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ENUMERATION OF HAMILTONIAN CYCLES ON A
THICK GRID CYLINDER — PART II: CONTRACTIBLE
HAMILTONIAN CYCLES

Olga BodrozZa-Panti¢*, Harris Kwong,
Jelena Dokié, Rade Doroslovacki and Milan Pantié

Here, in Part II, we proceeded further with the enumeration of Hamiltonian
cycles (HC’s) on the grid cylinder graphs of the form P, 11 x Cy, where n is
allowed to grow and m is fixed. We proposed two novel characterisations of
the contractible HC’s. Finally, we made a conjecture concerning the depen-
dency of the asymptotically dominant type of HC’s on the parity of m.

1. INTRODUCTION

Determining and enumerating Hamiltonian cycles in some specific grid graphs
(such as thick grid cylinder graphs, which are studied here) is of quite some rel-
evance to statistical physics [6] and polymer science [2]. An ample amount of
references related to this topic may be found in Part I [1]. A few novel applications
of this type of research can be found within the field of network systems, which re-
volves around computer network functionality. Hamiltonian cycles play a vital role
there, because they cover all the nodes of the system. In [10] the issue of handling
indeterminacy for interval data under neutrosophic environment is considered. An-
other field, which may benefit from our research, is that of cyber security. There,
digital microfluidic biochips (DMFBs) are making the transition to the marketplace
for commercial exploitation. For example, the microelectrode dot array (MEDA) is
a next-generation DMFB platform that supports real-time sensing of droplets and
has the added advantage of important security protection [7].
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When m is fixed, the graphs P,,;1 X C, are referred to as the thick grid
cylinders (see Figure 1la). When n > 2, there are two kinds of Hamiltonian
cycles on such graphs. The first kind, denoted by HC ™“’s, are not contractible
when perceived as closed Jordan curves (see Figure 1b) on the infinite cylindrical
surface on which the graph P, 1 x C), is settled. They were examined in Part I [1]
of this series. The second kind of HC’s, denoted by HC ¢’s, are the contractible
ones. They are studied in Part II of the series (this exposition). In both parts,
we study the topological properties of the HC’s. Based on these properties, we
construct digraphs from which the HC’s can be counted. The motivation behind
our investigations is made clear in Part I, together with the reasons why we have
opted for the cell-coding approach.

Contractible HC’s are more complicated than the non-contractible ones. These
contractible HC’s divide the underlying infinite cylindrical surface into two separate
regions. The first is bounded and is called the #nterior, whereas the second one
is called the exterior of the HC in question (see Figure 1b-c). Moreover, we refer
to these regions as the zero and non-zero region depending on whether a zero
is assigned to the squares of the interior or the exterior region.

T e
bl 73
o 01 0.2 -
W Wi Mz
(i-1,) — N B (i-1,4+1)
)~ 1 i
e )
& (o11) OI&G 0,1)
| 01) = i *
(m.n-DRYW, A1 [ Wi :
) i 12 (1 (12) 2 an a2
2) b) c)

Figure 1: (a) The graph P,,+1 x C,, with its cells (windows) labeled by w; ;, where
1<i<mand1l<j<n. (b) A non-contractible, closed Jordan curve on an
infinite cylindrical surface.  (c) A contractible, closed Jordan curve on an infinite
cylindrical surface.

The paper is organised as follows: in Section 2, we examine HC “’s whose non-
zero region is the exterior. Section 3 is devoted to HC ¢’s whose non-zero region is
their interior.
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The notations hl'¢(n) and k¢, (n) stand for the number of HC "¢’s and HC “’s,
respectively. Their respective generating functions are

Hoc(e) B R (n+ e, and  HG(2) BN R (0 + )"

n>1 n>1

The overall number of HC’s in the thick grid cylinder graph P,,+1 x C,, (m > 1,

n > 2) is denoted by hy,(n). Clearly, h,,(n) = h2°(n) + kS, (n) and its generating

function H,,(z) = Z I (n+1)z™ fulfills the equation H,,(z) = HI(x) + HE, ().
n>1

The orientation of a HC ¢ is determined in such a way that when traversing

alongside the considered HC its interior region is always on the right-hand side (see

Figure 1c). Recall an assertion from Theorem 1 of [3] concerning h¢,:
(1) hy,(n) =0 if and only if m is even and n is odd.

Further, let us be reminded of a few additional definitions from Part I [1]
needed hereinafter. All the rest may as well be found in the said paper, unless
explicitly stated differently.

Definition 1. Given an integer word didy ...d,,, its support is defined as the
ternary word dids . . . d,,, where

1 if d; >0,
di=<¢ 0 if d; =0,
-1 if d; <O0.

The support of an integer matriz [d; ;] is defined in a similar fashion.

Definition 2. The factor u of a word v is called a b-factor if it is a block of
consecutive letters all of which are equal to b. A b-factor of v is said to be maximal
if it is not a proper factor of another b-factor of v.

Recall that the window lattice graph W,, ,, whose vertices are the square
cells (or windows) w;; (1 <i<m, 1<j <n)of P, x Cy, is isomorphic
to Py, x Cy. For a HC ¢, the interior windows (marked with 0’s as in Figure 3)
form the interior tree (IT) in W, . Nonetheless, the exterior windows form a
forest of exterior trees (ET’s). Note that only one ET from this forest contains

exactly one window in the first as well as in the last (the mth) row of Wy, 5, called
the up and down root, respectively. We call this particular ET the split tree
(ST) of the HC in question. Any other ET different from the split tree contains
either exactly one down root or exactly one up root, but not both. The ET’s with
a down root are called the down trees (DT’s), whereas the ET’s with an up root
are referred to as the up trees (UT’s).

Ezxample 1. For the purpose of illustration, take a look at the HC ¢ depicted in
Figures 3 and 4 whose split tree has the down root w3, and the up root w; ;. It
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also has one ET with the down root wig g (hence a DT), and one ET with the up
root wy 7 (hence a UT); they are labeled by non-zero integers in Figure 3.

Note that, it suffices to examine only those HC ¢’s in P,,, 11 x C,, whose split
tree has wy; for its up root. Let the number of such HC ¢’s be ¢¢,(n — 2), where
m > 1, and n > 2, and let the associated generating function be:

g, (2) 3 8 (k)zh,

k>0

This implies that the total number of HC ¢’s in P,,;1 x C), is given by

o (n) = ney, (n —2).

Consequently,

Hin(2) =D hiy(n+1)a" =Y (n+ 15, (n — D"

n>1 n>1

d d
= Z @S (n—1)z" T = T (2 @S, (2)) .

n>1

There are two possible ways in which we code (or label) the windows with
appropriate integers. The first, described in Section 2, is the one in which the
windows of the IT are labeled with zeros, whilst the remaining windows are labeled
with non-zero numbers. The second, which we deal with in Section 3, is the one in
which the zero windows belong to the ET’s, whereas the non-zero windows belong
to the IT. This way, any HC® can be viewed as a sequence of n columns comprising
the coded windows. This sets up a one-to-one correspondence between the set of
HC “’s and the set of sequences of n labeled columns.

Recall from [1] that G,, represents an infinite grid graph with vertices from
the set {(i,7) € Z? | 0 < j < m}, in which the square cell determined by the points:
(Gj—14+kn,m—4), (j+kn,m—i), (j+kn,m—i+1)and (j—1+kn,m—i+1),
with 1 <4 <mand 1 < j < n, is labeled wfj and is called a window, too. We
also say that wfj belongs to the (j + nk:)th column of G,,. The set {wfj | i,5,k €
Z N1<i<m A 1<j<n} presents the set of vertices of another infinite grid
graph denoted by W,,.

Consider a HC ¢ in the graph P, 11 x C,. Loosely speaking, a rolling im-
print (RI) is a picture obtained as follows. First we “cut through” the surface
of our graph P11 x C), (with a HC in it) along the line which connects the ver-
tices M(0,1) and N(m,1), see Figure la. Next, we unroll and flatten it; see the
rectangle Rg : MgNoN1M; in Figure 2a. Finally we produce many copies of the
initial picture (R_1, R—_2, R_3,... and R1, R2, Rs,...), and line them up to the
left and to the right side accordingly; see Figure 2b. Since the HC is contractible,
its RI is actually the graph G, with infinitely many mutually congruent polygonal
lines on it. These polygonal lines are the boundaries of the polygons consisting of
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all the vertices (wf]) of W,, that correspond to the windows (w;;) of P11 %X Cy,

from the interior of the HC ¢ (the white squares in Figure 2b or the gray squares
in Figure 2¢). That way parts of the interior and exterior trees that were initially
broken by the process of “cutting” of the W, ,, are now assembled again into the
original forms, and multiplied in W,,. What we obtain is a sequence of copies

L. 873,872 671 60 61 62 . of a “new” split tree S°, some sequences of copies
LT3 T72 TN T T T2, . of the “new” exterior trees ... TY and a sequence
of copies ... I72, 171,19 I' I?, ... of the “new” interior tree I°.

At this point we need to modify a few definitions stated in [1], as follows:

Definition 3. The basis of a rolling imprint (BRI) is the union of the vertez
set of the split tree whose down root is in R, the vertex sets of all the exterior trees
(different from the split tree) each of which has its root in Ry, and the vertez set
of the interior tree whose leftmost window from the first row belongs to Ry.

Note that, in this way, we establish a bijection between the set of vertices in
V(W) and the BRI (see Figure 2d).

The aforementioned coding of the windows is, in both cases, dealt with in
two stages. In the first stage the graph W,, ,, is associated with the matrix A° =
[@ij]mxn Whose entries are from {—1,0,1}. The windows w; ; are called the zero
windows if and only if a; ; = 0, otherwise they are named the non-zero windows.
The coding is done by associating the same number to each of the vertices of the
same tree (be it a ST, ET or IT) during the first stage. For instance, in the first
case all the vertices of the UT’s were coded with —1, whilst all the vertices of the
DT’s and ST were coded with 1. Therefore, we say that the DT’s and the ST are
positive trees (PT), whereas for the UT’s we say that they are negative trees
(NT), or simply non-zero trees, irrespective of the case. In the second case, the
term positive tree (PT) or non-zero tree refers to the IT. The term zero tree
is used in a similar manner. The roll number depends on the type of cell (zero or
NON-Zero).

Definition 4. The roll number (or simply roll) of a window w;; € V(Wy, ),
denoted by r(w; ;) (or simply r if the window is clear from the context) is a unique
integer k for which wfj belongs to a mon-zero tree of the BRI, or in case w;; is a
zero window, we set v = 0. We shall also say that the window w; ; belongs to
roll r.

Ezample 2. For the HC ¢ whose BRI is presented in Figure 2d, the roll numbers
of some specific windows are summarized below.

non-zero| coding roll number

tree(s) |method |wg 12 w7 12|ws 11 |ws 11 | W12 |W1n|Ws 11|Ws 8| Wa,12|W2 2
IT second| -2 | -2 | -1| =110 0 0
ETs first 0 0 0 0 0 0 -1 0 1 2

o
o
o
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Figure 2: (a) Unrolling and flattening the cylindrical surface that contains a HC ©.
(b) The rolling imprint of a HC ¢, with the copies of the “new” split tree and ETs
in gray.  (c) The rolling imprint of a HC ¢, with the copies of the “new” interior

tree in gray.  (d) The basis of a rolling imprint (BRI) consists of the windows of
all the “new” trees 1%, S T? T and TY.
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Definition 5. Two non-zero vertices w;; and wj s of Wi, n, with a; s = a; s are said
to be joined at the k-th column with the roll number r, or simply k"-joined,
where 1 < k <mn, and — L%J <r< L%J , if and only if their corresponding windows
in the BRI belong to the same component in the subgraph of Wy, induced by the set
of all non-zero windows w} , from the BRI that satisfy both a,, = a;1 = a; s, and

either (i) z = r(wWgy) <7, or (it) z =r(wgy) =1 and y < k.

