m (n+ 1)xn, and Hc

m(x)
def
=

∑
n≥1

hc
m(n+ 1)xn.

The overall number of HC's in the thick grid cylinder graph Pm+1 × Cn (m ≥ 1,
n ≥ 2) is denoted by hm(n). Clearly, hm(n) = hnc

m (n) + hc
m(n) and its generating

function Hm(x) =
∑
n≥1

hm(n+1)xn ful�lls the equation Hm(x) = Hnc
m (x)+Hc

m(x).

The orientation of a HC c is determined in such a way that when traversing
alongside the considered HC its interior region is always on the right-hand side (see
Figure 1c). Recall an assertion from Theorem 1 of [3] concerning hc

m:

(1) hc
m(n) = 0 if and only if m is even and n is odd.

Further, let us be reminded of a few additional de�nitions from Part I [1]
needed hereinafter. All the rest may as well be found in the said paper, unless
explicitly stated di�erently.

De�nition 1. Given an integer word d1d2 . . . dm, its support is de�ned as the
ternary word d̄1d̄2 . . . d̄m, where

d̄i =


1 if di > 0,

0 if di = 0,

−1 if di < 0.

The support of an integer matrix [di,j ] is de�ned in a similar fashion.

De�nition 2. The factor u of a word v is called a b-factor if it is a block of
consecutive letters all of which are equal to b. A b-factor of v is said to be maximal
if it is not a proper factor of another b-factor of v.

Recall that the window lattice graph Wm,n, whose vertices are the square
cells (or windows) wi,j (1 ≤ i ≤ m, 1 ≤ j ≤ n) of Pm+1 × Cn, is isomorphic
to Pm × Cn. For a HC c, the interior windows (marked with 0's as in Figure 3)
form the interior tree (IT) in Wm,n. Nonetheless, the exterior windows form a
forest of exterior trees (ET's). Note that only one ET from this forest contains

exactly one window in the �rst as well as in the last (the mth) row of Wm,n, called
the up and down root , respectively. We call this particular ET the split tree
(ST) of the HC in question. Any other ET di�erent from the split tree contains
either exactly one down root or exactly one up root, but not both. The ET's with
a down root are called the down trees (DT's), whereas the ET's with an up root
are referred to as the up trees (UT's).

Example 1. For the purpose of illustration, take a look at the HC c depicted in
Figures 3 and 4 whose split tree has the down root w10,3, and the up root w1,1. It
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also has one ET with the down root w10,9 (hence a DT), and one ET with the up
root w1,7 (hence a UT); they are labeled by non-zero integers in Figure 3.

Note that, it su�ces to examine only those HC c's in Pm+1 ×Cn whose split
tree has w11 for its up root. Let the number of such HC c's be φc

m(n − 2), where
m ≥ 1, and n ≥ 2, and let the associated generating function be:

Φc
m(x)

def
=

∑
k≥0

φc
m(k)xk.

This implies that the total number of HC c's in Pm+1 × Cn is given by

hc
m(n) = nφc

m(n− 2).

Consequently,

Hc
m(x) =

∑
n≥1

hc
m(n+ 1)xn =

∑
n≥1

(n+ 1)φc
m(n− 1)xn

=
d

dx

∑
n≥1

φc
m(n− 1)xn+1 =

d

dx

(
x2 Φc

m(x)
)
.

There are two possible ways in which we code (or label) the windows with
appropriate integers. The �rst, described in Section 2, is the one in which the
windows of the IT are labeled with zeros, whilst the remaining windows are labeled
with non-zero numbers. The second, which we deal with in Section 3, is the one in
which the zero windows belong to the ET's, whereas the non-zero windows belong
to the IT. This way, any HCc can be viewed as a sequence of n columns comprising
the coded windows. This sets up a one-to-one correspondence between the set of
HC c's and the set of sequences of n labeled columns.

Recall from [1] that Gm represents an in�nite grid graph with vertices from
the set {(i, j) ∈ Z2 | 0 ≤ j ≤ m}, in which the square cell determined by the points:
(j − 1 + kn,m− i), (j + kn,m− i), (j + kn,m− i+ 1) and (j − 1 + kn,m− i+ 1),
with 1 ≤ i ≤ m and 1 ≤ j ≤ n, is labeled wk

ij and is called a window , too. We

also say that wk
ij belongs to the (j + nk)th column of Gm. The set {wk

ij | i, j, k ∈
Z ∧ 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n} presents the set of vertices of another in�nite grid
graph denoted by Wm.

Consider a HC c in the graph Pm+1 × Cn. Loosely speaking, a rolling im-
print (RI) is a picture obtained as follows. First we �cut through� the surface
of our graph Pm+1 × Cn (with a HC in it) along the line which connects the ver-
tices M(0, 1) and N(m, 1), see Figure 1a. Next, we unroll and �atten it; see the
rectangle R0 : M0N0N1M1 in Figure 2a. Finally we produce many copies of the
initial picture (R−1, R−2, R−3, . . . and R1, R2, R3, . . .), and line them up to the
left and to the right side accordingly; see Figure 2b. Since the HC is contractible,
its RI is actually the graph Gm with in�nitely many mutually congruent polygonal
lines on it. These polygonal lines are the boundaries of the polygons consisting of
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all the vertices (wk
ij ) of Wm that correspond to the windows (wij) of Pm+1 × Cn

from the interior of the HC c (the white squares in Figure 2b or the gray squares
in Figure 2c). That way parts of the interior and exterior trees that were initially
broken by the process of �cutting� of the Wm,n are now assembled again into the
original forms, and multiplied in Wm. What we obtain is a sequence of copies
. . . S−3, S−2, S−1, S0, S1, S2, . . . of a �new� split tree S0, some sequences of copies
. . . T−3

s , T−2
s , T−1

s , T 0
s , T

1
s , T

2
s , . . . of the �new� exterior trees . . . T 0

s and a sequence
of copies . . . I−2, I−1, I0, I1, I2, . . . of the �new� interior tree I0.

At this point we need to modify a few de�nitions stated in [1], as follows:

De�nition 3. The basis of a rolling imprint (BRI) is the union of the vertex
set of the split tree whose down root is in R0, the vertex sets of all the exterior trees
(di�erent from the split tree) each of which has its root in R0, and the vertex set
of the interior tree whose leftmost window from the �rst row belongs to R0.

Note that, in this way, we establish a bijection between the set of vertices in
V (Wm,n) and the BRI (see Figure 2d).

The aforementioned coding of the windows is, in both cases, dealt with in
two stages. In the �rst stage the graph Wm,n is associated with the matrix Ac =
[aij ]m×n whose entries are from {−1, 0, 1}. The windows wi,j are called the zero
windows if and only if ai,j = 0, otherwise they are named the non-zero windows.
The coding is done by associating the same number to each of the vertices of the
same tree (be it a ST, ET or IT) during the �rst stage. For instance, in the �rst
case all the vertices of the UT's were coded with −1, whilst all the vertices of the
DT's and ST were coded with 1. Therefore, we say that the DT's and the ST are
positive trees (PT), whereas for the UT's we say that they are negative trees
(NT), or simply non-zero trees, irrespective of the case. In the second case, the
term positive tree (PT) or non-zero tree refers to the IT. The term zero tree
is used in a similar manner. The roll number depends on the type of cell (zero or
non-zero).

De�nition 4. The roll number (or simply roll) of a window wi,j ∈ V (Wm,n),
denoted by r(wi,j) (or simply r if the window is clear from the context) is a unique
integer k for which wk

ij belongs to a non-zero tree of the BRI, or in case wij is a
zero window, we set r = 0. We shall also say that the window wi,j belongs to
roll r.

Example 2. For the HC c whose BRI is presented in Figure 2d, the roll numbers
of some speci�c windows are summarized below.

non-zero coding roll number
tree(s) method w9,12 w7,12 w3,11 w5,11 w1,2 w1,n w8,11 w8,8 w4,12 w2,2

IT second −2 −2 −1 −1 0 0 0 0 0 0
ETs �rst 0 0 0 0 0 0 −1 0 1 2
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Figure 2: (a) Unrolling and �attening the cylindrical surface that contains a HC c.
(b) The rolling imprint of a HC c, with the copies of the �new� split tree and ETs
in gray. (c) The rolling imprint of a HC c, with the copies of the �new� interior
tree in gray. (d) The basis of a rolling imprint (BRI) consists of the windows of
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De�nition 5. Two non-zero vertices wi,t and wj,s of Wm,n with ai,t = aj,s are said
to be joined at the k-th column with the roll number r, or simply kr-joined,
where 1 ≤ k ≤ n, and −

⌊
m
2

⌋
≤ r ≤

⌊
m
2

⌋
, if and only if their corresponding windows

in the BRI belong to the same component in the subgraph of Wm induced by the set
of all non-zero windows wz

x,y from the BRI that satisfy both ax,y = ai,t = aj,s, and
either (i) z = r(wxy) < r, or (ii) z = r(wxy) = r and y ≤ k.

Example 3. Let us once again take a look at Figure 2d assuming the �rst way of
coding (a1,1 ̸= 1). There, windows w6,8 and w8,8 are not 80-joined, but instead are
90-joined. Also, w2,12 is 121-joined with w4,12.

In Sections 2 and 3, as we said, we present two di�erent characterizations of
HC c where w11 is the up root of the split tree. Both of them allow for the use
of the transfer matrix method with a view to obtaining the values of h c

m(n)'s. In
Section 4, we determine the upper bound of the so-called colorr words which appear
in these procedures. Sections 5 and 6 contain comparative analysis of the numerical
results obtained by using these two characterizations and some other conclusions
including two new conjectures. Section 7 is devoted to closing remarks.

2. CODING THE EXTERIOR TREES BY NON-ZERO ENTRIES

2.1. The First Phase � the Matrix A c,Ext

For any integer m ≥ 1, we associate with each HC c in Pm+1 × Cn with w1,1

as the up root of the split tree a matrix A c,Ext = [aij ]m×n whose entries are de�ned
in the following way:

ai,j
def
=


0 if wi,j belongs to the IT,

−1 if wi,j belongs to a UT,

1 if wi,j belongs to a DT or the ST.

Obviously, a1,1
def
= 1, a1,2

def
= 0, a1,n

def
= 0, and a2,1

def
= 1. Note that w1,1 is the only

positive window in the �rst row (on the �negative coast�). We adopt the convention

that ai,n+1
def
= ai,1, and ai,0

def
= ai,n, for 1 ≤ i ≤ m.

Lemma 1. Every HC c on the thick grid cylinder graph Pm+1 ×Cn (with w1,1 as
the up root of the split tree) determines a matrix A c,Ext = [aij ]m×n, with entries
from the set {−1, 0, 1}, which satis�es the conditions below.

1. First and Last Row Conditions (FL c,Ext):

(a) a1,1 = 1, and a1,2 = a1,n = 0.
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Figure 3: A contractible Hamiltonian cycle of P11 × C10 with the entries of the
matrices A c,Ext (the �rst phase) and B c,Ext (the second phase) written on their
windows as the cylindrical surface is drawn on a �at surface.

(b) For 2 ≤ j ≤ n,

a1,j ∈ {0,−1}, and (a1,j , a1,j+1) ̸≡ (−1,−1).

(c) For 1 ≤ j ≤ n,

am,j ∈ {0, 1}, and (am,j , am,j+1) ̸≡ (1, 1).

2. Adjacency of Column Conditions (AC c,Ext):

(a) For 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n,

(|ai,j |, |ai+1,j |, |ai,j+1|, |ai+1,j+1|)
/∈ {(1, 1, 1, 1), (0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1)}.

(b) For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

ai,j · ai,j+1 ̸= −1.

(c) For 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n,

ai,j · ai+1,j ̸= −1.

3. Root Conditions (RC c,Ext):

(a) Each connected component of the subgraph of the graph Wm,n induced
by the windows corresponding to the non-zero entries (±1) of the matrix
A c,Ext is a tree.
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(b) There exists exactly one such tree (the split tree) containing exactly one
window from the �rst row (a11 = 1), and exactly one window from the
last row of Wm,n.

