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ESTIMATES ON SOME QUADRATURE RULES VIA

WEIGHTED HERMITE-HADAMARD INEQUALITY

Josipa Barić∗, Ljiljanka Kvesić, Josip Pečarić and
Mihaela Ribičić Penava

In this article new estimates on some quadrature rules are given using

weighted Hermite-Hadamard inequality for higher order convex functions and

weighted version of the integral identity expressed by w-harmonic sequences

of functions. Obtained results are applied to weighted one-point formula for

numerical integration in order to derive new estimates of the definite integral

values.

1. INTRODUCTION

Weighted Hermite-Hadamard inequality for convex functions is given in the
following theorem ([4], [5]).
Theorem A. Let p : [a, b] → R be a nonnegative function. If f is a convex function

given on an interval I, then we have

f(λ) ≤ 1

P (b)

b∫
a

p(x)f(x) dx ≤ b− λ

b− a
f(a) +

λ− a

b− a
f(b)

or

(1) P (b)f(λ) ≤
b∫

a

p(x)f(x) dx ≤ P (b)

[
b− λ

b− a
f(a) +

λ− a

b− a
f(b)

]
,
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2020 Mathematics Subject Classification. 26D15, 65D30, 65D32
Keywords and Phrases. Hermite-Hadamard inequality, Higher order convex function,
Harmonic sequence, One-point formula.

232



Estimates on some quadrature rules via weighted Hermite-Hadamard inequality 233

where

P (t) =

t∫
a

p(x) dx and λ =
1

P (b)

b∫
a

p(x)x dx.

Various weighted versions of the general integral identities that are used for

the approximation of an integral
b∫
a

f(t) dt, using the harmonic sequences of polyno-

mials and w-harmonic sequences of functions, are obtained in [3]. For introducing
one of those identities let us consider subdivision σ = {a = x0 < x1 < · · · < xm =
b} of the segment [a, b], m ∈ N. Let w : [a, b] → R be an arbitrary integrable func-
tion. For each segment [xk−1, xk], k = 1, ...,m, we define w-harmonic sequences of
functions {wkj}j=1,...,n by:

(2)

{
w′

k1(t) = w(t), t ∈ [xk−1, xk],

w′
kj(t) = wk,j−1(t), t ∈ [xk−1, xk], j = 2, 3, ..., n.

Also, we define function Wn,w as follows

(3) Wn,w(t, σ) =



w1n(t), t ∈ [a, x1],

w2n(t), t ∈ (x1, x2],

.

.

.

wmn(t), t ∈ (xm−1, b].

Theorem B. If g : [a, b] → R is such that g(n) is a piecewise continuous on [a, b],

then the following identity holds

b∫
a

w(t)g(t) dt =

n∑
j=1

(−1)j−1
[
wmj(b)g

(j−1)(b)(4)

+
m−1∑
k=1

[wkj(xk)− wk+1,j(xk)] g
(j−1)(xk)− w1j(a)g

(j−1)(a)

]

+ (−1)n
b∫

a

Wn,w(t, σ)g
(n)(t) dt.

More recently obtained results on weighted versions of the general integral
identities and harmonic sequences of polynomials or w-harmonic sequences of func-
tions can be found in [1], [2], [6] and their references.
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2. NEW RESULTS

In this section we derive Hermite-Hadamard’s type inequalities using weighted
version of the integral identity expressed by w-harmonic sequences of functions that
is given in Theorem B.

Theorem 1. Suppose w : [a, b] → R is an arbitrary integrable function and w-
harmonic sequences of functions {wkj}j=1,...,n are defined by (2). Let the function
Wn,w, defined by (3), be nonnegative. Then,

a) if g : [a, b] → R is (n+ 2)-convex function, the following inequalities hold

(−1)n · P (b) · g(n) (λ)(5)

≤
b∫

a

w(t)g(t) dt−
n∑

j=1

(−1)j−1
[
wmj(b)g

(j−1)(b)

+

m−1∑
k=1

[wkj(xk)− wk+1,j(xk)] g
(j−1)(xk)− w1j(a)g

(j−1)(a)

]

≤ (−1)n · P (b) ·
[
b− λ

b− a
g(n)(a) +

λ− a

b− a
g(n)(b)

]
,

where

P (b) = (−1)
n

 1

n!

b∫
a

w(t) · tn dt−
n∑

j=1

(−1)j−1

(n− j + 1)!