Example 3. Let us once again take a look at Figure 2d assuming the first way of
coding (a1,1 # 1). There, windows wg s and wg g are not 89-joined, but instead are
99%-joined. Also, w12 is 12'-joined with wy 1o.

In Sections 2 and 3, as we said, we present two different characterizations of
HC ¢ where wy; is the up root of the split tree. Both of them allow for the use
of the transfer matrix method with a view to obtaining the values of 4,5 (n)’s. In
Section 4, we determine the upper bound of the so-called color” words which appear
in these procedures. Sections 5 and 6 contain comparative analysis of the numerical
results obtained by using these two characterizations and some other conclusions
including two new conjectures. Section 7 is devoted to closing remarks.

2. CODING THE EXTERIOR TREES BY NON-ZERO ENTRIES

2.1. The First Phase — the Matrix A ©£=t

For any integer m > 1, we associate with each HC ¢ in P,,1; x C), with w3
as the up root of the split tree a matrix A ©F*t = [@ij]mxn Whose entries are defined
in the following way:

0 if w; ; belongs to the IT,
O T w;,; belongs to a UT,
1 if w;; belongs to a DT or the ST.

@i, j

Obviously, a1 1 def 1, a1,2 def 0,a1,n def 0, and ag 1 4f 1. Note that wr,1 is the only
positive window in the first row (on the “negative coast”). We adopt the convention
that i n+1 déf a1, and a;,0 déf Qj,n,y for 1 < ) <m.

Lemma 1. Every HC © on the thick grid cylinder graph Pn,41 x Cy, (with w1 as
the up root of the split tree) determines a matriz A “F*t = [@ij]mxn, with entries
from the set {—1,0,1}, which satisfies the conditions below.

1. First and Last Row Conditions (FL“F*!):

(a) a11 =1, and a1 2 =ay n =0.



Enumeration of Contractible Hamiltonian Cycles on a Thick Grid Cylinder II 253

c
K M{Ol exterior prgmn (Qn) l{})‘ exterior rigmn P(O n)
0[0[o[0[0ER0]0 00090 010
N uowomo oo &20“70¢h0-1¢03
T - 111“140&10'1 defalfipifof]ofslhs
N T olo ofo[o]o[o]0f0 2l oJoJo[o]o[0[o[o}
N “ o[t o1l 2‘022,;210;20
N j el qulTOOlOVITOOM t¢20¢2100¢1?02"09
NS :“10¢110¢1’0»11F _d2]ol22]olnT o212
N j/ WITOOOOHOOiO : 20010(0{0]e1{0[0]0
N T = = AR RAEINEE
el lafola |t 2 P I
N jf [0]0 ]60000 .ALoTodlill o ol olol0
Y S T NmDt = < © Q(m,n
QN I\Kn‘l’l)exterior region QA m.n) elter ior region T )

Figure 3: A contractible Hamiltonian cycle of Pj; x Cig with the entries of the
matrices A “F%t (the first phase) and B “F*! (the second phase) written on their
windows as the cylindrical surface is drawn on a flat surface.

(b) For2<j<mn,

a1, €4{0,-1}, and (a1;,01,+1) % (—1,-1).
(c) For1<j<mn,
am,; €1{0,1}, and (amj,am,j+1) # (1,1).
2. Adjacency of Column Conditions (AC“F*!);
(a) For 1<i<m—1and1<j<mn,

(lai,j|7 |ai+1,j|a |ai,j+1 \, |ai+17j+1|)
¢ {(1,17171),(0,0,0,0),(07171,0),(1,0,0,1)}.

(b) For1<i<mand1l<j<n,
Qi - Qi j+1 7# —1.
(c) For1<i<m-—1and1<j<n,
Qi Giy1,; 7 —1.
3. Root Conditions (RC“F*t);

(a) Each connected component of the subgraph of the graph W, ,, induced
by the windows corresponding to the non-zero entries (£1) of the matriz
ASET s g tree.
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(b) There exists exactly one such tree (the split tree) containing exactly one
window from the first row (a11 = 1), and exactly one window from the
last row of Wi, .

(c) Each of the remaining trees, if any such exist, contains exactly one win-
dow from either the first or the last row of Wy, ,.

Conversely, every matriz [a;;|mxn with entries from the set {—1,0,1} which fulfills
the conditions FL ©F*t  ACF* qnd RC“F* determines a unique HC® on the
graph Py, 1 x C,, whose split tree contains the window wy ;.

Proof. The necessity of all three imposed conditions is easily verifiable and is thus
left to the reader. Therefore, we move on to the proof of their sufficiency. Let us
observe all the regions determined by all the non-zero windows including the two
half-cylinders from the one side (at this moment, we cannot assume that there exists
a unique such region). The first two conditions are local conditions ensuring that
the boundary of the said regions (the edges which belong to both non-zero window
or the boundary of one of the two half-cylinders, and a zero window) determines a
unique spanning 2-regular subgraph of P11 x C),, that is, a union of cycles.

The proof that this graph consists of only one component (consequently es-
tablishing the uniqueness of both zero and non-zero regions) can be derived con-
structively. The case n = 2 is trivial, so we can assume that n > 3. The condition
AC &Pt implies that each of the components of the subgraph of Wy, ,, induced by
the windows corresponding to the non-zero entries consists only of either 1-windows
or (—1)-windows. Thus, we have justified the existence of both positive (DT’s and
ST) and negative trees (UT’s).

Let wy, p be the down root of the unique positive tree T (the split tree) with
a window wn in the first row in it and T3, Ts, ..., Tk be all the NT’s (if any such
tree exists at all) with the up roots wi j,, w1 j,, ..., w1 j,, respectively, for which
3<j1<je<...<jr<n.Let T, T}, ..., T/ be all the PT’s different from Ty (if
any such tree exists in the first place) with the down roots wm, i, , Wi, izs - - - » Wi, iy s
respectively, for which is = i, (mod n), where 1 < s <land p+2 <} <i}) <
... <i; <n+p—2. Our task is to obtain the unique curve (the broken line) which
separates the regions of the two kinds of windows (the zero and non-zero ones).

We can start from the point M : (0,1) (the upper-left point of the up root
wy 1 of Tp) and move to the lower-left point of w,y, , using the edges of P11 x C),
that belong to the boundary of Tj. From there we continue towards the point
(m,4; + 1), and then visit all the vertices on the boundary of 7} finishing at the
point (m,4;). Next, we visit the boundary of T} _,, T/ ,, .... After having visited
the tree T we end up at the point (m,i1). Then, we move further to the point
(m,p+ 1) and continue towards the point (0,2) using the remaining edges of the
boundary of ST. From there we similarly continue visiting the boundaries of trees
T1,T5,. .., Tk, respectively, ending up at the point M again (see Figure 3). By
doing so, we pass through all the edges on the boundary of these regions, obtaining
a contractible HC. |

Recall that, for fixed values of k and r (1 < k < n, and —L%J <r< L%J),
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the relation £"-joined represents an equivalence relation on the set of all non-zero
windows w, , that satisfy either (i) 7(w,,) < r, or (ii) 7(ws,,) = r and y < k (that
is, whose window from the BRI belongs to the (y + nk)th column of G, or to the
left of it). Furthermore, every equivalence class belongs to exactly one ET. Hence
if this equivalence class belongs to a PT its windows can be k"-joined with at most
one down root. If it belongs to an NT its windows can be k"-joined with at most
one up (negative) root. Further, because an ST is a PT, we treat its down root as
its main root and this is what we shall assume below. Note that the roll number
of wy 1 could be different from 0 (for example, the roll of w ; in Figure 2d is 2).
But, all the other roots of the ET’s have their roll number equal to 0.

2.2. The First Characterization of HC ¢ with w;
as the Up Root of the Split Tree

Let C+ & {2,3,...,|Z2]+1}and C~ déf{—?,—?),...,—L%J —1}. For each
HC ¢ with the window w, ; belonging to the split tree, we associate the matrix
A Bt — [am»]mxn with the matrix B &%t = [(bi’j,’f@j)]an, where bi7j eCtu
C~U{1,0,-1} and —|Z| < r;; < |Z]. The former of the two satisfies the
conditions FL P2t AC ¥t and RC “F*!, whereas the latter is constructed in
the following way:

1. Define Tij = r(wi7j).
2. Set b;; = a;; = 0 if w; ; belongs to the IT.

3. If w;;, where w; ; # w1, is the (up) root of an NT (that is, ¢ = 1 and
a;; = —1) or the down root of a PT (that is, i = m and a;; = 1), set
b; j = a; ;. If w; ; is neither the down root of a PT nor the up root of an NT,
but it is j"-joined with such a root, where r = r(w; ;), set b; ; = a; ;.

4. For each fixed column, say column j:

(a) Scan the remaining positive windows w; ; with the same roll number
from bottom to top (that is, from ¢ = m to ¢ = 1), and set b; ; to
z + 1, where z is the ordinal number of the j"-joined equivalence class,
r = r(w; ), to which it belongs to (hence, the labels of the b; ;’s start
from 2).

(b) Scan the remaining negative windows w; ; with the same roll number,
from top to bottom (from i =1 to ¢ = m), and set b; j to z — 1, where 2z
is the negative value of the ordinal number of the j"-joined equivalence
class, r = r(w; ;), to which it belongs to (hence, the labels of the b; ;’s
start from —2).

Example 4. In Figure 3, the entries in the matrix B “F*! are written on their
respective windows (b:]” stands in place of (b;;,7i;), or just b;; if r;; = 0). Note
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that in the 9t column there exist three parts of the same PT (it is the split tree)
with the same roll number —1, but the windows of only two of them are 9~!-joined.
Consequently, the same value is associated to their entries in the matrix B &F*
(bs,o = brg = 2, and bz g = bag = 3). Another example is shown in Figure 2d.
There, the entries of the matrix B “£*' = [(b; j,7; ;)]ox16 for windows w1 and
wy 2 are (1,2), for windows ws 4, wo 12 and wy 12 are (1, 1), for windows wy, 2, Wi, 4
and weg g are (1,0), for windows wg e and wg g are (2,1), for ‘windows wy 4, w16
and wy g are (—1,0) and for windows w3 11, ws,11, w712 and wg 12 are (0,0).

Consider all the existing maximal b-factors, where b > 0 (b < 0), in the jth
column v = by jby ;... by, ;, where 1 < j < n, of the matrix [bi,j]an corresponding
to the matrix B “F** = [(b; j,7i ;)lmxn- Let them be, in their order of appearance
(that is, from bottom to top for positive windows, but from top to bottom for
negative windows), pi-factor, po-factor, ..., pg-factor, where k > 1, and p; >
1 (pi < —1) for each i. In addition, let ry,r9,...,7; denote the roll numbers
associated with these maximal factors. The words pips...pr and riry...7r, are
called the positive (respectively, negative) truncated word and the positive
(resp., negative) truncated roll word, respectively, corresponding to the jth
column of B F** A subsequence of a truncated word induced by the letters with
the same roll number r is called a positive (resp., negative) color” word.

Ezample 5. For the 9th column in Figure 3, the positive truncated word, the
positive truncated roll word, the positive color® word, and the positive color—*
word are 1223, 0 —1 —1 — 1, 1 and 223, respectively. Note that, in general, rq ;
need not be 0, and b;,; need not be 2.