(c) Each of the remaining trees, if any such exist, contains exactly one win-
dow from either the �rst or the last row of Wm,n.

Conversely, every matrix [aij ]m×n with entries from the set {−1, 0, 1} which ful�lls
the conditions FL c,Ext, AC c,Ext and RC c,Ext, determines a unique HC c on the
graph Pm+1 × Cn whose split tree contains the window w1,1.

Proof. The necessity of all three imposed conditions is easily veri�able and is thus
left to the reader. Therefore, we move on to the proof of their su�ciency. Let us
observe all the regions determined by all the non-zero windows including the two
half-cylinders from the one side (at this moment, we cannot assume that there exists
a unique such region). The �rst two conditions are local conditions ensuring that
the boundary of the said regions (the edges which belong to both non-zero window
or the boundary of one of the two half-cylinders, and a zero window) determines a
unique spanning 2-regular subgraph of Pm+1 × Cn, that is, a union of cycles.

The proof that this graph consists of only one component (consequently es-
tablishing the uniqueness of both zero and non-zero regions) can be derived con-
structively. The case n = 2 is trivial, so we can assume that n ≥ 3. The condition
AC c,Ext implies that each of the components of the subgraph of Wm,n induced by
the windows corresponding to the non-zero entries consists only of either 1-windows
or (−1)-windows. Thus, we have justi�ed the existence of both positive (DT's and
ST) and negative trees (UT's).

Let wm,p be the down root of the unique positive tree T0 (the split tree) with
a window w11 in the �rst row in it and T1, T2, . . . , Tk be all the NT's (if any such
tree exists at all) with the up roots w1,j1 , w1,j2 , . . . , w1,jk , respectively, for which
3 ≤ j1 < j2 < . . . < jk ≤ n. Let T ′

1, T
′
2, . . . , T

′
l be all the PT's di�erent from T0 (if

any such tree exists in the �rst place) with the down roots wm,i1 , wm,i2 , . . . , wm,il ,
respectively, for which is ≡ i′s (mod n), where 1 ≤ s ≤ l and p + 2 ≤ i′1 < i′2 <
. . . < i′l ≤ n+ p− 2. Our task is to obtain the unique curve (the broken line) which
separates the regions of the two kinds of windows (the zero and non-zero ones).

We can start from the point M : (0, 1) (the upper-left point of the up root
w1,1 of T0) and move to the lower-left point of wm,p using the edges of Pm+1 ×Cn

that belong to the boundary of T0. From there we continue towards the point
(m, il + 1), and then visit all the vertices on the boundary of T ′

l �nishing at the
point (m, il). Next, we visit the boundary of T ′

l−1, T
′
l−2, . . .. After having visited

the tree T ′
1 we end up at the point (m, i1). Then, we move further to the point

(m, p + 1) and continue towards the point (0, 2) using the remaining edges of the
boundary of ST. From there we similarly continue visiting the boundaries of trees
T1, T2, . . . , Tk, respectively, ending up at the point M again (see Figure 3). By
doing so, we pass through all the edges on the boundary of these regions, obtaining
a contractible HC. 2

Recall that, for �xed values of k and r (1 ≤ k ≤ n, and −
⌊
m
2

⌋
≤ r ≤

⌊
m
2

⌋
),
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the relation kr-joined represents an equivalence relation on the set of all non-zero
windows wx,y that satisfy either (i) r(wx,y) < r, or (ii) r(wx,y) = r and y ≤ k (that

is, whose window from the BRI belongs to the (y + nk)th column of Gm or to the
left of it). Furthermore, every equivalence class belongs to exactly one ET. Hence
if this equivalence class belongs to a PT its windows can be kr-joined with at most
one down root. If it belongs to an NT its windows can be kr-joined with at most
one up (negative) root. Further, because an ST is a PT, we treat its down root as
its main root and this is what we shall assume below. Note that the roll number
of w1,1 could be di�erent from 0 (for example, the roll of w1,1 in Figure 2d is 2).
But, all the other roots of the ET's have their roll number equal to 0.

2.2. The First Characterization of HC c with w11

as the Up Root of the Split Tree

Let C+ def
=

{
2, 3, . . . ,

⌊
m
2

⌋
+1} and C− def

=
{
− 2,−3, . . . ,−

⌊
m
2

⌋
− 1}. For each

HC c with the window w1,1 belonging to the split tree, we associate the matrix
A c,Ext = [ai,j ]m×n with the matrix B c,Ext = [(bi,j , ri,j)]m×n, where bi,j ∈ C+ ∪
C− ∪ {1, 0,−1} and −

⌊
m
2

⌋
≤ ri,j ≤

⌊
m
2

⌋
. The former of the two satis�es the

conditions FL c,Ext, AC c,Ext, and RC c,Ext, whereas the latter is constructed in
the following way:

1. De�ne ri,j = r(wi,j).

2. Set bi,j = ai,j = 0 if wi,j belongs to the IT.

3. If wi,j , where wi,j ̸= w1,1, is the (up) root of an NT (that is, i = 1 and
ai,j = −1) or the down root of a PT (that is, i = m and ai,j = 1), set
bi,j = ai,j . If wi,j is neither the down root of a PT nor the up root of an NT,
but it is jr-joined with such a root, where r = r(wi,j), set bi,j = ai,j .

4. For each �xed column, say column j:

(a) Scan the remaining positive windows wi,j with the same roll number
from bottom to top (that is, from i = m to i = 1), and set bi,j to
z + 1, where z is the ordinal number of the jr-joined equivalence class,
r = r(wi,j), to which it belongs to (hence, the labels of the bi,j 's start
from 2).

(b) Scan the remaining negative windows wi,j with the same roll number,
from top to bottom (from i = 1 to i = m), and set bi,j to z− 1, where z
is the negative value of the ordinal number of the jr-joined equivalence
class, r = r(wi,j), to which it belongs to (hence, the labels of the bi,j 's
start from −2).

Example 4. In Figure 3, the entries in the matrix B c,Ext are written on their
respective windows (b

rij
ij stands in place of (bij , rij), or just bij if rij = 0). Note
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that in the 9th column there exist three parts of the same PT (it is the split tree)
with the same roll number −1, but the windows of only two of them are 9−1-joined.
Consequently, the same value is associated to their entries in the matrix B c,Ext

(b5,9 = b7,9 = 2, and b3,9 = b2,9 = 3). Another example is shown in Figure 2d.
There, the entries of the matrix B c,Ext = [(bi,j , ri,j)]9×16 for windows w1,1 and
w2,2 are (1, 2), for windows w3,4, w2,12 and w4,12 are (1, 1), for windows wm,2, wm,4

and w6,8 are (1, 0), for windows w8,6 and w8,8 are (2, 1), for `windows w1,4, w1,6

and w2,8 are (−1, 0) and for windows w3,11, w5,11, w7,12 and w9,12 are (0, 0).

Consider all the existing maximal b-factors, where b > 0 (b < 0), in the jth

column v = b1,jb2,j . . . bm,j , where 1 ≤ j ≤ n, of the matrix [bi,j ]m×n corresponding
to the matrix B c,Ext = [(bi,j , ri,j)]m×n. Let them be, in their order of appearance
(that is, from bottom to top for positive windows, but from top to bottom for
negative windows), p1-factor, p2-factor, . . . , pk-factor, where k ≥ 1, and pi ≥
1 (pi ≤ −1) for each i. In addition, let r1, r2, . . . , rk denote the roll numbers
associated with these maximal factors. The words p1p2 . . . pk and r1r2 . . . rk are
called the positive (respectively, negative) truncated word and the positive

(resp., negative) truncated roll word , respectively, corresponding to the jth

column of B c,Ext. A subsequence of a truncated word induced by the letters with
the same roll number r is called a positive (resp., negative) colorr word .

Example 5. For the 9th column in Figure 3, the positive truncated word, the
positive truncated roll word, the positive color0 word, and the positive color−1

word are 1223, 0 − 1 − 1 − 1, 1 and 223, respectively. Note that, in general, r1,1
need not be 0, and b1,1 need not be 2.

2.3. Properties of the Matrix B c,Ext

From the de�nition of the matrix B c,Ext = [(bi,j , ri,j)]m×n, we can easily
obtain a number of properties expressed in the following theorem. Bear in mind

that here (bi,n+1, ri,n+1)
def
= (bi,1, ri,1), and (bi,0, ri,0)

def
= (bi,n, ri,n).

Theorem 1. The matrix B c,Ext = [(bi,j , ri,j)]m×n satis�es the following condi-
tions.

1. Basic Properties

(a) The support of the matrix [bi,j ]m×n, that is, the matrix [ai,j ]m×n, satis-
�es the conditions FL c,Ext and AC c,Ext.

(b) Harmonization of the adjacent entries which have the same sign: For
2 ≤ i ≤ m, and 1 ≤ k ≤ n, if ai−1,k = ai,k, then (bi−1,k, ri−1,k) =
(bi,k, ri,k).

(c) For 1 ≤ i ≤ m, and 1 ≤ j ≤ n, if ai,j = 0, then ri,j = 0.

(d) For 3 ≤ j ≤ (n− 1), if a1,j ̸= 0, then (b1,j , r1,j) = (−1, 0).
For 1 ≤ j ≤ n, if am,j ̸= 0, then (bm,j , rm,j) = (1, 0).
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2. Column Properties

For 1 ≤ k ≤ n, the k-th column [(b1,k, r1,k), (b2,k, r2,k), . . . , (bm,k, rm,k)]
T of

the matrix B c,Ext satis�es these conditions:

(a) If there exists an entry (s, r) in the kth column of the matrix B c,Ext,
where s ≥ 3, then for each ℓ ∈ {2, 3, . . . , s − 1}, at least one copy of
the entry (ℓ, r) must appear after the last appearance of the entry (s, r).

Likewise, if there exists an entry (s, r) in the kth column of the matrix
B c,Ext, where s ≤ −3, then for each ℓ ∈ {−2,−3, . . . , s + 1}, at least
one copy of the entry (ℓ, r) must appear before the �rst appearance of the
entry (s, r).

(b) For 1 ≤ i ≤ m, if bi,k ∈ {−1, 1}, then ri,k ≥ 0.

(c) If there exists an entry (2, r) with r ≥ 1 in the kth column of the matrix
B c,Ext, then at least one entry (1, r) must exist in the same column.

Likewise, if there exists an entry (−2, r) with r ≥ 1 in the kth column
of the matrix B c,Ext, then at least one entry (−1, r) must exist in the
same column.

(d) If the negative (positive) truncated roll word of the kth column of the
matrix B c,Ext is not an empty word, it begins (ends) with an element
from {−1, 0, 1}.

3. Adjacency Properties

For 1 ≤ k ≤ n, the kth column of B c,Ext satis�es these conditions.

(a) For 1 ≤ i ≤ m and 2 ≤ k ≤ n, if ai,k−1 = ai,k ̸= 0, then ri,k−1 = ri,k.

(b) For 1 ≤ i ≤ m, if bi,k−1 = 1, then bi,k ∈ {0, 1}, and if bi,k−1 = −1, then
bi,k ∈ {−1, 0}.

(c) For each ordered pair (b, r) with b ≥ 2 (b ≤ −2) which appears in the

(k − 1)st column, there must be an index i for which (bi,k−1, ri,k−1) =
(b, r), and bi,k ∈ C+ ∪ {1} (bi,k ∈ C− ∪ {−1}).

(d) For 1 ≤ i, j ≤ m, where i ̸= j, if (bi,k−1, ri,k−1) = (bj,k−1, rj,k−1) and
ai,k = aj,k = ai,k−1 = aj,k−1 ̸= 0, then bi,k = bj,k.

(e) For 1 ≤ i, j ≤ m, where i ̸= j, if (bi,k−1, ri,k−1) = (bj,k−1, rj,k−1),
ai,k = aj,k = ai,k−1 = aj,k−1 ̸= 0, and bi,k = bj,k = b, then there is no
b-factor in the word b1,kb2,k . . . bm,k which contains both bi,k and bj,k.