·

(
wmj(b)b

n−j+1 +

m−1∑
k=1

(wkj(xk)− wk+1,j(xk))x
n−j+1
k − w1j(a)a

n−j+1

)](6)

and

λ = (−1)
n

 1

(n+ 1)!P (b)

b∫
a

w(t) · tn+1 dt− 1

P (b)

n∑
j=1

(−1)j−1

(n− j + 2)!

·

(
wmj(b)b

n−j+2 +

m−1∑
k=1

(wkj(xk)− wk+1,j(xk))x
n−j+2
k − w1j(a)a

n−j+2

)]
,

(7)

b) if g is (n + 2)-concave function, then (5) holds with the reversed sign of
inequalities.

Proof. a) Inequality (5) follows from the weighted Hermite-Hadamard inequality
(1) substituting nonnegative function p by nonnegative function Wn,w and
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convex function f by convex function g(n). To obtain desired result, we need
to calculate the values of P (b) and λ in the terms of new substitutions.

The value of P (b) will be obtained from (4) taking g(t) =
tn

n!
. Then, g(n)(t) =

1 and, regarding the formula of P (t) from Theorem A, we get

P (b) =

b∫
a

Wn,w(t, σ) dt

= (−1)n
b∫

a

w(t)
tn

n!
dt− (−1)n

n∑
j=1

(−1)j−1

[
wmj(b)

1

(n− j + 1)!
bn−j+1

+

m−1∑
k=1

[wkj(xk)− wk+1,j(xk)]
1

(n− j + 1)!
xn−j+1
k

−w1j(a)
1

(n− j + 1)!
an−j+1

]
.

Rearranging above equality we get (6).

Applying our substitutions to the formula of λ from Theorem A we get λ =

1

P (b)

b∫
a

Wn,w(t, σ) · t dt. The value of this integral follows from (4) taking

g(t) =
tn+1

(n+ 1)!
. Then, g(n)(t) = t and g(j−1)(t) = (n+1)n·····(n−j+3)

(n+1)! ·tn−j+2 =

1
(n−j+2)! · t

n−j+2. Equality (7) follows.

Now, applying inequality (1) to function Wn,w instead of p, and function g(n)

instead of f , and replacing (−1)n
b∫
a

Wn,w(t, σ)g
(n) dt by the expression from

the identity (4), we get inequality (5).

b) If Wn,w(t, σ) ≤ 0 for all t ∈ [a, b], then −Wn,w(t, σ) ≥ 0, t ∈ [a, b], so applying
the step a) of this proof, we get the required result.

c) If g is (n+2)-concave function, i.e. −g(n+2) ≥ 0, then −g(n) is a convex func-
tion so applying weighted Hermite-Hadamard inequalities on convex function
−g(n) we get reversed inequlities in (5).

In order to obtain our next result, let us expand w-harmonic sequences of
functions {wkj}j=1,...,n by wk,n+1, such that w′

k,n+1(t) = wk,n(t) for t ∈ [xk−1, xk].
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Now, function Wn+1,w has the following form.

(8) Wn+1,w(t, σ) =



w1,n+1(t), t ∈ [a, x1],

w2,n+1(t), t ∈ (x1, x2],

.

.

.

wm,n+1(t), t ∈ (xm−1, b].

Theorem 2. Let g : [a, b] → R be (n+ 2)-convex on [a, b]. Suppose w : [a, b] → R
is an arbitrary integrable function and {wkj}j=1,...,n+1 are w-harmonic sequences
of functions. Let the function Wn+1,w, defined by (8), be nonnegative. Then,
inequality (5) is valid for

P (b) = wm,n+1(b) +

m−1∑
k=1

[wk,n+1(xk)− wk+1,n+1(xk)]− w1,n+1(a)

and

λ =
1

P (b)
[bwm,n+1(b)− aw1,n+1(a)

+

m−1∑
k=1

(xkwk,n+1 (xk)− xk · wk+1,n+1 (xk))− wm,n+2(b)

−
m−1∑
k=1

(wk,n+2 (xk)− wk+1,n+2 (xk)) + w1,n+2(a)

]
.(9)

If Wn,w(t, σ) ≤ 0 or g is (n+2)-concave function, then (5) holds with the reversed
sign of inequalities.