2.3. Properties of the Matrix B ¢«

From the definition of the matrix B " = [(b; ;, 7 j)]mxn, We can easily

obtain a number of properties expressed in the following theorem. Bear in mind

def def
that here (bi,n+1,Ti,n+1) é (bi,lﬂ"z‘,l), and (b@o,’l"@o) ; (bi,nari,n)-

Theorem 1. The matriz B P = [(b; j, i ;)lmxn satisfies the following condi-
tions.

1. Basic Properties

(a) The support of the matriz [b; j|mxn, that is, the matriz [a; j]mxn, satis-
fies the conditions FL “F*t and AC &P,

(b) Harmonization of the adjacent entries which have the same sign: For
2<i<m,andl <k <n, if ai_1r = aik, then (bi—1kTi—1,k) =
(bie, Tik)-

(¢c) For1<i<m, and1<j<n,ifa;; =0, thenr,; =0.

(d) For3<j<(n-—1),ifai; #0, then (b1 ;,7m1,;) = (—1,0).
For1<j<mn,ifan;#0, then (by j,mm, ;) = (1,0).



Enumeration of Contractible Hamiltonian Cycles on a Thick Grid Cylinder II 257

2. Column Properties

For 1 < k < n, the k-th column [(b1 k,71.k), (b2.k,72k)s - s Bk Tmk)]T of
the matriz B ©F* satisfies these conditions:

(a) If there exists an entry (s,r) in the kth column of the matriz B ¥t
where s > 3, then for each ¢ € {2,3,...,s — 1}, at least one copy of
the entry (¢,7) must appear after the last appearance of the entry (s,r).

Likewise, if there exists an entry (s,r) in the kM column of the matriz
B &Ert where s < —3, then for each £ € {—2,-3,... s+ 1}, at least
one copy of the entry (¢, r) must appear before the first appearance of the
entry (s,r).

(b) For1<i<m, ifb;, € {—1,1}, then r;; > 0.

(c) If there exists an entry (2,r) with r > 1 in the kM cotumn of the matriz
B oEt then at least one entry (1,7) must exist in the same column.

Likewise, if there exists an entry (—2,7) with r > 1 in the Kt column
of the matriz B “F*' then at least one entry (—1,r) must exist in the
same column.

(d) If the negative (positive) truncated roll word of the Kkt column of the
matriz B “F* is not an empty word, it begins (ends) with an element
from {—1,0,1}.

3. Adjacency Properties

For 1 <k <n, the Kt column of B Et satisfies these conditions.

(a) For1<i<mand2<k<mn,ifa; 1 =a;,5 #0, then 1, ,_1 =7 .

(b) For1<i<m, ifb;r—1 =1, then b ), € {0,1}, and if b; ,—1 = —1, then
bi,k S {—1,0}.

(¢) For each ordered pair (b,r) with b > 2 (b < —2) which appears in the
(k — 1)St column, there must be an index i for which (b; x—1,7ik—1) =
(b,r), and b; ), € CT U{1} (b, € C~ U{-1}).

(d) For 1 <i,j <m, where i # j, if (bir—1,7x-1) = (bjr—1,7jk—1) and
Qi k. = A5k = G k—1 = Qj k—1 7& 0, then bi,k = bj7k.

(e) For 1 < i,j < m, where i # j, if (bik—1,7ik-1) = (bjr—1,75k-1),
ik = Qj g = Qi k-1 = Gjk—1 7 0, and by, = bj i, = b, then there is no
b-factor in the word by kbak . .. bm 1 which contains both b; ;. and bj .

(f) For every mazimal 1-factor (respectively, (—1)-factor) v in the word
bi,xba k... bk, exactly one of the following three conditions is fulfilled:

i. v either contains the letter by, (resp., b1 ), or

ii. in the (k — 1)5t column there is ezactly one letter bi k—1 =1 (resp.,
bik—1 = —1) for which b; , € v, or
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iii. there exists ezactly one sequence v = vi,va,...,vp, where p > 1, of
different mazimal 1-factors (respectively, (—1)-factors) in the word
b1,kbo k... by i satisfying the following conditions:

o For everyi (1 <i<p-—1)in the word by —1b2 j—1...bm k-1,
there is exactly one letter bj, x—1 € Ct (resp., bj, 1 € C~) for
which bj, . € v;, and there is exactly one letter by, 1 € ct
(resp., b8i+1,k*1 € C_) fOf‘ which bs¢+1,k € Vit1,

(bjrnk—l’ rjuk—l) = (b8i+1,7€—17 r5i+17k_1)’

and j; # s; for 1 <i <p.

o The factor v, contains either the letter by, (resp., b1 ), or in
the (k — 1)5t column there exists exactly one letter b; ,_1 = 1
(resp., b; x—1 = —1) for which b; ;, € v,.

(9) Forb ¢ {—1,0,1}, if v and u represent two different mazimal b-factors
in the word by 1by . ... bm 1 with the same roll number, then there is a
unique sequence v = vi,va,...,Vp = u, where p > 1, of distinct mazimal
b-factors for which it is true that:

o For every i, where 1 < i < p — 1, there is exactly one bj, x—1 with

@, k=1 = Gj, k = 1 (aj, k-1 = a;, x = —1), such that b, 1 € v;, and
there is a unique b, -1 With s, k-1 = s,y k =1 (A5 k-1 =
s,k = —1) such that by, 1 € viy1,

(b]'i’k*hrji’k*l) = (b8i+1,k717rsi+1,k71)7
and j; # ;.
4. Buckle Properties  (Specific Properties of the First, Second, and Last
Columns)
(0,) We have bl,l > 0, b271 > O, (b17n,7"17n) = (b17277”’172) = (0,0)
(b) For2<i<m, ifa;n=0a;,1 #0, thenr;1 =7r;,+1.
(c) If there exists i € {1,2,...,m} such that r;1 < 0, then there exists
Jj€{3,4,....,m} such that j # i, aj1 = a;1, and rj; = 0.
(d) If there exists a mazimal 1-factor b, 1 ...bi, 1, where 1 < iy < iy < m,
with vy, 1 = ... =715,1 =0, then
® is =m, or

e there exists ji with i < ji < m such that the word bj, 1...bm 1

is a mazimal 1-factor with rj, 1 = 15,411 = ... = rmy1 = 0, and
there exist i,5 € {1,2,...,m} such that i1 <i < iy < j; <j<m,
bi,n = b]’,n, and Tim =Tjn = —1.

In addition, the first column does not contain any of the —1-factor
bil,l .. ~bi2,1; where 1 S il S iQ S m, with Tl = =Tiz1 = 0.
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(e) If the last column of B “E™ contains the entry (2,0), then it must con-
tain the entry (1,0) just as well. Similarly, if the last column of B ©F=%t
contains the entry (—2,0), then it must contain the entry (—1,0), too.

5. Topological Properties

(a) For1l <11 <1 <ig < jo<m, lf bil,k = bi2,k < —1, bj1, = ij’k <
=1, and 15,k = Tiyk = Tj,k = Tjs.k, then by, = bjhk Likewsse, for
1< <ji<ia<jo<m, ifbyr=0bi,r>1, bj, =051 >1, and
Titk = Tig,k = Tj1,k = T ks then bil,k = bjl,k'

(b) For 1 < iy < j < iz <m, if by = biyre < —1, bjp = —1, and
Tisk = Tigk = Tjk, then by, = b, = —1. Likewise, for 1 < i1 <
7 < 1o < m, Zf bil,k = biQ,k > 1, bj,k = 1, and Tiyk = Tigk = Tjks then
bi, k. =bi, = 1.

(c) Assume 1 < i < j<m, if by =0bjr =—1 and rj) # r; i, then we

must have 1, < 1; . Likewise, if b; ), = bjr = 1 and rj # 73k, then
we must have r; . > 1; 1.

(d) The absolute value of the difference between two adjacent letters in the
negative (or positive) truncated roll word (unless it is an empty word)

k‘th

corresponding to the column of the matriz B “F*t is at most 1.

(e) For 1 <i,5<m, ifb, =—1 andbj =1, theni < j.

(f) If the word by j ... by, 1 does not contain 1 or —1, with the exception of
eventual roots (b1, = —1 and/or by, , = 1), and if among all the entries

of the kt cotumn of B ¢Et with the same fized roll number r (note that
r < 0) there exist both negative b; 1, where 1 < i < m, and positive b; 1,
where 1 < j < m, then the first occurrence of the entry (b, ,r) in the
column with the smallest negative number b; i, such that r;;, = r, must
appear before (when viewed from the top row to the bottom row) the last
occurrence of the entry (bj ,r) with the largest positive number b; j, such
that rj, =r.

Proof. If we were to compare the statements of this Theorem, except for 5(e)
and 5(f), to the corresponding ones in Theorem 4 of [1], which relate to HC "¢, we
would find their formulations fairly similar to one another. The proofs of them are
thus analogous to their counterparts, and shall not be restated. Instead, we move
on to the two remaining exceptional cases.

Proof of 5(e): Suppose, on the contrary, that ¢ > j. Then, the shortest
path in the IR from the window wgk to its root (a part of an NT) must cross the
shortest path in the IR from the window wg’k to its root (a part of a PT), which is
impossible.

Proof of 5(f): Suppose, on the contrary, that ¢ > j. Then, the shortest path
in the BRI from the positive window w? , to its root (located to the right and
below the window w? ;) must cross the Shortest path in the BRI from the negative
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window wj, to its root (located to the right and above the window wj ), which is
impossible. O

Having Part I in mind, it now comes as no surprise that Properties 14 are
sufficient when it comes to determining a unique HC ¢. Again, the following proof
is analogous to its counterpart from Part I. Nevertheless, in order to make this
paper as self-contained as possible, we will still provide a rough sketch of the proof.

Theorem 2. Every matriz B “F*" = [(b;;,7i;)]lmxn with entries from (CT U
{1,0,-1} U C‘) X { — L%J,, L%J} which satisfies Properties 1-4 determines
a unique HC¢ on the graph P11 x C,,.

Proof. The support of matrix [b; j]mxn, namely matrix [a; j]mxn, satisfies the
conditions FL ¥ and AC ¥t (Property 1(a) of Theorem 1). We will prove that
RC “Ft holds, through a set of claims. But first, take the set of all windows of
G into consideration and divide them into positive, negative and zero ones, in
accordance with the sign of the value corresponding to b; ;. Note that the window
corresponding to 1 can not be adjacent to a window corresponding to —1 because
of Property 1(a).

The edges of G,,, which belong to different kinds of windows (zero and non-zero
ones), together with the edges of the zero windows belonging to lines MyM; and
Ny N1, determine a spanning 2-regular subgraph of G,,,. Adding the lines MyM; and
Ny to it gives way to a clear distinction between the positive, negative and zero
regions. The first, of course, being determined by b; ; > 0, the second by b; ; < 0,
and the last one by b; ; = 0. However, instead of focusing on these regions per say,
we can observe the components of the subgraph W,, induced by the windows of
the same kind (positive, negative or zero). We will refer to them as the positive,
negative or zero regions “induced by the positive, negative or zero entries of the
matrix [b; ;lmxn’-

Note that every entry (b;j,r;;) of the matrix B ©¥** is assigned to ezactly one
window w; ;, where r = r;;. In other words, w; ; belongs to the (j+ m")th column
of G, (the square M,.N,.N,..1N,.12), although there are infinitely (countably) many
vertices of W, corresponding to this b;;. If we collect all the positive and negative
windows assigned to entries of the matrix B “F** we will obtain a finite number of
completely fulfilled regions, as the claim below shows.