(f) For every maximal 1-factor (respectively, (−1)-factor) v in the word
b1,kb2,k . . . bm,k, exactly one of the following three conditions is ful�lled:

i. v either contains the letter bm,k (resp., b1,k), or

ii. in the (k − 1)st column there is exactly one letter bi,k−1 = 1 (resp.,
bi,k−1 = −1) for which bi,k ∈ v, or
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iii. there exists exactly one sequence v = v1, v2, . . . , vp, where p > 1, of
di�erent maximal 1-factors (respectively, (−1)-factors) in the word
b1,kb2,k . . . bm,k satisfying the following conditions:

� For every i (1 ≤ i ≤ p − 1) in the word b1,k−1b2,k−1 . . . bm,k−1,
there is exactly one letter bji,k−1 ∈ C+ (resp., bji,k−1 ∈ C−) for
which bji,k ∈ vi, and there is exactly one letter bsi+1,k−1 ∈ C+

(resp., bsi+1,k−1 ∈ C−) for which bsi+1,k ∈ vi+1,

(bji,k−1, rji,k−1) = (bsi+1,k−1, rsi+1,k−1),

and ji ̸= si for 1 < i < p.

� The factor vp contains either the letter bm,k (resp., b1,k), or in

the (k − 1)st column there exists exactly one letter bi,k−1 = 1
(resp., bi,k−1 = −1) for which bi,k ∈ vp.

(g) For b /∈ {−1, 0, 1}, if v and u represent two di�erent maximal b-factors
in the word b1,kb2,k . . . bm,k with the same roll number, then there is a
unique sequence v = v1, v2, . . . , vp = u, where p > 1, of distinct maximal
b-factors for which it is true that:

� For every i, where 1 ≤ i ≤ p − 1, there is exactly one bji,k−1 with
aji,k−1 = aji,k = 1 (aji,k−1 = aji,k = −1), such that bji,k ∈ vi, and
there is a unique bsi+1,k−1 with asi+1,k−1 = asi+1,k = 1 (asi+1,k−1 =
asi+1,k = −1) such that bsi+1,k ∈ vi+1,

(bji,k−1, rji,k−1) = (bsi+1,k−1, rsi+1,k−1),

and ji ̸= si.

4. Buckle Properties (Speci�c Properties of the First, Second, and Last
Columns)

(a) We have b1,1 > 0, b2,1 > 0, (b1,n, r1,n) = (b1,2, r1,2) = (0, 0).

(b) For 2 ≤ i ≤ m, if ai,n = ai,1 ̸= 0, then ri,1 = ri,n + 1.

(c) If there exists i ∈ {1, 2, . . . ,m} such that ri,1 < 0, then there exists
j ∈ {3, 4, . . . ,m} such that j ̸= i, aj,1 = ai,1, and rj,1 = 0.

(d) If there exists a maximal 1-factor bi1,1 . . . bi2,1, where 1 ≤ i1 ≤ i2 ≤ m,
with ri1,1 = . . . = ri2,1 = 0, then

� i2 = m, or

� there exists j1 with i2 ≤ j1 < m such that the word bj1,1 . . . bm,1

is a maximal 1-factor with rj1,1 = rj1+1,1 = . . . = rm,1 = 0, and
there exist i, j ∈ {1, 2, . . . ,m} such that i1 ≤ i ≤ i2 < j1 ≤ j < m,
bi,n = bj,n, and ri,n = rj,n = −1.

In addition, the �rst column does not contain any of the −1-factor
bi1,1 . . . bi2,1, where 1 ≤ i1 ≤ i2 ≤ m, with ri1,1 = . . . = ri2,1 = 0.
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(e) If the last column of B c,Ext contains the entry (2, 0), then it must con-
tain the entry (1, 0) just as well. Similarly, if the last column of B c,Ext

contains the entry (−2, 0), then it must contain the entry (−1, 0), too.

5. Topological Properties

(a) For 1 < i1 < j1 < i2 < j2 < m, if bi1,k = bi2,k < −1, bj1,k = bj2,k <
−1, and ri1,k = ri2,k = rj1,k = rj2,k, then bi1,k = bj1,k. Likewise, for
1 ≤ i1 < j1 < i2 < j2 < m, if bi1,k = bi2,k > 1, bj1,k = bj2,k > 1, and
ri1,k = ri2,k = rj1,k = rj2,k, then bi1,k = bj1,k.

(b) For 1 ≤ i1 < j < i2 < m, if bi1,k = bi2,k ≤ −1, bj,k = −1, and
ri1,k = ri2,k = rj,k, then bi1,k = bi2,k = −1. Likewise, for 1 ≤ i1 <
j < i2 ≤ m, if bi1,k = bi2,k ≥ 1, bj,k = 1, and ri1,k = ri2,k = rj,k, then
bi1,k = bi2,k = 1.

(c) Assume 1 ≤ i < j ≤ m, if bi,k = bj,k = −1 and rj,k ̸= ri,k, then we
must have ri,k < rj,k. Likewise, if bi,k = bj,k = 1 and rj,k ̸= ri,k, then
we must have ri,k > rj,k.

(d) The absolute value of the di�erence between two adjacent letters in the
negative (or positive) truncated roll word (unless it is an empty word)

corresponding to the kth column of the matrix B c,Ext is at most 1.

(e) For 1 ≤ i, j ≤ m, if bi,k = −1 and bj,k = 1, then i < j.

(f) If the word b1,k . . . bm,k does not contain 1 or −1, with the exception of
eventual roots (b1,k = −1 and/or bm,k = 1), and if among all the entries

of the kth column of B c,Ext with the same �xed roll number r (note that
r ≤ 0) there exist both negative bi,k, where 1 < i < m, and positive bj,k,
where 1 ≤ j < m, then the �rst occurrence of the entry (bi,k, r) in the
column with the smallest negative number bi,k, such that ri,k = r, must
appear before (when viewed from the top row to the bottom row) the last
occurrence of the entry (bj,k, r) with the largest positive number bj,k such
that rj,k = r.

Proof. If we were to compare the statements of this Theorem, except for 5(e)
and 5(f), to the corresponding ones in Theorem 4 of [1], which relate to HC nc, we
would �nd their formulations fairly similar to one another. The proofs of them are
thus analogous to their counterparts, and shall not be restated. Instead, we move
on to the two remaining exceptional cases.

Proof of 5(e): Suppose, on the contrary, that i > j. Then, the shortest
path in the IR from the window w0

i,k to its root (a part of an NT) must cross the

shortest path in the IR from the window w0
j,k to its root (a part of a PT), which is

impossible.

Proof of 5(f): Suppose, on the contrary, that i > j. Then, the shortest path
in the BRI from the positive window wr

j,k to its root (located to the right and
below the window wr

j,k) must cross the shortest path in the BRI from the negative
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window wr
i,k to its root (located to the right and above the window wr

i,k), which is
impossible. 2

Having Part I in mind, it now comes as no surprise that Properties 1�4 are
su�cient when it comes to determining a unique HC c. Again, the following proof
is analogous to its counterpart from Part I. Nevertheless, in order to make this
paper as self-contained as possible, we will still provide a rough sketch of the proof.

Theorem 2. Every matrix B c,Ext = [(bi,j , ri,j)]m×n with entries from
(
C+ ∪

{1, 0,−1} ∪ C−) ×
{
−

⌊
m
2

⌋
, . . . ,

⌊
m
2

⌋}
which satis�es Properties 1�4 determines

a unique HC c on the graph Pm+1 × Cn.

Proof. The support of matrix [bi,j ]m×n, namely matrix [ai,j ]m×n, satis�es the
conditions FL c,Ext and AC c,Ext (Property 1(a) of Theorem 1). We will prove that
RC c,Ext holds, through a set of claims. But �rst, take the set of all windows of
Gm into consideration and divide them into positive, negative and zero ones, in
accordance with the sign of the value corresponding to bi,j . Note that the window
corresponding to 1 can not be adjacent to a window corresponding to −1 because
of Property 1(a).

The edges of Gm which belong to di�erent kinds of windows (zero and non-zero
ones), together with the edges of the zero windows belonging to lines M0M1 and
N0N1, determine a spanning 2-regular subgraph of Gm. Adding the linesM0M1 and
N0N1 to it gives way to a clear distinction between the positive, negative and zero
regions. The �rst, of course, being determined by bi,j > 0, the second by bi,j < 0,
and the last one by bi,j = 0. However, instead of focusing on these regions per say,
we can observe the components of the subgraph Wm induced by the windows of
the same kind (positive, negative or zero). We will refer to them as the positive,
negative or zero regions �induced by the positive, negative or zero entries of the
matrix [bi,j ]m×n�.

Note that every entry (bij , rij) of the matrix B c,Ext is assigned to exactly one

window wr
i,j , where r = rij . In other words, wr

i,j belongs to the (j + nr)th column
of Gm (the square MrNrNr+1Nr+2), although there are in�nitely (countably) many
vertices of Wm corresponding to this bij . If we collect all the positive and negative
windows assigned to entries of the matrix B c,Ext we will obtain a �nite number of
completely ful�lled regions, as the claim below shows.

Claim 1. Every window from any positive or negative region that contains wr
i,j,

where r = rij, is assigned to an entry of the matrix B c,Ext.

Proof. Since there is a path between any two windows in the considered regions,
this comes as a consequence of Properties 1(b), 3(a) and 4(b). 2

As a result, every positive or negative region is bounded, and there are in-
�nitely (countably) many regions congruent to it. The regions described in the
previous lemma will be called the basis positive regions or the basis negative
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regions and its each of its windows wr
ij 's for which (bij , r) = (b, r) a b-window ,

where b ̸= 0. If any such window belongs to the last (that is, the mth) row and
b ̸= 0, it must be a 1-window with r = 0 (Property 1(d)); it will be called the
down root . If any such window belongs to the �rst row and b < 0, it must be a
−1-window with r = 0 (Property 1(d)); it will be called the up root . The window
wr

11, where r = r11 is the only up root which is a positive window. Recall that
in case the path which connects the window wr

i,j to another window consists only

of windows from its column (the (j + nr)th column) or/and those to the left of it,
we call this path the left path for the window wr

i,j .

Claim 2. For any two windows wr
i,j and wr

i′,j, where i < i′, from the same basis

positive (or negative) region and the same column (the (j + nr)th column) for
which there exists a left path for and between them, the following must be ful�lled:
bi,j = bi′,j.

Proof. This can be proved by strong induction on the length l of the considered
path using Properties 1(b) and 3(d), in the exact same way we did in the proof of
Lemma 2 in [1]. 2

Claim 3. The subgraph of Wm,n induced by positive (or negative) entries of matrix
Bc,Ext has a forest structure.

Proof. Assuming the opposite holds, that there exists a cycle in a basis positive
region, then in the rightmost column of its windows once we apply Claim 2 we reach
a contradiction with either Property 3(e), 3(f) or 3(g) (compare with the proof of
Lemma 3 in [1]). 2

Claim 4. Let wr
i1,j

and wr
i2,j

be any two windows from the same basis positive

region, which belong to the same column (the (j + nr)th column), with bi1,j =
bi2,j = b and | b |> 1 (ri1,j = ri2,j = r). Then, there exists a unique left path for
and between them in this region.

Proof. The existence of such a left path is proved by induction on j + nr using
Property 3(g) and 3(b). The base case deals with the leftmost windows of the
considered region, whereas Claim 3 implies its uniqueness. 2

Claim 5. For every 1-window (resp., (−1)-window) wr
i,j, where r = rij, there

exists a unique left path for it which connects it to a down root (resp., an up root).

Proof. The proof can be obtained by induction on j + nr. If the window wr
i,j

belongs to the leftmost windows in the considered region (the base case of the
induction), the letter bi,j and bm,j (resp., b1,j) must belong to the same 1-factor
(resp., (−1)-factor) (Property 3(f)i). If it is not the case, from Property 3(f) and
Claim 4 we conclude that either there is a unique left path for and from it to wr

m,j

(wr
1,j) which is a down root (resp., an up root), or there is a unique left path for
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and from it to a unique 1-window (resp., (−1)-window) from the previous column

(the (j+nr− 1)th column). In the second case, we apply the induction hypothesis
to the newly obtained 1-window (resp., (−1)-window) instead of to wr

i,j . 2

Claim 6. Every positive region has a unique down root, whereas every negative
region has a unique up root.