Proof. We calculate only P (b) and λ. Replacing, in Theorem A, p by Wn,w and f

by g(n), where g(t) = tn+1

(n+1)! , we get

P (b) =

b∫
a

Wn,w(t, σ) dt

=

m∑
k=1

xk∫
xk−1

wk,n(t) dt

=

m∑
k=1

xk∫
xk−1

w′
k,n+1(t) dt

= wm,n+1(b) +

m−1∑
k=1

[wk,n+1(xk)− wk+1,n+1(xk)]− w1,n+1(a)
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and

λ =
1

P (b)

b∫
a

Wn,w(t, σ) · t dt

=
1

P (b)

m∑
k=1

xk∫
xk−1

wk,n(t) · t dt

=
1

P (b)

m∑
k=1

xk∫
xk−1

w′
k,n+1(t) · t dt

=
1

P (b)

m∑
k=1

xk · wk,n+1(xk)− xk−1 · wk,n+1(xk−1)−
xk∫

xk−1

wk,n+1(t) dt


=

1

P (b)
[bwm,n+1(b)− aw1,n+1(a)+

m−1∑
k=1

(xkwk,n+1(xk)− xk · wk+1,n+1(xk))−
b∫

a

Wn+1,w(t, σ) dt

 .(10)

Adding the function wk,n+2 to the w-harmonic sequences of functions
{wkj}j=1,...,n+1, such that w′

k,n+2(t) = wk,n+1(t), t ∈ [xk−1, xk] and rewriting the
last integral in (10) in the following sense

b∫
a

Wn+1,w(t, σ) dt =

m∑
k=1

xk∫
xk−1

wk,n+1(t) dt

=

m∑
k=1

xk∫
xk−1

w′
k,n+2(t) dt

=

m∑
k=1

(wk,n+2(xk)− wk,n+2(xk−1))

= wm,n+2(b) +

m−1∑
k=1

(wk,n+2 (xk)− wk+1,n+2 (xk))

−w1,n+2(a),

identity (9) is obtained.
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3. ONE-POINT FORMULA

In this section we apply obtained results of previous section to weighted one-
point formula for numerical integration. We observe function g : [a, b] → R, inte-
grable function w : [a, b] → R and w-harmonic sequences of functions {wkj}j=0,1,..,n

on [xk−1, xk], where k = 1, 2. We consider subdivision σ = {a = x0 < x1 = x <
x2 = b} of the segment [a, b] and we assume w1j(a) = 0 and w2j(b) = 0, for
j = 1, ..., n. In [3] authors proved the following theorem.

Theorem C. Let w : [a, b] → R be an integrable function and x ∈ [a, b].
Further, let us suppose {wkj}j=1,..,n are w-harmonic sequences of functions on
[xk−1, xk], for k = 1, 2 and some n ∈ N, defined by the following relations:

w1j(t) =
1

(j − 1)!

t∫
a

(t− s)
j−1

w(s) ds, t ∈ [a, x],

w2j(t) =
1

(j − 1)!

t∫
b

(t− s)
j−1

w(s) ds, t ∈ (x, b],

for j = 1, ..., n. If g : [a, b] → R is such that g(n−1) is absolutely continuous
function, then we have

(11)

b∫
a

w(t)g(t) dt =

n∑
j=1

Aj(x)g
(j−1)(x) + (−1)n

b∫
a

Wn,w(t, x)g
(n)(t) dt,

where for j = 1, ...n

(12) Aj(x) =
(−1)j−1

(j − 1)!

b∫
a

(x− s)
j−1

w(s) ds

and

(13) Wn,w(t, x) =


w1n(t) =

1
(n−1)!

t∫
a

(t− s)
n−1

w(s) ds, t ∈ [a, x]

w2n(t) =
1

(n−1)!

t∫
b

(t− s)
n−1

w(s) ds, t ∈ (x, b].