Claim 1. Every window from any positive or negative region that contains wy ;,
where © = 145, is assigned to an entry of the matriz B e Bat,

Proof. Since there is a path between any two windows in the considered regions,
this comes as a consequence of Properties 1(b), 3(a) and 4(b). O

As a result, every positive or negative region is bounded, and there are in-
finitely (countably) many regions congruent to it. The regions described in the
previous lemma will be called the basis positive regions or the basis negative
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regions and its each of its windows wj;’s for which (b;;,7) = (b,7) a b-window,

where b # 0. If any such window belongs to the last (that is, the mth) row and
b # 0, it must be a 1-window with » = 0 (Property 1(d)); it will be called the
down root. If any such window belongs to the first row and b < 0, it must be a
—1-window with » = 0 (Property 1(d)); it will be called the up root. The window
wi;, where r = r; is the only wup root which is a positive window. Recall that
in case the path which connects the window wj ; to another window consists only

of windows from its column (the (j + nr)th column) or/and those to the left of it,
we call this path the left path for the window w; ;.

Claim 2. For any two windows w! . and w}, ;, where i < ', from the same basis

4,J @5
positive (or negative) region and the same column (the (j + nr)th column) for
which there ezists a left path for and between them, the following must be fulfilled:
bi)j = bi’7j-

Proof. This can be proved by strong induction on the length [ of the considered
path using Properties 1(b) and 3(d), in the exact same way we did in the proof of
Lemma 2 in [1]. O

Claim 3. The subgraph of Wy, , induced by positive (or negative) entries of matriz
BF®t has a forest structure.

Proof. Assuming the opposite holds, that there exists a cycle in a basis positive
region, then in the rightmost column of its windows once we apply Claim 2 we reach
a contradiction with either Property 3(e), 3(f) or 3(g) (compare with the proof of
Lemma 3 in [1]). O

Claim 4. Let w;, ; and wy, ; be any two windows from the same basis positive

12,]
region, which belong to the same column (the (j + nr)th column), with b;, ; =

bi,j =band |b|>1 (ry ; =1, ; =1). Then, there exists a unique left path for
and between them in this region.

Proof. The existence of such a left path is proved by induction on j + nr using
Property 3(g) and 3(b). The base case deals with the leftmost windows of the
considered region, whereas Claim 3 implies its uniqueness. O

Claim 5. For every l-window (resp., (—1)-window) wyi ;, where v = r;j, there

exists a unique left path for it which connects it to a down root (resp., an up root).

Proof. The proof can be obtained by induction on j + nr. If the window w;;
belongs to the leftmost windows in the considered region (the base case of the
induction), the letter b; ; and by, ; (resp., b; ;) must belong to the same 1-factor
(resp., (—1)-factor) (Property 3(f)i). If it is not the case, from Property 3(f) and
Claim 4 we conclude that either there is a unique left path for and from it to wy, ;
(w7 ;) which is a down root (resp., an up root), or there is a unique left path for



262 O. Bodroza-Panti¢, H. Kwong, J. Poki¢, R. Doroslovacki and M. Panti¢

and from it to a unique 1-window (resp., (—1)-window) from the previous column

(the (j +nr— 1)th column). In the second case, we apply the induction hypothesis
to the newly obtained 1-window (resp., (—1)-window) instead of to wy ;. O

Claim 6. Fwvery positive region has a unique down root, whereas every megative
region has a unique up r00t.

Proof. Property 3(c) implies that every rightmost window of any basis positive
(resp., negative) region is a 1-window (resp., (—1)-window). By applying Claim 5
to these windows we obtain the desired statement. O

Now we can finish the proof of the main statement. Claims 6 and 3 together
with Property 3(c) imply that the RC“¥*! is satisfied. By applying Lemma 1 we
finally obtain the existence and uniqueness of a HC ¢ on the graph P, 11 x C,, whose
split tree contains the window w ;. O

For each integer m > 1, we will create an auxiliary digraph whose role will
be to enumerate the number of HC ¢’s in P, 11 x C,. Here is how we intend to
do that. At first, let F,, = F,©F* denote the set of all the possible first columns
of B&Fet and D&E™ a digraph with the vertex set V(DSF**) which consists of
all the possible remaining columns of the same matrix. For any v,u € V(D5E*?),
there exists an arc from v to v if and only if the vertex

0= [(b1,1,T1k)s (b2.85T28) s -+« s (Brnes k)]

may appear as a column preceding the vertex

= [(01,541,71,541)s (B2, k115T2841)s -« «» Brn b ts Tt 1)]

for 2 < k < n—1. Note that the vertices of the disjoint sets F,,, and V(DSF*?) are
in both cases the column vectors of the form [(by,71), (b2,72), - -+, (b, Tm)]T with
entries from (C~U{-1,0,1} UCT) x { = [2],...,|2]|}. The difference between
the two is that by = by > 0 for the vertices from F,,, whereas b; € {—1,0} and
r1 = 0 for the vertices in V (DSE=?).

Let Sy, L, C V(DSE®Y) denote the set of all possible second and last (that

is, the nth) columns of the matrix B%F?!, respectively. Also, let LFS,, denote
the set of all possible ordered triples (I, f,s) € L, X Fp, X Sy, of columns which
can appear as the last (nth), first and second column, respectively, in B%F®t, The
aforementioned auxiliary diagraph from the previous paragraph will be denoted by

5:,;Em. Its set of vertices will be V(f;;mt) = Fp UV(DSE=Y) and its set of edges
E(D,,")

= E(DE")Y U {(u,v) | Guw)(u,v,w) € LFS, V Gw)(w,u,v) € LFS,}.

Note that all the vertices of this graph do abide by the Basic and Column properties
(as well as by the Topological properties). Additionally, the arcs of the digraph
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DS Et abide by the Adjacency properties, whereas the arcs coming out of the set
L, and into the vertices from the set F,, satisfy both the Adjacency and Buckle
properties. The same goes for the arcs spanning from the set Fm and into the
vertices from the set S,,

For example, when m = 2, the digraph 5;’E$t has four vertices, and the set
LFS,, consists of just one triplet (vq, f1,v1) (see Figure 5). When m = 3, the

digraph 5§’Em has fourteen vertices, 3 of which belong to the set F3 = {f1, fa, f3};
whereas 11 of them as in V(Dg’Em). At the same time, there exist precisely two
arcs from each of the vertices from the set F3 into the set Sz = {v1,v2,v3, v4, U5 }.
Also, there exist two arcs per every vertex of the set F3 to which they point from
the set L3 = {v1,v2,vs,v10} thus forming 12 triplets - elements of the set LFSs3
(see Subsection 5.3).

In this way, the enumeration of HC s on P,, 11 X C), is reduced to the enu-
meration of oriented walks of length n — 2 in the digraph DSF** with the pairs of
initial and final vertices which are respectively the third and first coordinates of
the triplets from the set LFS,,. In other words, this enumeration is reduced to the
enumeration of closed oriented walks of length n in the digraph ff,;mt for which it
holds that they both start and finish in the same vertex from the set F,, and no
other vertex from the set JF,,, belongs to them. Finally, this number ¢%E% (n — 2),

where n > 2, needs to be multiplied by n so as to obtain the correct number of
HC ¢ of P11 x Cy.

3. CODING THE INTERIOR TREE BY NON-ZERO ENTRIES

3.1. The First Phase — the Matrix A ¢t

Here, the zero windows belong to the exterior trees and w;; remains the up
root of the split tree. To put it differently, w?,Q is the leftmost window from the
first row of the interior region in the BRI

Each HC ¢ on Py,41 % Cy,, where m > 1, with the window w; ; as the up root
of the split tree can be encoded by a (0, 1)-matrix A ¢/ = [a; j],nxn Where

a0 def 1 if w; ; belongs to the interior of HC ¢,
I 0 otherwise.

By doing so, we obtain one positive region and one or more zero regions in the BRI.
Note that in Figure 4 almost all the windows of the IT are in Ry except for the
two windows which are in R;. On the other hand, in Figure 2 the windows of the
IT belong to the rectangles R _o,R_; and Ry-

Lemma 2. Fvery HC¢ on the thick grid cylinder graph Pp,11 x C,, with the window
w11 as the up root of the split tree determines a (0,1)-matriz A efnt — [@ij)mxn that

. . . def def .
satisfies the following conditions (a; 11 = a;1, and a; = a;p for 1 <i<m).
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Figure 4: A contractible HC of P; x Cg with the entries of A ™ (the first phase)
and B “'™ (the second phase) inscribed on its windows, once the cylindrical surface
was represented on a flat surface.

1. First and Last Row Conditions (FL '™ ):

(a) a1,1 = 0.
(b) For1<j<n, (a1, a1;+1) # (0,0).
(C) For 1 <j<mn, (am,j7a7mj+1) §é (070)

2. Adjacency Conditions (AC*"™): For1<i<m -1, and 1< j <n,
(@i, iv14,ije1,aiv1,541) € {(1,1,1,1),(0,0,0,0),(0,1,1,0),(1,0,0,1)}.

3. Tree Condition (TC>'"): The vertices of Wy, corresponding to 1’s in
Aol induce a unique tree in Wonn-

Conversely, every (0,1)-matriz [a;j]mxn which satisfies the conditions FL 1™,
ACIntand TC I determines a unique HC® on the thick grid cylinder graph
P11 x Cp, with the window w11 as the up root of its split tree.

Proof. The first two conditions provide the local whereas the third one provides
the global aspect of hamiltonicity and their necessity is easily verifiable (note that
FL =™ implies that a12 = a1, = 1). With the intention of showing that all
the above mentioned conditions are sufficient as well, note the following. The first
two conditions ensure that the set of edges belonging to both a zero and a positive
window or to both a positive window and one of the lines MyM; or NyN; determines
a unique 2-regular spanning subgraph of P,,, 11 x C},, that is, a union of cycles. The
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third condition implies that there exists a unique cycle — the boundary of the
positive region (IT).

Let us walk from the upper horizontal edge of the window wqs (the windows
on the right-hand side belong to the IT), walking in accordance with the afore-
mentioned boundary. As there are no consecutive zeros in the mth row of A7 nt
there exists at least one window corresponded to 1 in that row. Find the last lower
horizontal edge of some window from the mth row through which we pass along our
walk. If we denote that window by wp,, (in Figure 4, we have k = 4), then wy, x—1
represents the down root of the split tree. The reason behind that is that the rest
of our walk consists of edges which belong to zero windows that are connected to
both wy, ;-1 and w1, with the latter of which we end our walk as it is. Therefore,
the constructed HC is contractible and has w; ; for the up root of the split tree. O

3.2. The Second Characterization of HC ¢ with wi;
as the Up Root of the Split Tree

For each HC ¢ with w1 ; in the split tree, we associate the matrix A "t =
[@i jlmxn to the matrix B ¢I" = [(b; ;,r; ;)lmxn. The first matrix satisfies the
conditions FL /™ AC "t and TC ¢/, The second matrix with b; ; € CTU{0, 1}

and —| 2| <r;; < |%2] is constructed in the following way:

1. Define Tij = r(ww).
2. Set bi,j = Q5 = 0 if Wi, 5 belongs to an ET.

3. For each fixed column j, partition the positive windows from the jth column

with the same roll number into j"-joined equivalence classes. Then, label all

the windows within each equivalence class with 2, 3 ..., according to the order
in which the equivalence classes first appear within the jth column, from top
to bottom.

Ezample 6. In Figure 4, the values (b;;, r;;) of B I are inscribed on the windows
as b:;j or just as b;; if 7;; = 0. In the 9t column there are four parts of the IT
that belong to the roll 0. Three of them, w; g, w9, and wgg, are 9%joined.
Consequently, the same b-value is assigned to them in B ¢/™*. More specifically, we
have by 9 = by g = bg9g = 2. The fourth window, wg 9, while still belonging to the
roll 0, belongs to a different equivalent class. Hence, bg.9 = 3. In the second column,
there are three windows that belong to the IT. Two of them belong to the roll 0,
but they belong to two different equivalence classes with respect to the relation
20-joined. The last window, w2, belongs to roll 1; thus, (b192,7102) = (2,1).