Proof. Property 3(c) implies that every rightmost window of any basis positive
(resp., negative) region is a 1-window (resp., (−1)-window). By applying Claim 5
to these windows we obtain the desired statement. 2

Now we can �nish the proof of the main statement. Claims 6 and 3 together
with Property 3(c) imply that the RCc,Ext is satis�ed. By applying Lemma 1 we
�nally obtain the existence and uniqueness of a HC c on the graph Pm+1×Cn whose
split tree contains the window w1,1. 2

For each integer m ≥ 1, we will create an auxiliary digraph whose role will
be to enumerate the number of HC c's in Pm+1 × Cn. Here is how we intend to
do that. At �rst, let Fm = F c,Ext

m denote the set of all the possible �rst columns
of Bc,Ext, and Dc,Ext

m a digraph with the vertex set V (Dc,Ext
m ) which consists of

all the possible remaining columns of the same matrix. For any v, u ∈ V (Dc,Ext
m ),

there exists an arc from v to u if and only if the vertex

v = [(b1,k, r1,k), (b2,k, r2,k), . . . , (bm,k, rm,k)]
T

may appear as a column preceding the vertex

u = [(b1,k+1, r1,k+1), (b2,k+1, r2,k+1), . . . , (bm,k+1, rm,k+1)]
T ,

for 2 ≤ k ≤ n− 1. Note that the vertices of the disjoint sets Fm and V (Dc,Ext
m ) are

in both cases the column vectors of the form [(b1, r1), (b2, r2), . . . , (bm, rm)]T with
entries from (C− ∪ {−1, 0, 1} ∪ C+) ×

{
− ⌊m

2

⌋
, . . . ,

⌊
m
2

⌋}
. The di�erence between

the two is that b1 = b2 > 0 for the vertices from Fm, whereas b1 ∈ {−1, 0} and
r1 = 0 for the vertices in V (Dc,Ext

m ).

Let Sm,Lm ⊆ V (Dc,Ext
m ) denote the set of all possible second and last (that

is, the nth) columns of the matrix Bc,Ext, respectively. Also, let LFSm denote
the set of all possible ordered triples (l, f, s) ∈ Lm × Fm × Sm of columns which

can appear as the last (nth), �rst and second column, respectively, in Bc,Ext. The
aforementioned auxiliary diagraph from the previous paragraph will be denoted by

Dc,Ext

m . Its set of vertices will be V (Dc,Ext

m ) = Fm ∪ V (Dc,Ext
m ) and its set of edges

E(Dc,Ext

m )

= E(Dc,Ext
m ) ∪ {(u, v) | (∃w)(u, v, w) ∈ LFSm ∨ (∃w)(w, u, v) ∈ LFSm}.

Note that all the vertices of this graph do abide by the Basic and Column properties
(as well as by the Topological properties). Additionally, the arcs of the digraph
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Dc,Ext
m abide by the Adjacency properties, whereas the arcs coming out of the set

Lm and into the vertices from the set Fm satisfy both the Adjacency and Buckle
properties. The same goes for the arcs spanning from the set Fm and into the
vertices from the set Sm

For example, when m = 2, the digraph Dc,Ext

2 has four vertices, and the set
LFSm consists of just one triplet (v1, f1, v1) (see Figure 5). When m = 3, the

digraph Dc,Ext

3 has fourteen vertices, 3 of which belong to the set F3 = {f1, f2, f3};
whereas 11 of them as in V (Dc,Ext

3 ). At the same time, there exist precisely two
arcs from each of the vertices from the set F3 into the set S3 = {v1, v2, v3, v4, v5}.
Also, there exist two arcs per every vertex of the set F3 to which they point from
the set L3 = {v1, v2, v3, v10} thus forming 12 triplets - elements of the set LFS3

(see Subsection 5.3).

In this way, the enumeration of HC cs on Pm+1 × Cn is reduced to the enu-
meration of oriented walks of length n− 2 in the digraph Dc,Ext

m with the pairs of
initial and �nal vertices which are respectively the third and �rst coordinates of
the triplets from the set LFSm. In other words, this enumeration is reduced to the

enumeration of closed oriented walks of length n in the digraph Dc,Ext

m for which it
holds that they both start and �nish in the same vertex from the set Fm and no
other vertex from the set Fm belongs to them. Finally, this number φc,Ext

m (n− 2),
where n ≥ 2, needs to be multiplied by n so as to obtain the correct number of
HC c of Pm+1 × Cn.

3. CODING THE INTERIOR TREE BY NON-ZERO ENTRIES

3.1. The First Phase � the Matrix A c,Int

Here, the zero windows belong to the exterior trees and w11 remains the up
root of the split tree. To put it di�erently, w0

1,2 is the leftmost window from the
�rst row of the interior region in the BRI.

Each HC c on Pm+1×Cn, where m ≥ 1, with the window w1,1 as the up root
of the split tree can be encoded by a (0, 1)-matrix A c,Int = [ai,j ]m×n where

ai,j
def
=

{
1 if wi,j belongs to the interior of HC c,

0 otherwise.

By doing so, we obtain one positive region and one or more zero regions in the BRI.
Note that in Figure 4 almost all the windows of the IT are in R0 except for the
two windows which are in R1. On the other hand, in Figure 2 the windows of the
IT belong to the rectangles R−2,R−1 and R0.

Lemma 2. Every HC c on the thick grid cylinder graph Pm+1×Cn with the window
w1,1 as the up root of the split tree determines a (0, 1)-matrix A c,Int = [aij ]m×n that

satis�es the following conditions (ai,n+1
def
= ai,1, and ai,0

def
= ai,n for 1 ≤ i ≤ m).
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,

Figure 4: A contractible HC of P11×C10 with the entries of A c,Int (the �rst phase)
and B c,Int (the second phase) inscribed on its windows, once the cylindrical surface
was represented on a �at surface.

1. First and Last Row Conditions (FL c,Int):

(a) a1,1 = 0.

(b) For 1 ≤ j ≤ n, (a1,j , a1,j+1) ̸≡ (0, 0).

(c) For 1 ≤ j ≤ n, (am,j , am,j+1) ̸≡ (0, 0).

2. Adjacency Conditions (AC c,Int): For 1 ≤ i ≤ m− 1, and 1 ≤ j ≤ n,

(ai,j , ai+1,j , ai,j+1, ai+1,j+1) ̸∈ {(1, 1, 1, 1), (0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1)}.

3. Tree Condition (TC c,Int): The vertices of Wm,n corresponding to 1's in
A c,Int induce a unique tree in Wm,n.

Conversely, every (0, 1)-matrix [aij ]m×n which satis�es the conditions FL c,Int,
AC c,Int, and TC c,Int determines a unique HC c on the thick grid cylinder graph
Pm+1 × Cn with the window w1,1 as the up root of its split tree.

Proof. The �rst two conditions provide the local whereas the third one provides
the global aspect of hamiltonicity and their necessity is easily veri�able (note that
FL c,Int implies that a1,2 = a1,n = 1). With the intention of showing that all
the above mentioned conditions are su�cient as well, note the following. The �rst
two conditions ensure that the set of edges belonging to both a zero and a positive
window or to both a positive window and one of the linesM0M1 orN0N1 determines
a unique 2-regular spanning subgraph of Pm+1×Cn, that is, a union of cycles. The
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third condition implies that there exists a unique cycle � the boundary of the
positive region (IT).

Let us walk from the upper horizontal edge of the window w12 (the windows
on the right-hand side belong to the IT), walking in accordance with the afore-

mentioned boundary. As there are no consecutive zeros in the mth row of A c,Int,
there exists at least one window corresponded to 1 in that row. Find the last lower

horizontal edge of some window from the mth row through which we pass along our
walk. If we denote that window by wmk (in Figure 4, we have k = 4), then wm,k−1

represents the down root of the split tree. The reason behind that is that the rest
of our walk consists of edges which belong to zero windows that are connected to
both wm,k−1 and w11, with the latter of which we end our walk as it is. Therefore,
the constructed HC is contractible and has w1,1 for the up root of the split tree. 2

3.2. The Second Characterization of HC c with w11

as the Up Root of the Split Tree

For each HC c with w1,1 in the split tree, we associate the matrix A c,Int =
[ai,j ]m×n to the matrix B c,Int = [(bi,j , ri,j)]m×n. The �rst matrix satis�es the
conditions FL c,Int, AC c,Int, and TC c,Int. The second matrix with bi,j ∈ C+∪{0, 1}
and −

⌊
m
2

⌋
≤ ri,j ≤

⌊
m
2

⌋
is constructed in the following way:

1. De�ne ri,j = r(wi,j).

2. Set bi,j = ai,j = 0 if wi,j belongs to an ET.

3. For each �xed column j, partition the positive windows from the jth column
with the same roll number into jr-joined equivalence classes. Then, label all
the windows within each equivalence class with 2, 3 . . ., according to the order

in which the equivalence classes �rst appear within the jth column, from top
to bottom.

Example 6. In Figure 4, the values (bij , rij) of B
c,Int are inscribed on the windows

as b
rij
ij or just as bij if rij = 0. In the 9th column there are four parts of the IT

that belong to the roll 0. Three of them, w1,9, w4,9, and w8,9, are 90-joined.
Consequently, the same b-value is assigned to them in B c,Int. More speci�cally, we
have b1,9 = b4,9 = b8,9 = 2. The fourth window, w6,9, while still belonging to the
roll 0, belongs to a di�erent equivalent class. Hence, b6,9 = 3. In the second column,
there are three windows that belong to the IT. Two of them belong to the roll 0,
but they belong to two di�erent equivalence classes with respect to the relation
20-joined. The last window, w10,2, belongs to roll 1; thus, (b10,2, r10,2) = (2, 1).

In an arbitrary column of the matrix [bi,j ]m×n that corresponds to B c,Ext =
[(bi,j , ri,j)]m×n, we consider all the maximal b-factors (if it exists), where b > 0.
Let them be, in their order of appearance, that is, from top to bottom, p1-factor,
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p2-factor, . . . , pk-factor, where k ≥ 1, and pi ≥ 2 for each i. In addition, let
r1, r2, . . . , rk denote the roll numbers associated with these maximal factors. The
words p1p2 . . . pk and r1r2 . . . rk are called the truncated word and the truncated
roll word , respectively. A subsequence of a truncated word induced by the letters
with the same roll number r is called a colorr word .

Example 7. For the second column in Figure 4, the truncated word, the truncated
roll word, the color0 word, and the color1 word are: 232, 001, 23, and 2, respectively.
The color0 word for the fourth column is 23435.

3.3. Properties of B c,Int

The properties listed below follow straightforwardly from the de�nition of

the matrix B c,Int = [(bi,j , ri,j)]m×n. Here, (bi,n+1, ri,n+1)
def
= (bi,1, ri,1), and

(bi,0, ri,0)
def
= (bi,n, ri,n).

Theorem 3. The matrix B c,Int = [(bi,j , ri,j)]m×n satis�es the following condi-
tions.

1. Basic Properties

(a) The support of the matrix [bi,j ]m×n, that is, the matrix [ai,j ]m×n, satis-
�es the FL c,Int and AC c,Int.

(b) Harmonization of the adjacent entries having the same sign: For 2 ≤
i ≤ m and 1 ≤ k ≤ n, if ai−1,k = ai,k, then (bi−1,k, ri−1,k) = (bi,k, ri,k).

(c) For 1 ≤ i ≤ m and 1 ≤ j ≤ n, if ai,j = 0, then ri,j = 0.

2. Column Properties

For 1 ≤ k ≤ n, the kth column [(b1,k, r1,k), (b2,k, r2,k), . . . , (bm,k, rm,k)]
T of

the matrix B c,Int satis�es these conditions:

(a) If there exists an entry (s, r) in the kth column of B c,Int, where s ≥ 3,
then for each ℓ ∈ {2, 3, . . . , s − 1}, at least one copy of the entry (ℓ, r)
must appear before the �rst appearance of the entry (s, r).