Using integral identity (11), in the following theorem we obtain new estimates
of the definite integral as a special case of the Theorem 1.

Theorem 3. Let w : [a, b] → R be an integrable function and x ∈ [a, b] fixed.
Suppose {wkj}j=1,..,n are w-harmonic sequences of functions on [xk−1, xk], for k =
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1, 2 and n ∈ N, defined in Theorem C. Let the function Wn,w, defined by (13), be
nonnegative. If g : [a, b] → R is (n+ 2)-convex function, then

(−1)n · P (b) · g(n) (λ)(14)

≤
b∫

a

w(t)g(t) dt−
n∑

j=1

Aj(x) · g(j−1)(x)

≤ (−1)n · P (b) ·
[
b− λ

b− a
g(n)(a) +

λ− a

b− a
g(n)(b)

]
,

where

P (b) = (−1)
n

 1

n!

b∫
a

w(t) · tn dt−
n∑

j=1

xn−j+1

(n− j + 1)!
·Aj(x)

 ,

λ =
(−1)

n

P (b)

 1

(n+ 1)!

b∫
a

w(t) · tn+1 dt−
n∑

j=1

xn−j+2

(n− j + 2)!
·Aj(x)


and Aj is defined as in Theorem C. If Wn,w(t, σ) ≤ 0 or g is (n+ 2)-concave then
(14) holds with the reversed sign of inequalities.

Proof. Inequality (14) follows directly from (1) replacing nonnegative function p
by nonnegative function Wn,w and convex function f by convex function g(n) and

then applying identity (11) on (−1)n
b∫
a

Wn,w(t, x)g
(n)(t) dt.

Now,we calculate P (b) and λ using formulas from Theorem 1 and the facts
that in new subdivision σ = {a = x0 < x1 = x < x2 = b} of the segment [a, b] we
have: m = 2 and x1 = x.

P (b) = (−1)n

 1

n!

b∫
a

w(t)tn dt

−
n∑

j=1

(−1)j−1

(n− j + 1)!
·
(
w2j(b)b

n−j+1 + w1j(x) · xn−j+1

−w2j(x) · xn−j+1 − w1j(a)a
n−j+1

)]
.

By the assumptions from the begining of this section: w1j(a) = 0 and w2j(b) = 0,
for j = 1, ..., n. Then,

P (b) = (−1)n

 1

n!

b∫
a

w(t)tn dt

−
n∑

j=1

(−1)j−1

(n− j + 1)!
· (w1j(x)− w2j(x)) · xn−j+1

 .
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Using definitions of {wkj} from Theorem C, we calculate:

w1j(x)− w2j(x) =
1

(j − 1)!

b∫
a

(x− s)
j−1

w(s) ds.

Now, it follows

P (b) = (−1)n

 1

n!

b∫
a

w(t)tn dt

−
n∑

j=1

(−1)j−1

(n− j + 1)!
· x

n−j+1

(j − 1)!

b∫
a

(x− s)
j−1

w(s) ds


= (−1)n

 1

n!

b∫
a

w(t)tn dt−
n∑

j=1

Aj(x)

(n− j + 1)!
· xn−j+1

 .

Similary, using Theorem 1 for subdivision σ = {a = x0 < x1 = x < x2 = b},
m = 2 and x1 = x, we calculate λ.

λ =
(−1)

n

P (b)

 1

(n+ 1)!

b∫
a

w(t) · tn+1 dt−
n∑

j=1

(−1)j−1

(n− j + 2)!

·
(
w2j(b)b

n−j+2 + w1j(x) · xn−j+2 − w2j(x) · xn−j+2)− w1j(a)a
n−j+2

)]
Since, w1j(a) = 0 and w2j(b) = 0, for j = 1, ..., n, it follows

λ =
(−1)

n

P (b)

 1

(n+ 1)!

b∫
a

w(t) · tn+1 dt−
n∑

j=1

xn−j+2

(n− j + 2)!
·Aj(x)

 .