In an arbitrary column of the matrix [b; ;]mxn that corresponds to B ¢F*t =
[(bi,5,7i,7)]mxn, we consider all the maximal b-factors (if it exists), where b > 0.
Let them be, in their order of appearance, that is, from top to bottom, p;-factor,
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po-factor, ..., pg-factor, where k > 1, and p; > 2 for each i. In addition, let
r1,72,...,Tr denote the roll numbers associated with these maximal factors. The
words p1ps . ..pr and 17y ... 1y are called the truncated word and the truncated
roll word, respectively. A subsequence of a truncated word induced by the letters
with the same roll number r is called a color word.

Ezample 7. For the second column in Figure 4, the truncated word, the truncated
roll word, the color® word, and the color! word are: 232, 001, 23, and 2, respectively.
The color® word for the fourth column is 23435.

3.3. Properties of B "

The properties listed below follow straightforwardly from the definition of

. def

the matrix B &Int = [(bi,j,rm)]an. Here, (bi,n+17ri,n+1) = (bz‘71,’l“i71), and
def

(bi,0,73,0) = (binsTin)-

Theorem 3. The matriz B 1" = [(b; j,7:j)lmxn satisfies the following condi-

tions.
1. Basic Properties
(a) The support of the matriz [b; jlmxn, that is, the matriz [a; jlmxn, satis-

fies the FL ™™ and AC1nt,

(b) Harmonization of the adjacent entries having the same sign: For 2 <
i<mand 1 <k<n,ifa_1k=a;i, then (bi—1x,mi—1k) = (bik,Tik)-

(c) For1<i<mandl<j<n,ifa;;=0,thenr;; =0.
2. Column Properties

For 1 < k < n, the kth cotumn (b1 ks 71.8), (b2ksT2.8)s + s (B k)] T O
the matriz B ©'™ satisfies these conditions:

(a) If there exists an entry (s,r) in the kM column of B 1"t where s > 3,
then for each ¢ € {2,3,...,s — 1}, at least one copy of the entry (¢,r)
must appear before the first appearance of the entry (s,r).

(b) If the truncated roll word of the first column of B '™ is not an empty

word, it begins with 0 or 1. The truncated roll word of the Kt column
of B for k # 1 is non-empty and begins with 0.

3. Adjacency Properties

For1 < k < n, the Eth column of BoI™ = [(b; j,7i j)lmxn satisfies these
conditions:

(a) For1<i<mand2<k<mn,ifa;y—1=a;,5 =1, then 1, ,_1 =7 .

(b) For each ordered pair (b,r) that appears in the jth column, with the
exception of the following two cases:
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e b =2 r >0 is the mazimal roll in this column, and there is no
occurrence of (3,r) in this column;

e k=mn,b=2,r =0 is the mazimal roll in this column, and there is

no occurrence of (3,0) in this column;
there must exist an indez i for which (b; g, 7 k) = (b,7), and b; k41 # 0.

(c) For 1 <i,j < m, where i # j, if (bix-1,7ik-1) = (bjr—1,75k-1) and
Qi = Qjk = Qi k—1 = Qj 1 = 1, then b; x = b; .

(d) For 1 < i,j < m, where i # j, if (bip—1,7ik-1) = (bjr—1,7jk-1),
Ak = Qjk = Qi k—1 = Gjk—1 = 1, and b;, = b;, = b, then there is no
b-factor in the word by kba ) . .. bm i which contains both b; ;, and bj .

(e) For b # 0, if v and u represent two different mazimal b-factors in the
word by yba i ... by with the same roll number, then there is a unique
sequence v = v1,V2, ...,V =u (p > 1) of distinct mazimal b-factors for
which it is true that:

e For every i, where 1 < i < p —1, there is exactly one bj, .—1 with
aj, k—1 = G4,k = 1, such that bj, 1, € v;, and there is a unique
bey 1 k—1 with as, k-1 = s, .k = 1 such that by, , r € viy1,
(bjz‘,k*hrji,k*l) = (b8i+1’k*177‘51‘+17k*1)7 and Ji 7é Si-

(f) Forr >0, if the ordered pair (2,r) appears in the e th column, then there
must exist an index i for which

o Ifk=1,thenryy,=7r—1, and a;1 = a;n, = 1.

e Ifk>1, thenrip_1=r, and a; -1 = a; 1 = 1.

4. Buckle Properties  (Specific Properties of the First and Last Columns)

(a) (b1,1,71,1) = (b2,1,72,1) = (0,0), and (b1,n,71,0) = (2,0).
(b) For2<i<m, ifa;n=0a;1 =1, thenr;1 =7r;,+1.

5. Topological Properties

(0,) Forl<i < j1 < ig < jg <m, Zf bil,k = big,k > ]., bjl,k = bj27k > ].,
and v, g = Tig k = Tj1 k= Tjo,k, then by 1 = by, .
(b) The absolute value of the difference between two adjacent letters in the

non-empty truncated roll word corresponding to the Kk column of B &Int
18 at most 1.

Proof. We shall omit the proofs of those items that we consider to be fairly
straightforward, due to their similarity to the ones in Theorem 1 or Theorem 4
of [1]. However, we shall discuss the remaining items.

Column Property 2(a): Tt is a trivial consequence of the chosen method of
coding, that is, of the way in which B ©!" is formed.

Column Property 2(b): Notice at first that using the definition of the matrix
B ! and the definition of BRI, we have that bii=0b21=0,b12=01, =2and
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r1,2 = 71,n, = 0. The number r; 5, must be zero because, assuming the contrary, the
path which connects the windows wl 5 and wl " would encompass the split tree
and so it could not reach its down root.

The truncated roll word of the kP column where & > 1 is a non-empty word
because b1 bak...bm i can be zero word just for k = 1. Now, suppose to the

contrary, that the truncated roll word of the ith column, where k > 1, of B &It
begins with » > 1. Let w;", be a positive window from the BRI, for which b;;, = 0,
where 1 <1 <4 —1. Let P° denote the unique path from szk to w102 This path

must cross the (k+n(r— 1))th column of the Rl in a window w,"; . * for some integer
s > i. But, in that case, the copy P~! of the path P? in the RI meets P°, which is
impossible. This proves that r < 1. Similarly, we conclude that r» > —1, observing
the path from w7 to w,, instead of the path from w;"y, to wy. Together, we
conclude that r = 0. '

Further we show that the first column of B ¢/™ possesses the property that
a non-empty truncated roll word begins with 7,7 = 0 or r;; =1 (3 < i < m).
Namely, assuming the opposite we would have r; ;1 > 1orr;; <0. If r;; > 1, then
the unique path PO from w,°, to w;’;" must cross the (n + 1)t column of the RI
in a window ws’1 for some integer s > 4. It implies that the copy P~! of the path
PO in the RI meets P°, which is impossible. Similarly, we may consider the case
when 7;; < 0 and reach a contradiction again.

Adgjacency Properties 3(b): Assume the rightmost positive windows in the
BRI correspond to column k. They have maximal roll in this column, say 7, which
is either (i) 7 > 0, or (i) 7 = 0 and k = n. Since there exists exactly one k"-joined
equivalence class for these windows, all corresponding entries of the matrix B ¢/t
are (2,7). For any other window w}, in the BRI which corresponds to the pair

(b,r) there is a path from it to one of these rightmost positive windows in the

th

BRI over some window wyj,,, from the next, (rn + (k + 1))"" column. Clearly,

(bi,k, Ti,k) = (b, T).

Additionally, note that if the pair (b;;,7;;) = (2,r), where r > 0 is the
maximal roll in the jth column of B %™ and there is no occurrence of (3,7) in
this column, then the window w; ; can be (but need not be) one of the rightmost
windows in the considered region (see, as an example, the first and the second
column of B %™ in Figure 4).

Adjacency Properties 3(f): If the ordered pair (2,r) with r > 0 appears in
the kB column, then the corresponding window belongs to the (rn + k) column
in BRI. Since there exists a path from it to the window wy 2, it must pass through
the previous column. O

Properties 1-4 are sufficient for determining a unique HC ©.

Theorem 4. Every matriz B “'™ = [(b; ;,7; ;)lmxn with entries from (CT U
{1,0}) X { — L%J, cee L%J} which satisfies Properties 1—4 of Theorem 3 deter-
mines a unique HC¢ on the graph P11 x C,,.
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Proof. By applying Property 1(a), we see that the support of the matrix [b; ;] xn,
in other words, the matrix [a; ;] xn, satisfies the FL ¢/ and AC /" of Lemma 2.
In order to prove that the TC “I"t of Lemma 2 is satisfied as well, observe the set
of all non-zero windows wf ; (k € Z) of Wy, — the windows corresponding to the
entries (b; ;j,7; ;) of B“I"" where b; ; > 0. These windows determine the non-
zero regions. The union of the boundaries of these regions present a spanning
2-regular subgraph of G,,. If we consider only the non-zero windows wf ; where
k = r; ;, applying Properties 1(b), 3(a) and 4(b), we can conclude that they cover
up completely one or more of those regions. To distinguish these regions from their
copies we shall call them the basis regions (BR) (although there is just one such
region, as will be shown later).

Recall that in case a path in W,,, which connects the window w; ; to another

window, consists only of the windows from its column (the (j + m‘)th column)
or/and those to the left of it, we call it the left path for the window w; ;. The
path visiting only the windows from the same column which are assigned to the
entry (b,r) of B4 is called a b-factor. Properties 1(b) and 3(c) imply the next

statement.

Claim 7. If there exists a left path for and between the two windows w;
where i < i', from the same basis region, then b; ; = by ;.

j and w{’,j’

The proof of this statement can be obtained by strong induction on the length
[ of the considered path in a similar fashion by which Claim 2 was proven. Further,
using Claim 7, Properties 3(d) and 3(e), analogously as in the proof of Claim 3,
the following statement can be shown.

Claim 8. The subgraph of W, , induced by the windows determined by the positive
entries of B&I™ has a forest structure.

The next claim can be proved by induction on j + nr (with the base case
which refers to the leftmost windows of the considered region), whilst at the same
time relying upon Property 3(e).

Claim 9. For any two windows w;, ; and w;, ; from the same basis region and with
bi, j = bi, ; there exists a left path for and between them.

The uniqueness of this path is a consequence of the forest structure of the
subgraph of W,,, induced by the windows belonging to the considered region.

It remains to prove that the subgraph of W,,, induced by the positive windows
which belong to the basis regions has just one component (hence it is a connected
graph). We will prove that there exists a path for and between an arbitrary such
window and w},, (Property 4(a) guaranties the existence of such a path in the
considered region).

Note that Property 3(b) implies that all the rightmost positive windows in

the BR correspond to either the pair (2,0) and belong to the n*h column (Case
I), or to the pair (2,r) where r > 0 (Case II). Claim 9 indicates that all positive
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windows of the last column of the BR are connected (with some paths) to each
other.

We begin our considerations for Case I, first. Property 3(b) and Claim 9 imply
that for every window wy ; from BR, with the exception of the windows from the
last (the nth) column (that is, from the (rn —i—j)th column, where rn+j < n), there
exists a path which connects it with a window from the next (the (rn + j + 1)th)
column. Consequently, every positive window in the BR is connected to a window
from the last column. This implies that all these windows belong to the same
component.