(b) If the truncated roll word of the �rst column of B c,Int is not an empty

word, it begins with 0 or 1. The truncated roll word of the kth column
of B c,Int for k ̸= 1 is non-empty and begins with 0.

3. Adjacency Properties

For 1 ≤ k ≤ n, the kth column of B c,Int = [(bi,j , ri,j)]m×n satis�es these
conditions:

(a) For 1 ≤ i ≤ m and 2 ≤ k ≤ n, if ai,k−1 = ai,k = 1, then ri,k−1 = ri,k.

(b) For each ordered pair (b, r) that appears in the kth column, with the
exception of the following two cases:
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� b = 2, r > 0 is the maximal roll in this column, and there is no
occurrence of (3, r) in this column;

� k = n, b = 2, r = 0 is the maximal roll in this column, and there is
no occurrence of (3, 0) in this column;

there must exist an index i for which (bi,k, ri,k) = (b, r), and bi,k+1 ̸= 0.

(c) For 1 ≤ i, j ≤ m, where i ̸= j, if (bi,k−1, ri,k−1) = (bj,k−1, rj,k−1) and
ai,k = aj,k = ai,k−1 = aj,k−1 = 1, then bi,k = bj,k.

(d) For 1 ≤ i, j ≤ m, where i ̸= j, if (bi,k−1, ri,k−1) = (bj,k−1, rj,k−1),
ai,k = aj,k = ai,k−1 = aj,k−1 = 1, and bi,k = bj,k = b, then there is no
b-factor in the word b1,kb2,k . . . bm,k which contains both bi,k and bj,k.

(e) For b ̸= 0, if v and u represent two di�erent maximal b-factors in the
word b1,kb2,k . . . bm,k with the same roll number, then there is a unique
sequence v = v1, v2, . . . , vp = u (p > 1) of distinct maximal b-factors for
which it is true that:

� For every i, where 1 ≤ i ≤ p − 1, there is exactly one bji,k−1 with
aji,k−1 = aji,k = 1, such that bji,k ∈ vi, and there is a unique
bsi+1,k−1 with asi+1,k−1 = asi+1,k = 1 such that bsi+1,k ∈ vi+1,
(bji,k−1, rji,k−1) = (bsi+1,k−1, rsi+1,k−1), and ji ̸= si.

(f) For r > 0, if the ordered pair (2, r) appears in the kth column, then there
must exist an index i for which

� If k = 1, then ri,n = r − 1, and ai,1 = ai,n = 1.

� If k > 1, then ri,k−1 = r, and ai,k−1 = ai,k = 1.

4. Buckle Properties (Speci�c Properties of the First and Last Columns)

(a) (b1,1, r1,1) = (b2,1, r2,1) = (0, 0), and (b1,n, r1,n) = (2, 0).

(b) For 2 < i ≤ m, if ai,n = ai,1 = 1, then ri,1 = ri,n + 1.

5. Topological Properties

(a) For 1 < i1 < j1 < i2 < j2 ≤ m, if bi1,k = bi2,k > 1, bj1,k = bj2,k > 1,
and ri1,k = ri2,k = rj1,k = rj2,k, then bi1,k = bj1,k.

(b) The absolute value of the di�erence between two adjacent letters in the

non-empty truncated roll word corresponding to the kth column of B c,Int

is at most 1.

Proof. We shall omit the proofs of those items that we consider to be fairly
straightforward, due to their similarity to the ones in Theorem 1 or Theorem 4
of [1]. However, we shall discuss the remaining items.

Column Property 2(a): It is a trivial consequence of the chosen method of
coding, that is, of the way in which B c,Int is formed.

Column Property 2(b): Notice at �rst that using the de�nition of the matrix
B c,Int and the de�nition of BRI, we have that b1,1 = b2,1 = 0, b1,2 = b1,n = 2 and
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r1,2 = r1,n = 0. The number r1,n must be zero because, assuming the contrary, the
path which connects the windows w0

1,2 and w
r1,n
1,n would encompass the split tree

and so it could not reach its down root.

The truncated roll word of the kth column where k > 1 is a non-empty word
because b1,kb2,k . . . bm,k can be zero word just for k = 1. Now, suppose to the

contrary, that the truncated roll word of the kth column, where k > 1, of B c,Int

begins with r ≥ 1. Let w r
i,k be a positive window from the BRI, for which blk = 0,

where 1 ≤ l ≤ i − 1. Let P 0 denote the unique path from w r
i,k to w 0

1,2. This path

must cross the (k+n(r−1))th column of the RI in a window w r−1
s,k for some integer

s > i. But, in that case, the copy P−1 of the path P 0 in the RI meets P 0, which is
impossible. This proves that r < 1. Similarly, we conclude that r > −1, observing
the path from w r

i,k to w 0
1,n instead of the path from w r

i,k to w 0
1,2. Together, we

conclude that r = 0.

Further we show that the �rst column of B c,Int possesses the property that
a non-empty truncated roll word begins with ri,1 = 0 or ri,1 = 1 (3 ≤ i ≤ m).
Namely, assuming the opposite, we would have ri,1 > 1 or ri,1 < 0. If ri,1 > 1, then

the unique path P 0 from w 0
1,n to w

ri,1
i,1 must cross the (n + 1)st column of the RI

in a window w 1
s,1 for some integer s > i. It implies that the copy P−1 of the path

P 0 in the RI meets P 0, which is impossible. Similarly, we may consider the case
when ri,1 < 0 and reach a contradiction again.

Adjacency Properties 3(b): Assume the rightmost positive windows in the
BRI correspond to column k̃. They have maximal roll in this column, say r̃, which
is either (i) r̃ > 0, or (ii) r̃ = 0 and k̃ = n. Since there exists exactly one k̃r̃-joined
equivalence class for these windows, all corresponding entries of the matrix B c,Int

are (2, r̃). For any other window wr
j,k in the BRI which corresponds to the pair

(b, r) there is a path from it to one of these rightmost positive windows in the

BRI over some window wr
i,k+1 from the next, (rn + (k + 1))th column. Clearly,

(bi,k, ri,k) = (b, r).

Additionally, note that if the pair (bi,j , ri,j) = (2, r), where r > 0 is the

maximal roll in the jth column of B c,Int, and there is no occurrence of (3, r) in
this column, then the window wr

i,j can be (but need not be) one of the rightmost
windows in the considered region (see, as an example, the �rst and the second
column of B c,Int in Figure 4).

Adjacency Properties 3(f): If the ordered pair (2, r) with r > 0 appears in

the kth column, then the corresponding window belongs to the (rn+ k)th column
in BRI. Since there exists a path from it to the window w1,2, it must pass through
the previous column. 2

Properties 1�4 are su�cient for determining a unique HC c.

Theorem 4. Every matrix B c,Int = [(bi,j , ri,j)]m×n with entries from
(
C+ ∪

{1, 0}
)
×

{
−

⌊
m
2

⌋
, . . . ,

⌊
m
2

⌋}
which satis�es Properties 1�4 of Theorem 3 deter-

mines a unique HC c on the graph Pm+1 × Cn.



Enumeration of Contractible Hamiltonian Cycles on a Thick Grid Cylinder II 269

Proof. By applying Property 1(a), we see that the support of the matrix [bi,j ]m×n,
in other words, the matrix [ai,j ]m×n, satis�es the FL

c,Int and AC c,Int of Lemma 2.
In order to prove that the TC c,Int of Lemma 2 is satis�ed as well, observe the set
of all non-zero windows wk

i,j (k ∈ Z) of Wm � the windows corresponding to the

entries (bi,j , ri,j) of B c,Int where bi,j > 0. These windows determine the non-
zero regions. The union of the boundaries of these regions present a spanning
2-regular subgraph of Gm. If we consider only the non-zero windows wk

i,j where
k = ri,j , applying Properties 1(b), 3(a) and 4(b), we can conclude that they cover
up completely one or more of those regions. To distinguish these regions from their
copies we shall call them the basis regions (BR) (although there is just one such
region, as will be shown later).

Recall that in case a path in Wm, which connects the window wr
i,j to another

window, consists only of the windows from its column (the (j + nr)th column)
or/and those to the left of it, we call it the left path for the window wr

i,j . The
path visiting only the windows from the same column which are assigned to the
entry (b, r) of Bc,Int is called a b-factor . Properties 1(b) and 3(c) imply the next
statement.

Claim 7. If there exists a left path for and between the two windows wr
i,j and wr

i′,j,
where i < i′, from the same basis region, then bi,j = bi′,j.

The proof of this statement can be obtained by strong induction on the length
l of the considered path in a similar fashion by which Claim 2 was proven. Further,
using Claim 7, Properties 3(d) and 3(e), analogously as in the proof of Claim 3,
the following statement can be shown.

Claim 8. The subgraph of Wm,n induced by the windows determined by the positive
entries of Bc,Int has a forest structure.

The next claim can be proved by induction on j + nr (with the base case
which refers to the leftmost windows of the considered region), whilst at the same
time relying upon Property 3(e).

Claim 9. For any two windows wr
i1,j

and wr
i2,j

from the same basis region and with
bi1,j = bi2,j there exists a left path for and between them.

The uniqueness of this path is a consequence of the forest structure of the
subgraph of Wm induced by the windows belonging to the considered region.

It remains to prove that the subgraph ofWm induced by the positive windows
which belong to the basis regions has just one component (hence it is a connected
graph). We will prove that there exists a path for and between an arbitrary such
window and w0

1,n (Property 4(a) guaranties the existence of such a path in the
considered region).

Note that Property 3(b) implies that all the rightmost positive windows in

the BR correspond to either the pair (2, 0) and belong to the nth column (Case
I), or to the pair (2, r) where r > 0 (Case II). Claim 9 indicates that all positive
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windows of the last column of the BR are connected (with some paths) to each
other.

We begin our considerations for Case I, �rst. Property 3(b) and Claim 9 imply
that for every window wr

i,j from BR, with the exception of the windows from the

last (the nth) column (that is, from the (rn+j)th column, where rn+j < n), there

exists a path which connects it with a window from the next (the (rn+ j + 1)th)
column. Consequently, every positive window in the BR is connected to a window
from the last column. This implies that all these windows belong to the same
component.

As for Case II, let rn+ k, where r > 0 and 1 ≤ k ≤ n, be the ordinal number
of the last column of the BR (whose windows are all assigned to the pair (2, r)).
Property 3(f) implies the existence of the positive window from the BR in the

previous ((rn+ k− 1)th) column which is connected to the positive windows from

the (rn+ k)th column. If all the windows from this previous column are assigned
to the pair (2, r), then we use Claim 9. Otherwise we use Property 3(b) to conclude
that all the windows from this column are connected to the windows of the last
column. Now, we can obtain the same conclusion by using the (rn+ k − 2)th and

(rn+ k − 1)th columns instead of the (rn+ k − 1)th and (rn+ k)th columns. We
continue this procedure till we reach the rectangle R0, that is, �nishing with the

nth and (n + 1)st columns. This way all the windows from the nth column and
to right of it are connected. For the rest of the windows (from the columns to the

left of the nth column) we use Property 3(b) and Claim 9 similarly as in Case I.
Consequently, the subgraph of Wm,n induced by Bc,Int's positive entries has a tree
structure. 2

Let Fm denote the set of all possible �rst columns of B c,Int. We already
know that the set of all possible columns of the matrix B c,Int (as de�ned by
Properties 1�4 or 1�5 above) forms the vertex set of a digraph D c,Int

m . Note that
Fm ⊆ V (D c,Int

m ). Furthermore, the directed edges are determined by the adjacency
conditions. Let FLm denote the subset of V (D c,Int

m ) × V (D c,Int
m ) consisting of

all possible pairs of �rst and last columns (which we call the �-pairs) of B c,Int

determined by the speci�c properties of the �rst and last columns. The enumeration
of HC c's on Pm+1×Cn basically comes down to the enumeration of oriented walks
of length n − 1 in the digraph D c,Int

m with the initial and last vertices from the
set FLm. For m = 2, see Figure 6. Finally, this number φ c,Int

m (n − 1) should be
multiplied by n to obtain the correct number of HC c.