Following the reasoning of Theorem 2 now we expand w-harmonic sequences
of functions {wkj}j=1,...,n by wk,n+1 and wk,n+2 such that w′

k,n+1(t) = wk,n(t) and
w′

k,n+2(t) = wk,n+1(t), t ∈ [xk−1, xk]. For a new subdivision σ = {a = x0 < x1 =
x < x2 = b} of the segment [a, b] and the values w1j(a) = 0 and w2j(b) = 0, for
j = 1, ..., n+ 2, we obtain the following result.

Theorem 4. Let w : [a, b] → R be an integrable function and x ∈ [a, b] fixed.
Suppose {wkj}j=1,..,n+2 are w-harmonic sequences of functions on [xk−1, xk], k =
1, 2, n ∈ N, defined in Theorem C. Let the function Wn,w, defined by (13), be



Estimates on some quadrature rules via weighted Hermite-Hadamard inequality 241

nonnegative. If g : [a, b] → R is (n + 2)-convex function then inequality (14) is
valid for

P (b) = w1,n+1(x)− w2,n+1(x)

and

λ = x− 1

P (b)
(w1,n+2(x)− w2,n+2(x)) .

If Wn,w(t, σ) ≤ 0 or g is (n+2)-concave function then (14) holds with the reversed
sign of inequalities.

Proof. The values of P (b) and λ follow from the proof of Theorem 2, since m = 2,
x1 = x, w1j(a) = 0 and w2j(b) = 0, for j = 1, ..., n+ 2 and from the definitions of
{wkj} from Theorem C.

Using integral mean value theorem to the
b∫
a

W2n,w(t, x)g
(2n)(t) dt, where

g : [a, b] → R is such that g(2n) is a continuous function, in [3, Theorem 5] authors
proved that there exists ν ∈ (a, b) such that

(15)

b∫
a

w(t)g(t) dt−
2n∑
j=1

Aj(x)g
(j−1)(x) = A2n+1(x)g

(2n)(ν).

Applying this integral identity to our result in inequality (14), we obtain the
following theorem.

Theorem 5. Assume w and {wkj} satisfies the conditions of Theorem 4 for j =
1, .., 2n+1. Let Aj be defined as in (12). If g : [a, b] → R is (2n+2)- convex, then
there exists ν ∈ (a, b) such that

P (b) · g(2n) (λ)(16)

≤ g(2n) (ν)

(2n)!

b∫
a

(x− s)
2n · w(s) ds

≤ P (b) ·
[
b− λ

b− a
g(2n)(a) +

λ− a

b− a
g(2n)(b)

]
,

where

P (b) =
1

(2n)!

b∫
a

w(t) · t2n dt−
2n∑
j=1

x2n−j+1

(2n− j + 1)!
·Aj(x)

and

λ =
1

P (b)

 1

(2n+ 1)!

b∫
a

w(t) · t2n+1 dt−
2n∑
j=1

x2n−j+2

(2n− j + 2)!
·Aj(x)

 .
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Proof. Inequality (16) follows directly from (14) replacing it’s middle term by
A2n+1(x)g

(2n)(ν), according to the integral identity (15), and then applying (12)
to A2n+1.

4. SPECIAL CASES

Taking some special cases of the weight function w, in our results of the
previous section, we obtain following estimates for the definite integral.

Example 1. Let us assume that w(t) = 1, t ∈ [a, b].
Now, from Theorem C, we calculate

Wn,w(t, x) =

{
w1n(t) =

(t−a)n

n! , t ∈ [a, x]

w2n(t) =
(t−b)n

n! , t ∈ (x, b]

and

Aj(x) =
1

j!

[
(b− x)

j − (a− x)
j
]
.

In order to apply new estimates from Theorem 3 to the function w(t) = 1,
t ∈ [a, b], we will replace n, in the definition of the Wn,w, by 2n to provide the
nonnegativity of Wn,w and we will assume that g : [a, b] → R is (2n + 2)-convex
since then g(2n) is also convex function. Now, according to (14), we get

P (b) · g(2n) (λ)

≤
b∫

a

g(t) dt−
2n∑
j=1

g(j−1)(x)

j!