As for Case II, let rn + k, where r > 0 and 1 < k < n, be the ordinal number
of the last column of the BR (whose windows are all assigned to the pair (2,r)).
Property 3(f) implies the existence of the positive window from the BR in the
previous ((rn+k — 1)th) column which is connected to the positive windows from
the (rn + k)th column. If all the windows from this previous column are assigned
to the pair (2,7), then we use Claim 9. Otherwise we use Property 3(b) to conclude
that all the windows from this column are connected to the windows of the last
column. Now, we can obtain the same conclusion by using the (rn + k — 2)th and
(rn+k— 1)th columns instead of the (rn + k — 1)th and (rn + k‘)th columns. We
continue this procedure till we reach the rectangle Ry, that is, finishing with the
nth and (n + 1)% columns. This way all the windows from the nth column and
to right of it are connected. For the rest of the windows (from the columns to the

left of the nth column) we use Property 3(b) and Claim 9 similarly as in Case I.
Consequently, the subgraph of W, ,, induced by B¢!"%’s positive entries has a tree
structure. u

Let F,, denote the set of all possible first columns of B ¢/"*. We already
know that the set of all possible columns of the matrix B ¢/™ (as defined by
Properties 1-4 or 1-5 above) forms the vertex set of a digraph D,%/". Note that
Fm CV(D,SI). Furthermore, the directed edges are determined by the adjacency
conditions. Let FL,, denote the subset of V(D,5I"t) x V(D,%1") consisting of
all possible pairs of first and last columns (which we call the fi-pairs) of B ¢
determined by the specific properties of the first and last columns. The enumeration
of HC “’s on P,,,+1 x C, basically comes down to the enumeration of oriented walks
of length n — 1 in the digraph D,/ with the initial and last vertices from the
set FL,,. For m = 2, see Figure 6. Finally, this number ¢,%"*(n — 1) should be
multiplied by n to obtain the correct number of HC ©.

Note that the size of D,5'™ depends on whether we have imposed the ad-
ditional conditions from Property 5 on the vertices and edges. The previously
mentioned properties are quite handy, particularly when it comes to generating the
set of vertices of D,S1"". Owing to them, it is possible to reduce the number of
edges in the said diagraph. In other words, we are actually able to exclude the
superfluous edges.
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4. THE NUMBER OF Color" WORDS OF FIXED LENGTH
AND CATALAN NUMBERS

A color word was defined in [4] as a word of length k over the alphabet
{2,3,...,k+ 1} with the following properties:

e P1: If the letter s > 3 appears in a word, then each letter from the set
{2,3,...,s— 1} must appear at least once prior to the first occurrence of s.
Consequently, if i, denotes the position at which the first occurrence of s can
be found, then we must have iy < iz <14 < ---.

e P2: If abab is a subword of a word, then a = b. In every other word in which
a # b, abab cannot appear as subword.

The number of color words of length k is determined by the kth Catalan number
Cr = /Tlﬂ(zkk) [4].

In [1] and in the previous sections we have introduced the notions of a positive
(resp., negative) or just truncated word and a positive (resp., negative) or just color”
word. These depend on the type of HC in question (HC ™ or HC €) as well as on the
type of coding applied (HC "¢, HC ©¥** HC /). Throughout the whole process of
generating the vertices of D,% %%t and D,51" as well as of D¢ (which was described
in PART I) we need to construct the set of all (positive/negativ/-) color” words of
length k. Now, we want to find the upper bound of this set’s cardinality.

In case of B,5I™ (for all possible r), this set is determined by P1 (in accor-
dance with Property 2 (a)) and P2 (in accordance with Property 5(a)). As a result,
the upper bound of this set’s cardinality is precisely Cl.

Proposition 1. The upper bound of the cardinality of color™ words of length k in

case of B,SI (for all possible r) is the kth Catalan number C), = k%rl(zkk)

Exactly the same situation occurs in B" and B,%F** when r < 0. In the
latter one we use the term “positive” or “negative color” words” in place of the
“color” word” term. This is in accordance with Properties 2 (a) and 5 (a) for both
matrix B"¢ and B,SF*t

If r = 0 and a color’ word (or a positive/negative color’ word) of length k is
not assigned to the last (nth) column of B¢ (B,5F*!), then this word is a word of
length k over the alphabet {1,2,3,...,k + 1} having an additional property, apart
from P1 and P2:

e P3: If ala is a subword of the word of length &, then a = 1.

This is in accordance with Property 5 (b) of the matrix B™¢ (B,SF*!). If we add
1 in front of each considered word, then P3 can be interpreted as P2, but for an
augmented alphabet. Therefore, the upper bound of the cardinality of color® words
of length k in these cases is Cj41.

Last but not least, if » > 0 (or » = 0 and the word is assigned to the last

(nth) column of B¢ (B,5F*!)), then the set of all color” words (positive color”
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words) of length k can be described as the subset of the set of all words from the
alphabet {1,2,...,k+ 1} that contain at least one letter 1, and satisfy P1, P2, and
P3. This is in accordance with Properties 2 (c) and 4 (d) of the matrix B"¢ (or in
accordance with Properties 2 (c) and 4 (e) of the matrix B,>F*%). Note that the
number of all the negative color” words of length k is equal to the number of all
the positive color” words of length k. Therefore, from the previous two cases, we
determine that the upper bound of these color” words’ cardinality in this case is
Ci+1 — C%. This way we have proved the following:

Proposition 2. The upper bound of the cardinality of color” words (positive or
negative color” words) of length k belonging to the 1t column of B¢ (B,SFt) s

Cy ifr <0,
Cri1 ifr=0 andl # n,
Cit1—Cr  ifr>0o0r (r=0andl=n).

The words which satisfy P1 and P2 are called the non-interlocking and non-
skipping columns in [11]; the interpretation of Cyy; — Cf, in the same paper,
provides an alternative proof for the case of r > 0.

5. COMPUTATIONAL RESULTS

The technique we use to compute H¢, (x) def Z hy,(n+1)z", the generating
n>1
function for the contractible HC’s is, technically sp(;aking, essentially the same as
the one utilized in Part I. For that reason, we shall only discuss a few dissimilarities
here, from the data obtained through the use of a computer.

The primary goal of Topological Properties is to shorten the search process
throughout the digraph. Note that they are, in fact, not necessary for the deter-
mination of HC ¢’s or HC "¢’s.  However, their importance role is to reduce the
digraph’s dimension to a reasonable size by eliminating all the irrelevant vertices
and edges that cannot occur in generating any HC ©.

Based on all of the above theory and considerations, we wrote computer
programs to generate the matrices M, %% and M, %" together with the adjacency
matrices of the digraphs D,%F** and D,%!™. The dimensions of D,%*** and D,5 "t
are collected in Tables 1, for some reasonable values of m.

The computation was performed on a personal computer equipped with an
Intel(R) Core (TM) i7-4712MQ processor (running at a speed of 2.30GHz) with
6.00 GB of RAM, and run on a 64-bit operating system.

Similar to the case of the HC "“’s, for the HC ’s by coding the interior tree
we find that the F,, = F,&I" C V(D,S1™). However, when coding the exterior
trees, we came to realise that F,¢F* NV (Dr¢) = (). The reason behind it is that
the first row of the matrix [b; j]mx» has only one positive number which must be
the entry by 1.
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L m [2[3]4[5[6 | 7 | 8 [ 9
VDSFH 311 44174 | 644 | 2488 - -
| F, o Bt 1] 3 71 28 92 341 - -
[EDSFH] || 4] 24 | 123 | 677 | 3446 | 18569 - -
ILFS,| 112 49 | 406 | 2461 | 19913 - -
VD T4]10] 33104 318 985 | 3121 9943
IEMD,ST N 15123 96423 [ 1792 | 7857 | 34505 | 153500
| F Lol 1] 6] 18] 80 | 325 | 1413 | 6083 | 26583

Table 1: The characteristics of digraphs D,&F*! and D,5 ",

Our findings for m < 4 were confirmed by manual computations. The results
displayed below agree with the values of 2,5 (n) for m < 9 and n < 10 obtained in
[3], as well as with the values h,,(n) = h2%(n) + S (n) for m <9 and 11 < n < 22
in [8].

Recall that the number ¢, (k) represents the number of HC ¢’s in P11 X
Cl+2 with wy; as the up root of the split tree. But, in the case of coding the
exterior trees, it represents the number of oriented walks of length k& in the digraph
D&F2t with the pairs of initial and final vertices which are respectively the third
and first coordinates of the special triples. Similarly, when coding the interior
tree, it represents the number of oriented walks of length k£ 4+ 1 in the digraph
D517 with the initial and last vertices from some special sets. Hence, we label the
coefficients ¢¢, (k), where k > 0, of the generating function ®;, () def Z @S, (k)"

k>0
(k) in the coding by exterior trees, and with (,%"(k+1) in the coding
with the interior tree. Generating the digraphs D, DS and D™ requires
7 seconds, 2 minutes, and 39 minutes, respectively.

c,Ext
m

with ¢

5.1. Thick Cylinder P, x C,, (m = 1)

For m =1, it is easy to show that h§(n) = n for all n > 1. Since
2 if nis even

nc _ )

hit(n) = { 0 if nis odd,

we can write hi(n) =n+ 1+ (=1)".

5.2. Thick Cylinder P; x C,, (m = 2)

The digraph D% is displayed in Figure 5.

c,Ext c,Ext

The incidence matrix M, of the corresponding digraph D, is of or-
der 3. The set of all possible triplets (I, f, s) has only one element (v1, f1,v1). Using
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Figure 5: The digraph D,""** and the corresponding set Fy.

a similar technique as in the case of the NC-type of HC’s, we obtain

(2) hs(n) = 7v2" L+ (-1)").
Since hf¢(n) = 2™ — 2 [1] (Part I), from (2), we determine that
hao(n) = 2" =24+ 22 "[1 + (~1)"]

for all integers n > 1. Identical results can be obtained from M,""™" (see Figure 6).

fl - pairs

Figure 6: The digraph D,”"™" and the corresponding set of pairs FyLs.
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5.3. Thick Cylinder Py X C,, (m = 3)

In this subsection, we provide a detailed discussion for the case of m = 3. We
study the HC’s of type C, with coding carried out on the exterior region first; and
then we move on to the coding of the interior region.

Coding the Exterior Region

We find V(D ©¥*t) = {vy,vq,...,v11}; the vertices and the adjacency matrix
Mo = [mf]Em] are listed below:
vy = (0°9,0°,0) o001 1011111 0]
vy = (09,1, 00) 1100000000 0
s = (0°,19,10) 11000000000
vg = (0°,20,0) 00110000000
vs = (0°,11,0°) 10001000000
ve = (—1°, -1, 0°) 1000000O0GO0O0 1
vy = (~1°,0°,1) 1000000000 O
vg = (0°,—271,00) 00 0 O0O0OO0OO0OT1UO0TO0OSFO0
vg = (0°,—2°,00) 00 0 O0O01TO0O0T1TO0O0
vio = (00,271, 0) 000010000 T10
vir = (0°,—19,0%) (1000000000 1,
We also find .7:3 = {fl,fg,fg}, |£f83| = 12,
LFS; = {(U10,f1,111)7(Ulo7f1,1/2),(U17f1,711),(v17f1,712),

(U107 f27 U4)7 (Uloa f27v3)a (U17 fQ,’U4), (vla f25U3)a

(USa f371)1)7 (USa vaUS)v (’UZa f3701)7 (U27 f37U5)}7

where f; = (1°,1°9,19), £, = (2°,2°,0%), f3 = (1',1',0°). The characteristic

polynomial of M;*Ezt is

POE (1) = —2? 4 72® — 222 4 382° — 342 + 627 + 182° — 1827 + 720 — 2L,

This implies that the sequence cpSC’E It(n) satisfies a recurrence relation of order 9.