Note that the size of D c,Int
m depends on whether we have imposed the ad-

ditional conditions from Property 5 on the vertices and edges. The previously
mentioned properties are quite handy, particularly when it comes to generating the
set of vertices of D c,Int

m . Owing to them, it is possible to reduce the number of
edges in the said diagraph. In other words, we are actually able to exclude the
super�uous edges.
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4. THE NUMBER OF Colorr WORDS OF FIXED LENGTH
AND CATALAN NUMBERS

A color word was de�ned in [4] as a word of length k over the alphabet
{2, 3, . . . , k + 1} with the following properties:

� P1 : If the letter s ≥ 3 appears in a word, then each letter from the set
{2, 3, . . . , s − 1} must appear at least once prior to the �rst occurrence of s.
Consequently, if is denotes the position at which the �rst occurrence of s can
be found, then we must have i2 < i3 < i4 < · · · .

� P2 : If abab is a subword of a word, then a = b. In every other word in which
a ̸= b, abab cannot appear as subword.

The number of color words of length k is determined by the kth Catalan number
Ck = 1

k+1

(
2k
k

)
[4].

In [1] and in the previous sections we have introduced the notions of a positive
(resp., negative) or just truncated word and a positive (resp., negative) or just colorr

word. These depend on the type of HC in question (HC nc or HC c) as well as on the
type of coding applied (HC nc, HC c,Ext,HC c,Int). Throughout the whole process of
generating the vertices of D c,Ext

m and D c,Int
m , as well as of Dnc

m (which was described
in PART I) we need to construct the set of all (positive/negativ/-) colorr words of
length k. Now, we want to �nd the upper bound of this set's cardinality.

In case of B c,Int
m (for all possible r), this set is determined by P1 (in accor-

dance with Property 2 (a)) and P2 (in accordance with Property 5(a)). As a result,
the upper bound of this set's cardinality is precisely Ck.

Proposition 1. The upper bound of the cardinality of colorr words of length k in

case of B c,Int
m (for all possible r) is the kth Catalan number Ck = 1

k+1

(
2k
k

)
.

Exactly the same situation occurs in Bnc and B c,Ext
m when r < 0. In the

latter one we use the term �positive� or �negative colorr words� in place of the
�colorr word� term. This is in accordance with Properties 2 (a) and 5 (a) for both
matrix Bnc and B c,Ext

m .

If r = 0 and a color0 word (or a positive/negative color0 word) of length k is

not assigned to the last (nth) column of Bnc
m (B c,Ext

m ), then this word is a word of
length k over the alphabet {1, 2, 3, . . . , k+ 1} having an additional property, apart
from P1 and P2:

� P3 : If a1a is a subword of the word of length k, then a = 1.

This is in accordance with Property 5 (b) of the matrix Bnc (B c,Ext
m ). If we add

1 in front of each considered word, then P3 can be interpreted as P2, but for an
augmented alphabet. Therefore, the upper bound of the cardinality of color0 words
of length k in these cases is Ck+1.

Last but not least, if r > 0 (or r = 0 and the word is assigned to the last

(nth) column of Bnc
m (B c,Ext

m )), then the set of all colorr words (positive colorr
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words) of length k can be described as the subset of the set of all words from the
alphabet {1, 2, . . . , k+1} that contain at least one letter 1, and satisfy P1, P2, and
P3. This is in accordance with Properties 2 (c) and 4 (d) of the matrix Bnc (or in
accordance with Properties 2 (c) and 4 (e) of the matrix B c,Ext

m ). Note that the
number of all the negative colorr words of length k is equal to the number of all
the positive colorr words of length k. Therefore, from the previous two cases, we
determine that the upper bound of these colorr words' cardinality in this case is
Ck+1 − Ck. This way we have proved the following:

Proposition 2. The upper bound of the cardinality of colorr words (positive or

negative colorr words) of length k belonging to the lth column of Bnc (B c,Ext
m ) is Ck if r < 0,

Ck+1 if r = 0 and l ̸= n,
Ck+1 − Ck if r > 0 or (r = 0 and l = n).

The words which satisfy P1 and P2 are called the non-interlocking and non-
skipping columns in [11]; the interpretation of Ck+1 − Ck, in the same paper,
provides an alternative proof for the case of r > 0.

5. COMPUTATIONAL RESULTS

The technique we use to compute Hc
m(x)

def
=

∑
n≥1

hc
m(n+1)xn, the generating

function for the contractible HC's is, technically speaking, essentially the same as
the one utilized in Part I. For that reason, we shall only discuss a few dissimilarities
here, from the data obtained through the use of a computer.

The primary goal of Topological Properties is to shorten the search process
throughout the digraph. Note that they are, in fact, not necessary for the deter-
mination of HC c's or HC nc's. However, their importance role is to reduce the
digraph's dimension to a reasonable size by eliminating all the irrelevant vertices
and edges that cannot occur in generating any HC c.

Based on all of the above theory and considerations, we wrote computer
programs to generate the matricesM c,Ext

m andM c,Int
m , together with the adjacency

matrices of the digraphs D c,Ext
m and D c,Int

m . The dimensions of D c,Ext
m and D c,Int

m

are collected in Tables 1, for some reasonable values of m.

The computation was performed on a personal computer equipped with an
Intel(R) Core (TM) i7-4712MQ processor (running at a speed of 2.30GHz) with
6.00 GB of RAM, and run on a 64-bit operating system.

Similar to the case of the HC nc's, for the HC c's by coding the interior tree
we �nd that the Fm = F c,Int

m ⊆ V (D c,Int
m ). However, when coding the exterior

trees, we came to realise that F c,Ext
m ∩ V (Dnc

m ) = ∅. The reason behind it is that
the �rst row of the matrix [bi,j ]m×n has only one positive number which must be
the entry b1,1.
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m 2 3 4 5 6 7 8 9

|V (D c,Ext
m )| 3 11 44 174 644 2488 - -

|F c,Ext
m | 1 3 7 28 92 341 - -

|E(D c,Ext
m )| 4 24 123 677 3446 18569 - -

|LFSm| 1 12 49 406 2461 19913 - -

|V (D c,Int
m )| 4 10 33 104 318 985 3121 9943

|E(D c,Int
m )| 5 23 96 423 1792 7857 34505 153500

|FLm| 1 6 18 80 325 1413 6083 26583

Table 1: The characteristics of digraphs D c,Ext
m and D c,Int

m .

Our �ndings for m ≤ 4 were con�rmed by manual computations. The results
displayed below agree with the values of h c

m(n) for m ≤ 9 and n ≤ 10 obtained in
[3], as well as with the values hm(n) = hnc

m (n) + h c
m(n) for m ≤ 9 and 11 ≤ n ≤ 22

in [8].

Recall that the number φc
m(k) represents the number of HC c's in Pm+1 ×

Ck+2 with w11 as the up root of the split tree. But, in the case of coding the
exterior trees, it represents the number of oriented walks of length k in the digraph
Dc,Ext

m with the pairs of initial and �nal vertices which are respectively the third
and �rst coordinates of the special triples. Similarly, when coding the interior
tree, it represents the number of oriented walks of length k + 1 in the digraph
D c,Int

m with the initial and last vertices from some special sets. Hence, we label the

coe�cients φc
m(k), where k ≥ 0, of the generating function Φc

m(x)
def
=

∑
k≥0

φc
m(k)xk

with φ c,Ext
m (k) in the coding by exterior trees, and with φ c,Int

m (k+1) in the coding

with the interior tree. Generating the digraphs D c,Int
7 , D c,Int

8 , and D c,Int
9 requires

7 seconds, 2 minutes, and 39 minutes, respectively.

5.1. Thick Cylinder P2 × Cn (m = 1)

For m = 1, it is easy to show that hc
1(n) = n for all n ≥ 1. Since

hnc
1 (n) =

{
2 if n is even,
0 if n is odd,

we can write h1(n) = n+ 1 + (−1)n.

5.2. Thick Cylinder P3 × Cn (m = 2)

The digraph D c,Ext
2 is displayed in Figure 5.

The incidence matrix M c,Ext
2 of the corresponding digraph D c,Ext

2 is of or-
der 3. The set of all possible triplets (l, f, s) has only one element (v1, f1, v1). Using
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Figure 5: The digraph D c,Ext
2 and the corresponding set F2.

a similar technique as in the case of the NC-type of HC's, we obtain

(2) hc
2(n) =

n

4

√
2

n
[1 + (−1)n].

Since hnc
2 (n) = 2n − 2 [1] (Part I), from (2), we determine that

h2(n) = 2n − 2 +
n

4

√
2

n
[1 + (−1)n]

for all integers n ≥ 1. Identical results can be obtained from M c,Int
2 (see Figure 6).

Figure 6: The digraph D c,Int
2 and the corresponding set of pairs F2L2.
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5.3. Thick Cylinder P4 × Cn (m = 3)

In this subsection, we provide a detailed discussion for the case of m = 3. We
study the HC's of type C, with coding carried out on the exterior region �rst; and
then we move on to the coding of the interior region.

Coding the Exterior Region

We �nd V (D c,Ext) = {v1, v2, . . . , v11}; the vertices and the adjacency matrix

M c,Ext
3 = [m c,Ext

i,j ] are listed below:

v1 = (00, 00, 00)
v2 = (00, 10, 00)
v3 = (00, 10, 10)
v4 = (00, 20, 00)
v5 = (00, 11, 00)
v6 = (−10,−10, 00)
v7 = (−10, 00, 10)
v8 = (00,−2−1, 00)
v9 = (00,−20, 00)
v10 = (00, 2−1, 00)
v11 = (00,−10, 00)



0 0 1 1 0 1 1 1 1 1 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1


.

We also �nd F3 = {f1, f2, f3}, |LFS3| = 12,

LFS3 = {(v10, f1, v1), (v10, f1, v2), (v1, f1, v1), (v1, f1, v2),
(v10, f2, v4), (v10, f2, v3), (v1, f2, v4), (v1, f2, v3),

(v3, f3, v1), (v3, f3, v5), (v2, f3, v1), (v2, f3, v5)},

where f1 = (10, 10, 10), f2 = (20, 20, 00), f3 = (11, 11, 00). The characteristic

polynomial of M c,Ext
3 is

P c,Ext
3 (x) = −x2 + 7x3 − 22x4 + 38x5 − 34x6 + 6x7 + 18x8 − 18x9 + 7x10 − x11.

This implies that the sequence φ c,Ext
3 (n) satis�es a recurrence relation of order 9.

Coding the Interior Region

We �nd V (D c,Int) = {v1, v2, . . . , v10}; the vertices and the adjacency matrix

M c,Int
3 = [m c,Int

i,j ] are listed below:
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v1 = (00, 00, 00)
v2 = (00, 00, 20)
v3 = (00, 00, 21)
v4 = (20, 00, 2−1)
v5 = (20, 00, 30)
v6 = (20, 20, 20)
v7 = (00, 20, 00)
v8 = (20, 00, 00)
v9 = (20, 00, 20)
v10 = (20, 00, 21)



0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1


We also �nd F3L3 = {(v1, v6), (v1, v9), (v2, v4), (v2, v8), (v3, v6), (v3, v9)}. The char-
acteristic polynomial for M c,Int

3 is

P c,Int
3 (x) = −x4(1− x)2(1− 2x+ 2x2 + 2x3 − x4).

Common Results for Both Types of Coding

Recall that hc
3(n) = nφ c,Ext

3 (n− 2) = nφ c,Int
3 (n− 1),

Φ c,Ext
3 (x) =

∑
n≥0

φ c,Ext
3 (n)xn, and Φ c,Int

3 (x) =
∑
n≥0

φ c,Int
3 (n)xn.