[
(b− x)

j − (a− x)
j
]

≤ P (b) ·
[
b− λ

b− a
g(2n)(a) +

λ− a

b− a
g(2n)(b)

]
,

where

(17) P (b) =
b2n+1 − a2n+1

(2n+ 1)!
−

2n∑
j=1

x2n−j+1

j!(2n− j + 1)!
·
(
(b− x)

j − (a− x)
j
)

and

(18) λ =
1

P (b)

b2n+2 − a2n+2

(2n+ 2)!
−

2n∑
j=1

x2n−j+2

j!(2n− j + 2)!
·
(
(b− x)

j − (a− x)
j
) .

Values of P (b) and λ for the function w(t) = 1, t ∈ [a, b], can also be calcu-
lated using the results of Theorem 4 as follows.
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P (b) = w1,2n+1(x)− w2,2n+1(x)

=
1

(2n+ 1)!

[
(x− a)

2n+1 − (x− b)
2n+1

]
.

λ = x− 1

P (b)
[w1,2n+2(x)− w2,2n+2(x)]

= x− 1

(2n+ 2)!P (b)

[
(x− a)2n+2 − (x− b)2n+2

]
.

If the assumptions of Theorem 5 hold, for w(t) = 1, t ∈ [a, b], we get

P (b) · g(2n) (λ) ≤ g(2n) (ν)

(2n+ 1)!

[
(x− a)

2n+1 − (x− b)
2n+1

]
≤ P (b) ·

[
b− λ

b− a
g(2n)(a) +

λ− a

b− a
g(2n)(b)

]
,

where P (b) and λ have the same values as in (17) and (18) respectively.

Example 2. Suppose that w(t) = (b− t)
α · (t− a)

β
, t ∈ [a, b], α, β > −1.

From Theorem C, taking substitution x = b−s
b−a in the definition of Beta function,

we get

Wn,w(t, x) =



(b−a)α(t−a)n+β

(n−1)! B (β + 1, n)

·F
(
−α, β + 1, β + n+ 1; t−a

b−a

)
, t ∈ [a, x]

(−1)n (b−a)β(b−t)n+α

(n−1)! B (α+ 1, n)

·F
(
−β, α+ 1, α+ n+ 1; b−t

b−a

)
, t ∈ (x, b]

and

Aj(x) =


(a−x)j−1(b−a)α+β+1

(j−1)! B (α+ 1, β + 1)

·F
(
1− j, β + 1, α+ β + 2; b−a

x−a

)
, x ̸= a,

(b−a)α+β+j

(j−1)! B (α+ 1, β + j) , x = a,

where

B (u, v) =

1∫
0

xu−1 (1− x)
v−1

dx

is the Beta function and

F (α, β, γ; z) =
1

B (β, γ − β)

1∫
0

tβ−1 (1− t)
γ−β−1

(1− zt)
−α

dt
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is the hypergeometric function for γ > β > 0 and z < 1.

If the assumptions of Theorem 3 hold, according to (14), we get

(−1)nP (b) · g(n) (λ)

≤
b∫

a

(b− t)
α · (t− a)

β
g(t) dt−

n∑
j=1

Aj(x) ·
g(j−1)(x)

j!

≤ (−1)nP (b) ·
[
b− λ

b− a
g(n)(a) +

λ− a

b− a
g(n)(b)

]
,

where

P (b) = (−1)n ·
[
(b− a)α+β+1

n!
B (α+ 1, β + 1)

·F
(
−n, α+ 1, α+ β + 2;

(1− t)(b− a)

b− t

)
−

n∑
j=1

xn−j+1

(n− j + 1)!
·Aj(x)


and

λ =
(−1)n

P (b)
·
[
(b− a)α+β+1

(n+ 2)!
B (α+ 1, β + 1)

·F
(
−n− 1, α+ 1, α+ β + 2;

(1− t)(b− a)

b− t

)
−

n∑
j=1

xn−j+2

(n− j + 2)!
·Aj(x)

 .

Using the same integral calculations similar results can be obtained under the
conditions of Theorem 4 and Theorem 5.
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