Coding the Interior Region

We find V(D ¢I™) = {v,va,...,v10}; the vertices and the adjacency matrix

M;’mt = [mlcjjm] are listed below:
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vy = (0°,0°,0) 0 0 0 1
ve = (0°,0°,29) 00 0 0
vy = (0°,00,21) 00 0 0
vy = (20,0027 00 0 1
vs = (22,0°,39) 00 0 0
ve = (20,20,20) 0100
vy = (0°,29,09) 00 0 0
vg = (2°,0°,0°) 0 0 0 1
vg = (2°2,0°,20) 01 00
v10 = (2°,00,21) 00 0 0

We also find ]:3£3 = {(vl7 U6)7 (vla U9)7 (U27 U4)? ('U27
acteristic polynomial for MBC’I nt 4

1S
PO () = —2t(1 — 2)2(1 — 22 +

Common Results for Both Types of Coding

110000
11 0 0 0 O
0O 0 01 0 1
0O 0 0 0 0 O
110000
001110
0O 1 00 0 O
1 1 0 0 0 O
0O 001 10
000101
vg), (v3, vg)

22 4 22° — 2*).

Recall that h$(n) = nps "™ (n — 2) = np ™ (n — 1),
¢3C,Elt (l‘) _ L)O:J)C,E'It (n)xn, and q)?)c,Int (.CL‘) _ L)O:J)C,Int
n>0 n>0

The first few nonzero values are listed below.
c,Ext

h§(2) =237 (0) =237 " (1) =2-1=2

h5(3) =35 (1) =3 921" (2) = 3-4 =12

h§(4) =407 P(2) =4 oM (3) =412 =48

R5(5) =5 - o (3) =5 0T (4) = 532 = 160

h5(6) = 6 - 0" (4) = 6 0.0 ™ (5) = 6 - 83 = 498

R(7) =7 o0 (5) = 7 001 (6) = T 212 = 1484

hs(8) = 8- T (6) = 8. .21 (7) = 8- 540 = 4320

R5(9) = 9- o (T) = 9. 2T (8) = 91372 = 12348
hS(10) = 10 - o F(8) = 10 - o7 (9) = 10 - 3485 = 34850
RS(11) = 11 - B (9) = 11 - 7" (10) = 11 - 8848 = 97328
hS(12) = 12 - o F0(10) = 12 2™ (11) = 12 - 22464 = 269568

The generating functions are obtained for both cases in the usual way:

1+2a)
o c,Int —2d c,Ext _ ‘r( .
3 (@) =@ () (1—2)(1 -2z — 222 4 223 — %)
Then
c d c,Ex d c,In
Hi() = — (2207 (@) = — (2 0™ (@)
~ 2x(1 — 32% — 227 4 32 — 2f)
(1 —2)2(1 — 2z — 222 + 223 — x4)2’

, (v3,v9)}. The char-

(n)a™.
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From (3) in [1] and the above equality we obtain

Hy“(x) + Hi(x)

= 2x(2 — 6x + 3% — 362° 4+ 972 + 9625 — 37220

+ 9627 + 2802% — 14227 + 64210 — 25221 + 132212
+ 16821 — 1932 4 642 — 1120 4- 6217 — 22'%) /

(1 -2 4z —2*)(1 -z —2?)(1 — 22z — 22° 4 223 — 21)?

(1—x—32% — 2%+ 2" (1 + 2z — 322 + 23 + 2)).

Its power series expansion is

Hs(z) = 4z + 2422 + 3062 + 8502 + 70102° + 184522° + 12642627 + - - -

5.4. Thick Cylinder Ps x C,, (m = 4)

For Hamiltonian cycles of type C, the degrees of the characteristic polynomials
for M 4C’Ewt and M, 40’17” are 44 and 33, respectively; they determine recursions of

order 28 and 16, respectively. However, their generating functions ® C’Eagt(gc) and

4

@, (z) indicate the same recursion of order 12 (which was expected) for the

c,Ext
sequences @y

it is clear that

c,Int c,Ext

Hi(r) = = (2 077 (@) = L (v 201 @)

€T
where
& () 2(1 + 1622 — 482* — 825 + 7728 — 8210 4 2212)
xTr) =
4 (1—2)(1+2)(1 — 322)2(1 — 1122 — 226)
Thus,
Hi(x) = 2x(1+ 352° — 4192 4+ 7912° + 12512° — 6807 + 97472

— 50552 4+ 1032z'% 4 1682'® + 3620 — 122°%) /
[(1—2)°(1+2)*(1 —32°)%(1 — 112% — 22°)%]

= 2z + 1362° + 2832z° + 44288z" + 6217202° + 8268432z
+ 106467592z + 13412135042"° + 16625223000
+ 203511990480z + 2466221656712z + 296391292977602>°
+ 3537292293087282>° + 4196610165544048z>"
+ 495341518243357202%° + - - - .

From Hy(x) = H}(x) + HS(z), we determine

(n) and .1 (n). Since 9. F (n—2) = oI (n—1) = hi(n)/n,
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Ha(x) = 2x(2 -4z — 2 — 3992° + 264z + 12003z° — 17018z° — 132589z"
+ 2429722° + 741418z° — 15921342'° — 22491962 + 52981564
+3895631z" — 69442342 — 75503482 — 90674994°
+ 3222221227 + 440316952'% — 104031851z — 467080662°
+ 1899534652 — 273664642>% — 1956259612 + 1116212122>*
+1061774382%° — 1125075582%° — 1995431427 + 54710202z>°
— 64615512 — 1155226820 4 1712058z — 1564512
+ 24335922 — 10962022>* — 3498084>° + 3550122¢ 4 4707627
— 573122 + 67922 — 534020 4 22082*" — 722*% 4 962"*) /
[(1—2)*(1+2)*(1 - 22)(1 + 22)(1 — 22°)(1 — 32°)*
(1—3z+42°)(1 — 32> + 2° — 2" (1 — 42® + 22° — 22" — 2°)

(1 — 5z 4 2% + 8z° — 82" + 2° — 2°)(1 + 112® + 22°)?).

Upon expansion, we obtain

Ha(z) = 4o 4 242° + 3062° + 850x" + 70102° 4 184522° + 12642627 + 3512582°
+ 21273322° + 6355404z + 35085590z " + 11248198022 + 5778756502
+ 19708962342 + 95761467942"° + 343731208962'° + 1600471285222
+ 5981675235222 + 2697774177200z + 103986539651362>°
+ 45813998934398x>" + 180683364527008z>2 + 782729112571558%>>
+ 31387578685545502%* + 134352323821121142%° + 545191625733451442>°
+ 231410726096158954z°" 4 9469292351896398062:°
+ 39958981370595832882% + 164465533662816008762°° + - - - .

5.5. Thick Cylinder Ps X C,, (m = 5)

For the HC’s of type C, the characteristic polynomial for M5C’Em (of or-
der 174) yields a recurrence of order 140, and the characteristic polynomial for

M;Jm (of order 104) determines a recurrence of order 68. The generating func-
tions &7 (z) and &' (z) indicate a recursion of order 48.

e (z) = 2(1 4 62 — 1827 — 4142° + 848z* + 65542° — 160452° — 376902"
+ 1032812° + 128504z° — 2653552'° — 672050z + 50200822 + 3340076
— 2448123z — 99544942"° + 106933832 '° + 18205338z'" — 291357622'®
— 20019118z + 539930282%° + 8041536x>" — 722669644% 4 1453198042
+ 71713080z>* — 34388270x° — 523055064° + 398314364>7 + 262411134>®
— 305116122 — 72461302° + 161046922>" — 3733462 — 5790448z
+12212412%* + 13687504>° — 5106972°¢ — 19855247 + 1114552 + 148042>°
— 139102 — 842" 4 9452** — 722" — 272** 4 42*%) /
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[(1—2)1 -z —2°)(1 -2z — a2 +2*)(1 + 22 — 2° — 2%)

(1 -2z —2°+22° —2")(1 — 2 — 72> + 22° — 22™)(1 — 22° 4 32 + 2" — 2°)
(1 — 4z + 2° + 62° — 42" — 22° + 2°)(1 + 4z + 2° — 62° — 42” + 22° + 2°)
(1 — 5z — 142® + 632° — 122" — 90z° + 352° + 662" — 1182° 4 82°

+ 8220 — 422" — 2822 4 42" — 22

Below is the power series expansion of Hg(x).

HE(x) = 2 + 482° + 6122° + 45202 + 359642° + 229698z° + 1575288z" + 98062922
+ 62999960x° + 3878220944° + 24118606804 + 1470640137222
+ 89805227764z + 5429220274502 + 32772072630402"° + 196674294016542°
+ 117755148280932x"7 + 7023480827219282"° + 4179389353497440z"°
+ 248006694489962942° + 1468599125177128122>" + 867755187436181848x>°
+ 51179829822519058082%° + 301319496090667397002*
+ 1771216830742731702722%° + 10395994374050961528362:%°
+ 60935267472675964717442>" + 356709154717796624263862>°
+ 2085666483310093961190002>° + - - - .

5.6. Thick Cylinder P; x C,, (m = 6)
We obtain

HE(x) = 2 + 20322° 4 2637362° + 2233766427 + 16416645802 + 113092326312z
+ 7512031798348z "3 + 487293888097600x "> + 310788382814791562""
+ 19567490961947177602"° + 121942699478516467980x>"
+ 7535939697350674950480x>% 4 4624641935038368757081882%°
+ 282120979690016071547784242% + 17122559878232123045903966402>° 4 - - -

which was derived from

5 (z) = (1 + 3062 — 40690z + 2088888z° — 598543562° 4 1041724854z"°
— 996335057522 — 15615955142 4 1764222372901z — 333595418711302'%
+ 3912836327986252° — 34099408360728342% + 235272024119775232>
— 1328042176176917042>° 4 626327321659400394z>® — 25071908537257620162>°
+ 86342007153292541032%* — 259061902736416523362°*
+ 685597082783940672922°° — 1618540744070810212622
+ 3438431103971512578362*° — 6602596565428743121362*>
+ 1145535722603029360938z** — 1788319405800757683806x°
+ 2496733228293042684759z*° — 30908331488805422712762.>°
+ 3332184138797783431832z°% — 29775514135304709152682>*
+ 1874479143252245895283z°° — 1355838432513703107522°°
— 17252968889826414155592°° + 29783013002027552305962:%*
— 31965735793306116580142%* + 25947758268857619434062°°
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— 17648064526494643659582°° + 11320243737706846034422™°

— 74738850086481697094927% + 4886057252046795032402 "

— 2819854526685263230452° + 1290999297650965880462 ™

— 407244019505149055332° + 47663211543003579882%*

+ 31075395313024556 7825 — 21415763628697857242¢ + 6999929218503753782>
— 164891856789160528z"° 4 420409686748247162°% — 116531737306202322°*

+ 23423012206455762°¢ — 3660205082173762°° + 106155952612144%%°

— 348749263748802"°% + 6594270112768 %! — 6735903393282 '°°

+ 37441754880z % + 169198080 'Y — 2928967682 % + 15998976 '*)) /
[(1—22)(1 + 22)(1 — 22°)(1 — 42® + 22™) (1 — 8% 4 14z

(1 —272° + 2252" — 6412° + 6592° — 22720 4 462" — 123"

+1692"% — 492" + 42°°)(1 — 3727 + 3972 — 16812° + 26392°

—9032" — 562'% 4 3072 + 5252"° — 2092'® — 82°°)

(1 — 352> + 322z* — 14852° + 42622° — 76822 + 775522

— 10671z + 186162'° — 94922'® — 148420 4 1589z% — 622°* — 402°%)

(1 — 8527 + 1932z — 204032° + 1167342° — 3867242'% + 815141z"% — 1251439z "*
+ 1690670z — 26819942 + 40089542>° — 339087727 + 1036420z

+ 178842x% — 927902°° — 1773220 4 5972x% — 1728z* — 1442°°)],

5.7. Thick Cylinder P41 X C,, (7T < m <9)

For the sake of brevity, we only display the power series expansion of the

generating functions H¢, () for 7 <m < 9.