The �rst few nonzero values are listed below.

hc
3(2) = 2 · φ c,Ext

3 (0) = 2 · φ c,Int
3 (1) = 2 · 1 = 2

hc
3(3) = 3 · φ c,Ext

3 (1) = 3 · φ c,Int
3 (2) = 3 · 4 = 12

hc
3(4) = 4 · φ c,Ext

3 (2) = 4 · φ c,Int
3 (3) = 4 · 12 = 48

hc
3(5) = 5 · φ c,Ext

3 (3) = 5 · φ c,Int
3 (4) = 5 · 32 = 160

hc
3(6) = 6 · φ c,Ext

3 (4) = 6 · φ c,Int
3 (5) = 6 · 83 = 498

hc
3(7) = 7 · φ c,Ext

3 (5) = 7 · φ c,Int
3 (6) = 7 · 212 = 1484

hc
3(8) = 8 · φ c,Ext

3 (6) = 8 · φ c,Int
3 (7) = 8 · 540 = 4320

hc
3(9) = 9 · φ c,Ext

3 (7) = 9 · φ c,Int
3 (8) = 9 · 1372 = 12348

hc
3(10) = 10 · φ c,Ext

3 (8) = 10 · φ c,Int
3 (9) = 10 · 3485 = 34850

hc
3(11) = 11 · φ c,Ext

3 (9) = 11 · φ c,Int
3 (10) = 11 · 8848 = 97328

hc
3(12) = 12 · φ c,Ext

3 (10) = 12 · φ c,Int
3 (11) = 12 · 22464 = 269568

The generating functions are obtained for both cases in the usual way:

Φ c,Int
3 (x) = xΦ c,Ext

3 (x) =
x(1 + x)

(1− x)(1− 2x− 2x2 + 2x3 − x4)
.

Then

Hc
3(x) =

d

dx

(
x2 Φ c,Ext

3 (x)
)
=

d

dx

(
xΦ c,Int

3 (x)
)

=
2x(1− 3x2 − 2x3 + 3x4 − x6)

(1− x)2(1− 2x− 2x2 + 2x3 − x4)2
.
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From (3) in [1] and the above equality we obtain

H3(x) = Hnc
3 (x) +Hc

3(x)

= 2x(2− 6x+ 3x2 − 36x3 + 97x4 + 96x5 − 372x6

+ 96x7 + 280x8 − 142x9 + 64x10 − 252x11 + 132x12

+ 168x13 − 193x14 + 64x15 − 11x16 + 6x17 − 2x18) /

[(1− x)2(1 + x− x2)(1− x− x2)(1− 2x− 2x2 + 2x3 − x4)2

(1− x− 3x2 − x3 + x4)(1 + x− 3x2 + x3 + x4)].

Its power series expansion is

H3(x) = 4x+ 24x2 + 306x3 + 850x4 + 7010x5 + 18452x6 + 126426x7 + · · · .

5.4. Thick Cylinder P5 × Cn (m = 4)

For Hamiltonian cycles of type C, the degrees of the characteristic polynomials
for M c,Ext

4 and M c,Int
4 are 44 and 33, respectively; they determine recursions of

order 28 and 16, respectively. However, their generating functions Φ c,Ext
4 (x) and

Φ c,Int
4 (x) indicate the same recursion of order 12 (which was expected) for the

sequences φ c,Ext
4 (n) and φ c,Int

4 (n). Since φ c,Ext
4 (n−2) = φ c,Int

4 (n−1) = h c
4 (n)/n,

it is clear that

Hc
4(x) =

d

dx

(
x2 Φ c,Ext

4 (x)
)
=

d

dx

(
xΦ c,Int

4 (x)
)
,

where

Φc
4(x) =

x(1 + 16x2 − 48x4 − 8x6 + 77x8 − 8x10 + 2x12)

(1− x)(1 + x)(1− 3x2)2(1− 11x2 − 2x6)
.

Thus,

Hc
4(x) = 2x(1 + 35x2 − 419x4 + 791x6 + 1251x8 − 6807x10 + 9747x12

− 5055x14 + 1032x16 + 168x18 + 36x20 − 12x22) /

[(1− x)2(1 + x)2(1− 3x2)3(1− 11x2 − 2x6)2]

= 2x+ 136x3 + 2832x5 + 44288x7 + 621720x9 + 8268432x11

+ 106467592x13 + 1341213504x15 + 16625223000x17

+ 203511990480x19 + 2466221656712x21 + 29639129297760x23

+ 353729229308728x25 + 4196610165544048x27

+ 49534151824335720x29 + · · · .

From H4(x) = Hnc
4 (x) +Hc

4(x), we determine
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H4(x) = 2x(2− 4x− x2 − 399x3 + 264x4 + 12003x5 − 17018x6 − 132589x7

+ 242972x8 + 741418x9 − 1592134x10 − 2249196x11 + 5298156x12

+ 3895631x13 − 6944234x14 − 7550348x15 − 9067499x16

+ 32222212x17 + 44031695x18 − 104031851x19 − 46708066x20

+ 189953465x21 − 27366464x22 − 195625961x23 + 111621212x24

+ 106177438x25 − 112507558x26 − 19954314x27 + 54710202x28

− 6461551x29 − 11552268x30 + 1712058x31 − 156451x32

+ 2433592x33 − 1096202x34 − 349808x35 + 355012x36 + 47076x37

− 57312x38 + 6792x39 − 5340x40 + 2208x41 − 72x42 + 96x44) /

[(1− x)2(1 + x)2(1− 2x)(1 + 2x)(1− 2x2)(1− 3x2)2

(1− 3x+ x3)(1− 3x2 + x3 − x4)(1− 4x2 + 2x3 − 2x4 − x5)

(1− 5x+ 2x2 + 8x3 − 8x4 + x5 − x6)(1 + 11x2 + 2x6)2].

Upon expansion, we obtain

H4(x) = 4x+ 24x2 + 306x3 + 850x4 + 7010x5 + 18452x6 + 126426x7 + 351258x8

+ 2127332x9 + 6355404x10 + 35085590x11 + 112481980x12 + 577875650x13

+ 1970896234x14 + 9576146794x15 + 34373120896x16 + 160047128522x17

+ 598167523522x18 + 2697774177200x19 + 10398653965136x20

+ 45813998934398x21 + 180683364527008x22 + 782729112571558x23

+ 3138757868554550x24 + 13435232382112114x25 + 54519162573345144x26

+ 231410726096158954x27 + 946929235189639806x28

+ 3995898137059583288x29 + 16446553366281600876x30 + · · · .

5.5. Thick Cylinder P6 × Cn (m = 5)

For the HC's of type C, the characteristic polynomial for M c,Ext
5 (of or-

der 174) yields a recurrence of order 140, and the characteristic polynomial for

M c,Int
5 (of order 104) determines a recurrence of order 68. The generating func-

tions Φ c,Ext
5 (x) and Φ c,Int

5 (x) indicate a recursion of order 48.

Φc
5(x) = x(1 + 6x− 18x2 − 414x3 + 848x4 + 6554x5 − 16045x6 − 37690x7

+ 103281x8 + 128504x9 − 265355x10 − 672050x11 + 502008x12 + 3340076x13

− 2448123x14 − 9954494x15 + 10693383x16 + 18205338x17 − 29135762x18

− 20019118x19 + 53993028x20 + 8041536x21 − 72266964x22 + 14531980x23

+ 71713080x24 − 34388270x25 − 52305506x26 + 39831436x27 + 26241113x28

− 30511612x29 − 7246130x30 + 16104692x31 − 373346x32 − 5790448x33

+ 1221241x34 + 1368750x35 − 510697x36 − 198552x37 + 111455x38 + 14804x39

− 13910x40 − 84x41 + 945x42 − 72x43 − 27x44 + 4x45) /
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[(1− x)(1− x− x2)(1− 2x− x2 + x3)(1 + 2x− x2 − x3)

(1− 2x− x2 + 2x3 − x4)(1− x− 7x2 + 2x3 − 2x4)(1− 2x2 + 3x3 + x4 − x5)

(1− 4x+ x2 + 6x3 − 4x4 − 2x5 + x6)(1 + 4x+ x2 − 6x3 − 4x4 + 2x5 + x6)

(1− 5x− 14x2 + 63x3 − 12x4 − 90x5 + 35x6 + 66x7 − 118x8 + 8x9

+ 82x10 − 42x11 − 28x12 + 4x13 − 2x14)]

Below is the power series expansion of Hc
5(x).

Hc
5(x) = 2x+ 48x2 + 612x3 + 4520x4 + 35964x5 + 229698x6 + 1575288x7 + 9806292x8

+ 62999960x9 + 387822094x10 + 2411860680x11 + 14706401372x12

+ 89805227764x13 + 542922027450x14 + 3277207263040x15 + 19667429401654x16

+ 117755148280932x17 + 702348082721928x18 + 4179389353497440x19

+ 24800669448996294x20 + 146859912517712812x21 + 867755187436181848x22

+ 5117982982251905808x23 + 30131949609066739700x24

+ 177121683074273170272x25 + 1039599437405096152836x26

+ 6093526747267596471744x27 + 35670915471779662426386x28

+ 208566648331009396119000x29 + · · · .

5.6. Thick Cylinder P7 × Cn (m = 6)

We obtain

Hc
6(x) = 2x+ 2032x3 + 263736x5 + 22337664x7 + 1641664580x9 + 113092326312x11

+ 7512031798348x13 + 487293888097600x15 + 31078838281479156x17

+ 1956749096194717760x19 + 121942699478516467980x21

+ 7535939697350674950480x23 + 462464193503836875708188x25

+ 28212097969001607154778424x27 + 1712255987823212304590396640x29 + · · · .

which was derived from

Φc
6(x) = x(1 + 306x2 − 40690x4 + 2088888x6 − 59854356x8 + 1041724854x10

− 9963350575x12 − 1561595514x14 + 1764222372901x16 − 33359541871130x18

+ 391283632798625x20 − 3409940836072834x22 + 23527202411977523x24

− 132804217617691704x26 + 626327321659400394x28 − 2507190853725762016x30

+ 8634200715329254103x32 − 25906190273641652336x34

+ 68559708278394067292x36 − 161854074407081021262x38

+ 343843110397151257836x40 − 660259656542874312136x42

+ 1145535722603029360938x44 − 1788319405800757683806x46

+ 2496733228293042684759x48 − 3090833148880542271276x50

+ 3332184138797783431832x52 − 2977551413530470915268x54

+ 1874479143252245895283x56 − 135583843251370310752x58

− 1725296888982641415559x60 + 2978301300202755230596x62

− 3196573579330611658014x64 + 2594775826885761943406x66
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− 1764806452649464365958x68 + 1132024373770684603442x70

− 747388500864816970949x72 + 488605725204679503240x74

− 281985452668526323045x76 + 129099929765096588046x78

− 40724401950514905533x80 + 4766321154300357988x82

+ 3107539531302455678x84 − 2141576362869785724x86 + 699992921850375378x88

− 164891856789160528x90 + 42040968674824716x92 − 11653173730620232x94

+ 2342301220645576x96 − 366020508217376x98 + 106155952612144x100

− 34874926374880x102 + 6594270112768x104 − 673590339328x106

+ 37441754880x108 + 169198080x110 − 292896768x112 + 15998976x114)) /

[(1− 2x)(1 + 2x)(1− 2x2)(1− 4x2 + 2x4)(1− 8x2 + 14x4)

(1− 27x2 + 225x4 − 641x6 + 659x8 − 227x10 + 46x12 − 123x14

+ 169x16 − 49x18 + 4x20)(1− 37x2 + 397x4 − 1681x6 + 2639x8

− 903x10 − 56x12 + 307x14 + 525x16 − 209x18 − 8x20)

(1− 35x2 + 322x4 − 1485x6 + 4262x8 − 7682x10 + 7755x12

− 10671x14 + 18616x16 − 9492x18 − 1484x20 + 1589x22 − 62x24 − 40x26)

(1− 85x2 + 1932x4 − 20403x6 + 116734x8 − 386724x10 + 815141x12 − 1251439x14

+ 1690670x16 − 2681994x18 + 4008954x20 − 3390877x22 + 1036420x24

+ 178842x26 − 92790x28 − 17732x30 + 5972x32 − 1728x34 − 144x36)],

5.7. Thick Cylinder Pm+1 × Cn (7 ≤ m ≤ 9)

For the sake of brevity, we only display the power series expansion of the
generating functions Hc

m(x) for 7 ≤ m ≤ 9.

Hc
7(x) = 2x+ 192x2 + 8192x3 + 127860x4 + 2779014x5 + 35663964x6 + 605992784x7

+ 7769376972x8 + 116791523380x9 + 1519170232976x10 + 21412201037580x11

+ 280509236582900x12 + 3817205794180856x13 + 50048772776920380x14

+ 667452277157951872x15 + 8730496956098122924x16

+ 114990875591325208344x17 + 1498721829346080971718x18

+ 19577329280144309140500x19 + 254184297263298653321994x20

+ 3300736306177174727889026x21 + 42700068205017640140982112x22

+ 551992937500828921720192872x23 + 7117443280523917273056970850x24

+ 91678074802674943650656279184x25 + 1178664397321648769186649515370x26

+ 15136943041102404084253082680484x27

+ 194109908825815965787089284625154x28

+ 2486557768079418847989177095267850x29 + · · · ,
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Hc
8(x) = 2x+ 29104x3 + 22869384x5 + 10215798448x7 + 3817933082020x9

+ 1320093157541136x11 + 437662770447567560x13 + 141338955368771390016x15

+ 44820915345596090414880x17 + 14022558891295056887443160x19

+ 4341003538573245627716733276x21 + 1332438402563600063493162541728x23

+ 406097228507066527913083107762828x25

+ 123030579109675576558337448581510896x27

+ 37082080183727206133637758977416982500x29 + · · · ,

Hc
9(x) = 2x+ 768x2 + 112164x3 + 3616880x4 + 222067212x5 + 5539931796x6

+ 242178636928x7 + 6169925169414x8 + 224360971248960x9

+ 5973677282007402x10 + 195609021230822100x11 + 5368583261802264972x12

+ 165442535132471644292x13 + 4616256789338403997830x14

+ 137248345001943810512192x15 + 3858464231851630072287480x16

+ 112245666066341094211887474x17 + 3163164190641471563556546716x18

+ 90762230874863948167367645720x19 + 2557054414248684611758303990008x20

+ 72707096815758305550335466105864x21

+ 2045202670958705026338344754333024x22

+ 57786674199846212563657479095447016x23

+ 1622114630916418603623686588180361000x24

+ 45620599345582502819377370379402448790x25

+ 1277757171356042779682960928336763812048x26

+ 35808036061847453918421598630326003072512x27

+ 1000745362534879987116390583909098103232022x28

+ 27965040033048966560373497047404511628553450x29 + · · · .

6. ASYMPTOTIC VALUES � A SUMMARY OF RESULTS

For type C Hamiltonian cycles, our computational data con�rm that for 2 ≤
m ≤ 6, the characteristic polynomials of M c,Ext and M c,Int have only one (and
the same) simple real positive dominant characteristic root θm,c, see Table 3 (for
even m, there are two dominant characteristic roots θm,c and −θm,c; whereas for
odd m, there is a unique dominant simple characteristic root θm,c).

Note that the sum of the degrees of the denominators of H nc
m and H c

m does
not exceed the degree of the denominator of Hm which determine the order of the
recurrence relation of the sequence hm(n). This goes in favour of our decision to
split our work in two � the problem of determining the HC nc's and the HC c's.
However, this was not the case for thin cylinders [3].

The denominators of the generating functions Φ c,Ext
m (x) (or Φ c,Int

m (x)) and
Hc

m(x) have the radius of convergence 1/θm,c. For Hc
m(x), the dominant root of
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m d.d.(Φ c,Int
m ) d.d.(H c,Int

m )
= d.d.(Φ c,Ext

m ) = d.d.(H c,Ext
m ) d.d.(H nc

m ) d.d.(Hm)

2 2 4 2 5
3 5 10 12 22
4 12 22 26 44
5 48 96 84 180
6 114 228 - -

Table 2: The degree of denominators (d.d.) of Φ c,Int
m (Φ c,Ext

m ), H c,Int
m (H c,Ext

m ),
Hnc

m and Hm for 2 ≤ m ≤ 6.

the denominator has multiplicity 2 because

Hc
m(x) =

d

dx

(
x2 Φ c,Ext

m (x)
)
=

d

dx

(
xΦ c,Int

m (x)
)
,

which is deduced from

(3) h c
m(n) = nφ c,Int

m (n− 1) = nφ c,Ext
m (n− 2).

Let am,c denote the coe�cient of nθnm,c in the explicit expression for hc
m(n)

derived from the recurrence relation. From (3) and (1), we conclude that the
coe�cient for θnm,c is 0, whenm is odd; and for evenm, the coe�cients of n(−θm,c)

n,
θnm,c, and (−θm,c)

n are am,c, 0, and 0, respectively. All this is neatly summarized
below:

h c
m(n) ∼


am,cnθ

n
m,c if m is odd,

2am,cnθ
n
m,c if m is even and n is even,

0 if m is even and n is odd.

Example 8. The number h c
5 (250) has 190 digits:

h c
5 (250) =5315308482081368176130135765364458028442269812845 829751132

282449366037705916081244966378616480765252334858462630450547142728

707832260337088675894551742436677743236273632760226951744130398000

as well as a5,c · 250 · θ2505,c , and their �rst 49 digits are identical.

Example 9. The number h c
8 (100) has 124 digits:

h c
8 (100) =650572515095530 4765274909197134354116977319209669418653015912

096606195064869245906663377660631373746911131674517266864224600

as well as 2a8,c · 100 · θ1008,c , and their �rst 15 digits are identical.

With the results and conjecture of Part I [1] in mind, together with the
assumptions about the positive dominant characteristic root θm,c, we may now
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m θm,nc θm,c

2 2
√
2

3 2.36920540709246654628 2.53861576354917625747

4 4.16748148276892815337 3.31910824039947675342

5 5.34684254175541433292 5.65205864851675849429

6 ≈(100) 8.908937311 7.52634546292690578713

7 ≈(100) 11.8249316 ≈(100) 12.382351641593

8 ≈(70) 19.17 ≈(100) 16.77216819355

9 ≈(30) 26 ≈(30) 27

m am,c

2 0.25

3 0.31357228606585772287

4 0.19324623166497686532

5 0.18876590435542745301

6 0.14384483205795162266

7 ≈(100) 0.13626186172698

8 ≈(100) 0.11306933143427

9 ≈(30) 0.1053

Table 3: The approximate values of θm,nc (with am,nc = 1), θm,c and am,c for
2 ≤ m ≤ 9, where ≈(n) means the estimate based on the �rst n entries of the
sequence.

make a conjecture regarding the behaviour of the number of all Hamiltonian cycles
hm(n) in the graph Pm+1 × Cn, when m is �xed and n → ∞, as below:

hm(n) = h c
m(n) + h nc

m (n) ∼

{
am,cnθ

n
m,c + (1 + (−1)n)θnm,nc if m is odd,

am,cn(1 + (−1)n)θnm,c + θnm,nc if m is even .

When m ≤ 9 the data shows that θm,c > θm,nc for odd m; whereas θm,nc >
θm,c for even m. Assuming that the same holds for all the values of m, we propose

Conjecture 1.

hm(n) = h c
m(n) + h nc

m (n) ∼
{

am,cnθ
n
m,c if m is odd,

θnm,nc if m is even .

Example 10. For m = 5 and n = 250, hnc
5 (250) ∼ 2.1153 · 10182, whilst hc

5(250)
∼ 5.3153 · 10189, and so h5(250) = h c

5 (250) + h nc
5 (250) ∼ 5.3153 · 10189 ∼ hc

5(250).

Example 11. For m = 6 and n = 100, hnc
6 (100) = 9607055487098178299582713714212

8630238785786563044765223962050649940105158800796411036738881670 ∼ 9, 6071 ·1094,
while hc

6(100) = 131020464919763494924652519229638201495869414699961724074530458

968504938173958572002437400 ∼ 1, 3102 · 1089. Thus, h6(100) ∼ 9, 6071 · 1094 ∼ θ1006,nc.
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From the results obtained for m ≤ 6 we have spotted that the positive dom-
inant characteristic root θm,c of hc

m(n) corresponding to Pm+1 × Cn is the same
as the positive dominant characteristic root of the same sequence associated to
Pm+1 × Pn [2]. Observe that the polynomial 1 − 2x − 2x2 + 2x3 − x4, being in

the denominator of Φ c,Ext
3 (x) and Φ c,Int

3 (x) (or H c
3 (x) and H3(x)) is also in the

denominator of the generating function of sequence corresponding to P4 × Pn [5].
The same phenomenon occurs for 4 ≤ m ≤ 6, as well. The obtained approximate
values of the dominant characteristic root for 7 ≤ m ≤ 9 speak in favour of the
same conclusion. That brings us to our next conjecture:

Conjecture 2. Let rm(n) (m ≥ 1) be the number of HC's in Pm+1×Pn and hc
m(n)

be the number of contractible HC's in Pm+1 × Cn (m ≥ 1). Then

lim
n→∞

rm(n)

rm(n− 1)
= lim

n→∞

hc
m(n)

hc
m(n− 1)

for odd m

and

lim
n→∞

rm(2n)

rm(2n− 2)
= lim

n→∞

hc
m(2n)

hc
m(2n− 2)

for even m.

If the above conjecture holds, then using merely the data acquired from the
sequence of rm(n)'s we could conclude that θ10,c ∼ 37.03764916, θ11,c ∼ 58.75,
θ12,c ∼ 81.366569 and θ13,c ∼ 127.7. In other words, we would not require the
exact value of hc

m(n) to do so.

7. CLOSING REMARKS AND FURTHER RESEARCH

For the purpose of enumerating Hamiltonian cycles on Pm+1 × Cn we have
provided one characterization of the non-contractible HC's in Part I, and two char-
acterizations of the contractible HC's with �xed up root of the split tree in w11.

1. Con�rmation of the old data and the process of obtaining the new ones

Both of the computer programs dealing with the HCc case have provided the
same number for hc

m(n), when m ≤ 7, which agrees with the corresponding values
of [3]. The latter holds for hc

m(n) as well, where 8 ≤ m ≤ 9, when obtained in the
act of coding the interior. The sum of sequences obtained in all the three programs,
i.e. the numerical values of hm(n) = hnc

m (n) + hc
m(n) agree with the ones obtained

earlier in [3], [9] and [8], for m ≤ 9 and n ≤ 22. We have derived new data for
m ≤ 9 and n ≥ 23.

2. The advantage of coding the interior over coding the exterior

Comparing the number of vertices of the digraphs D c,Ext

m and D c,Int
m (see

Table 1) one can come to a conclusion that coding the windows of the interior
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region is much more e�cient than the process of coding the windows of the exterior
region of a HC c.

3. The advantage of coding the regions over coding the vertices

For the purpose of obtaining the total number of HC's, in case of thin cylinder
Cm × Pn, coding the vertices has proven itself to be a better approach. Namely,
for a �xed m, the number of vertices of the assigned digraph in the aforementioned
approach [2] turned out to be smaller than the number obtained when coding the
regions [3]. Additionally, the order of recursion of the total number of HC's for
thin cylinders is smaller than for special HC's, i.e. HC nc and HC c. The results
show that the opposite is true for thick cylinders. This supports the choice of
our approach when tackling the thick cylinders, although it has to be split into
parts. It goes without saying, that further research in this direction, would be
nice. Particularly, it would be a good idea to utilize the approach with coding the
vertices so as to be able to reach a precise conclusion regarding the pros and cons of
coding the regions, by a direct comparison of the number of vertices of the assigned
digraphs.

4. Open questions

For the initial values ofm we have come to notice that the numbers of HC nc's
are the dominant ones for even m, whereas the numbers of HC c's are such for odd
m. That prompted us to make a conjecture about the asymptotic behaviour of
the total number of HC's in the graph Pm+1 × Cn. Moreover, certain matchings
between the dominant characteristic roots of the sequences the numbers of HC c's
in Pm+1 ×Cn and Pm+1 ×Pn for small values of m are noticed. This way, we have
come to yet another conjecture regarding the asymptotic behaviour of the entries
of these two sequences.
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