Hs(x) = 22 + 1922° + 81922° + 127860 + 27790142 + 35663964x° + 6059927842"

+ 77693769722° + 1167915233802° 4 15191702329762'° + 21412201037580z "
+ 280509236582900 % 4 38172057941808562"% + 50048772776920380

+ 6674522771579518722"° + 87304969560981229242°

+ 1149908755913252083442" + 1498721829346080971718z "%

+ 195773292801443091405002 " 4 2541842972632986533219942>°

+ 33007363061771747278890262>" + 427000682050176401409821122:%2

+ 5519929375008289217201928722>% + 71174432805239172730569708502>*

+ 91678074802674943650656279184x° 4 11786643973216487691866495153702%°
+ 151369430411024040842530826804842>"

+ 194109908825815965787089284625154%>"

+ 2486557768079418847989177095267850z° + - - -
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HE (x) = 22 4 291042° 4 228693842° + 102157984482" + 3817933082020:”
+13200931575411362"" + 4376627704475675602"° + 1413389553687713900162"°
+ 44820915345596090414880z'" + 14022558891295056887443160x"°
+ 43410035385732456277167332762>" + 13324384025636000634931625417282
+ 4060972285070665279130831077628282°
+ 1230305791096755765583374485815108962>"
+ 3708208018372720613363775897741698250022° + - - - |

H§(x) = 2x + 7682° + 1121642° + 3616880z 4 2220672122° + 55399317962°
+ 242178636928z" + 61699251694142° + 224360971248960z°
+ 59736772820074022"° + 195609021230822100z " + 53685832618022649722:"
+ 1654425351324716442922"° + 46162567893384039978302"*
+ 1372483450019438105121922"° + 3858464231851630072287480x°
+ 1122456660663410942118874742" " + 3163164190641471563556546716x '
+ 907622308748639481673676457202 "% + 2557054414248684611758303990008z>°
+ 727070968157583055503354661058642"
+ 20452026709587050263383447543330242>>
+ 577866741998462125636574790954470162%°
+ 16221146309164186036236865881803610002°*
+ 456205993455825028193773703794024487902:%°
+ 12777571713560427796829609283367638120482°°
+ 358080360618474539184215986303260030725122>"
+ 10007453625348799871163905839090981032320222>*
+ 27965040033048966560373497047404511628553450z° + - - - .

6. ASYMPTOTIC VALUES — A SUMMARY OF RESULTS

For type C Hamiltonian cycles, our computational data confirm that for 2 <
m < 6, the characteristic polynomials of M “¥** and M <™ have only one (and
the same) simple real positive dominant characteristic root 6,, ., see Table 3 (for
even m, there are two dominant characteristic roots 6,, . and —0,, .; whereas for
odd m, there is a unique dominant simple characteristic root 6,, ).

Note that the sum of the degrees of the denominators of H,¢ and H,$ does
not exceed the degree of the denominator of H,, which determine the order of the
recurrence relation of the sequence h,,(n). This goes in favour of our decision to
split our work in two — the problem of determining the HC "“’s and the HC “’s.
However, this was not the case for thin cylinders [3].

The denominators of the generating functions ®,%E%(z) (or ® %" (x)) and
HS,(x) have the radius of convergence 1/6,, .. For H¢ (z), the dominant root of
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m || d.d.(®5T7) d.d.(H,2T)
=d.d.(®2F) | =d.d.(H,oF) | dd.(H7) | d.d.(Hm)
2 2 4 2 5
3 5 10 12 22
4 12 22 26 44
5 48 96 84 180
6 114 228 - -

Table 2: The degree of denominators (d.d.) of ®&Int (@ ety 3 cint (3 cBat)
H¢ and H, for 2 < m < 6.

the denominator has multiplicity 2 because

C d C T d c,n
Hm(gj) = @ (‘IQ (I)m’E t(‘r)) = % (l‘ (I)mJ t(x)) )
which is deduced from
(3) hi(n) = npe™ (n —1) = ne, " (n — 2).

Let @y, denote the coefficient of nd}, . in the explicit expression for A, (n)
derived from the recurrence relation. From (3) and (1), we conclude that the
coefficient for 07, . is 0, when m is odd; and for even m, the coefficients of n(—0, )",
Om.cr and (=0, o)™ are ap, ¢, 0, and 0, respectively. All this is neatly summarized
below:

am,enly, . if mis odd,
by (n) ~ ¢ 2amn0y;, . if m is even and n is even,
0 if m is even and n is odd.

Ezample 8. The number hs (250) has 190 digits:

hs (250) =5315308482081368176130135765364458028442269812845 829751132
282449366037705916081244966378616480765252334858462630450547142728
707832260337088675894551742436677743236273632760226951744130398000

as well as as . - 250 - eg?f, and their first 49 digits are identical.
Ezample 9. The number hg’(100) has 124 digits:

hg (100) =650572515095530 4765274909197134354116977319209669418653015912
096606195064869245906663377660631373746911131674517266864224600

as well as 2ag . - 100 - Gé?co, and their first 15 digits are identical.

With the results and conjecture of Part I [1] in mind, together with the
assumptions about the positive dominant characteristic root 6,, ., we may now
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Lm ][ Om.nc [
2 | 2 V2
3 2.36920540709246654628 | 2.53861576354917625747
4 4.16748148276892815337 | 3.31910824039947675342
5 5.34684254175541433292 | 5.65205864851675849429
6 ~(100) 8.908937311 7.52634546292690578713
7 ~(100) 11.8249316 ~(100) 12.382351641593
8 ~(70) 19.17 ~(100) 16.77216819355
9 ~(30) 26 ~(30) 27
Lm [ am.c
2 0.25
3 0.31357228606585772287
4 0.19324623166497686532
5 0.18876590435542745301
6 0.14384483205795162266
7 ~(100) 0.13626186172698
8 ~(100) 0.11306933143427
9 ~(30) 0.1053

Table 3: The approximate values of 6, ne (With ampne = 1), O and ay, . for
2 <m <9, where ~(,) means the estimate based on the first n entries of the
sequence.

make a conjecture regarding the behaviour of the number of all Hamiltonian cycles
hm(n) in the graph P, 1 X C,, when m is fixed and n — oo, as below:

hon(1) = B (1) + h7%(n) am, Oy, . + (1+ (71)”)0:’,%”6 if m is odd,
mATt) = Am AT m A am,en(1+ (=1)")0p, .+ 07, .. if m is even .
When m <9 the data shows that 6, . > 0., nc for odd m; whereas 6., . >
O c for even m. Assuming that the same holds for all the values of m, we propose

Conjecture 1.

C nc am’cnezl c lf m iS Odd7
() = b () + i () ~ { o 7 if m is even .

m,nc

Ezample 10. For m = 5 and n = 250, h2¢(250) ~ 2.1153 - 10'82) whilst hg(250)
~ 5.3153 - 10189 and so h5(250) = hL(250) + h"¢(250) ~ 5.3153 - 10" ~ hg(250).

Ezample 11. For m = 6 and n = 100, hg§°(100) = 9607055487098178299582713714212
8630238785786563044765223962050649940105158800796411036738881670 ~ 9,6071-10%4,
while §(100) = 131020464919763494924652519229638201495869414699961724074530458
968504938173958572002437400 ~ 1,3102 - 10%°. Thus, he(100) ~ 9,6071-10%* ~ 6%,
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From the results obtained for m < 6 we have spotted that the positive dom-
inant characteristic root 6,,. of hS, (n) corresponding to P41 x C,, is the same
as the positive dominant characteristic root of the same sequence associated to
Ppi1 x P, [2]. Observe that the polynomial 1 — 2z — 222 + 22% — 2%, being in
the denominator of & () and ®"™ () (or H£(x) and Hs(x)) is also in the
denominator of the generating function of sequence corresponding to Py x P, [5].
The same phenomenon occurs for 4 < m < 6, as well. The obtained approximate
values of the dominant characteristic root for 7 < m < 9 speak in favour of the
same conclusion. That brings us to our next conjecture:

Conjecture 2. Let r,(n) (m > 1) be the number of HC's in Py, 11 X P, and hS,(n)
be the number of contractible HC’s in P11 X C, (m >1). Then

L orm(n) m (1)
nh_}rr;o 1) nh_}rrgo he (n— 1) for odd m

and

lim ——————— = lim —2——— for even m.

n—oo 1, (2n — 2)  n—oo h$ (2n — 2)

If the above conjecture holds, then using merely the data acquired from the
sequence of 7,,(n)’s we could conclude that 619, ~ 37.03764916, 611, ~ 58.75,
012, ~ 81.366569 and 013, ~ 127.7. In other words, we would not require the
exact value of h¢,(n) to do so.

7. CLOSING REMARKS AND FURTHER RESEARCH
For the purpose of enumerating Hamiltonian cycles on P, 11 x C,, we have
provided one characterization of the non-contractible HC’s in Part I, and two char-

acterizations of the contractible HC’s with fixed up root of the split tree in wy;.

1. Confirmation of the old data and the process of obtaining the new ones

Both of the computer programs dealing with the HC® case have provided the
same number for h¢ (n), when m < 7, which agrees with the corresponding values
of [3]. The latter holds for hZ,(n) as well, where 8 < m < 9, when obtained in the
act of coding the interior. The sum of sequences obtained in all the three programs,
i.e. the numerical values of h,,(n) = h2°(n) 4+ h¢,(n) agree with the ones obtained
earlier in [3], [9] and [8], for m < 9 and n < 22. We have derived new data for
m <9 and n > 23.

2. The advantage of coding the interior over coding the exterior

c,Ext
m

Comparing the number of vertices of the digraphs D and D,oI"t (see

Table 1) one can come to a conclusion that coding the windows of the interior
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region is much more efficient than the process of coding the windows of the exterior
region of a HC ©.

3. The advantage of coding the regions over coding the vertices

For the purpose of obtaining the total number of HC’s, in case of thin cylinder
Cyn X P, coding the vertices has proven itself to be a better approach. Namely,
for a fixed m, the number of vertices of the assigned digraph in the aforementioned
approach [2] turned out to be smaller than the number obtained when coding the
regions [3]. Additionally, the order of recursion of the total number of HC’s for
thin cylinders is smaller than for special HC’s, i.e. HC "¢ and HC ¢. The results
show that the opposite is true for thick cylinders. This supports the choice of
our approach when tackling the thick cylinders, although it has to be split into
parts. It goes without saying, that further research in this direction, would be
nice. Particularly, it would be a good idea to utilize the approach with coding the
vertices so as to be able to reach a precise conclusion regarding the pros and cons of
coding the regions, by a direct comparison of the number of vertices of the assigned
digraphs.

4. Open questions

For the initial values of m we have come to notice that the numbers of HC "¢’s
are the dominant ones for even m, whereas the numbers of HC ¢’s are such for odd
m. That prompted us to make a conjecture about the asymptotic behaviour of
the total number of HC’s in the graph P, x C,,. Moreover, certain matchings
between the dominant characteristic roots of the sequences the numbers of HC ©’s
in P41 x Cy and P,,41 X P, for small values of m are noticed. This way, we have
come to yet another conjecture regarding the asymptotic behaviour of the entries
of these two sequences.
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