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COMPLETE ASYMPTOTIC EXPANSIONS RELATED
TO THE PROBABILITY DENSITY FUNCTION OF THE

χ2-DISTRIBUTION

Chao-Ping Chen∗ and H. M. Srivastava

In this paper, we consider the function fp(t) =
√
2pχ2(

√
2pt + p; p), where

χ2(x;n) defined by χ2(x; p) = 2−p/2

Γ(p/2)
e−x/2xp/2−1, is the density function of

a χ2-distribution with n degrees of freedom. The asymptotic expansion of

fp(t) for p → ∞, where p is not necessarily an integer, is obtained by an

application of the standard asymptotics of ln Γ(x). Two different methods of

obtaining the coefficients in the asymptotic expansion are presented, which

involve the use of the Bell polynomials.

1. INTRODUCTION AND MOTIVATION

The density function of the χ2-distribution with p degrees of freedom is given by

χ2(x; p) =


1

2p/2Γ(p/2)
e−

x
2 x

p
2−1 (x > 0)

0 (x ≤ 0).

Most often, the values of the parameter p are assumed to be positive integers. Here,
we consider the probability density function χ2(x; p) for all real p > 0.
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The density function χ2(x; p) is asymmetrical. It is well known that

E(χ2) = p and Var(χ2) = 2p.

By means of the following change of variable:

t =
x− p√

2p
,

Chen and Wang [4] showed that

P{χ2 < x} =

∫ x

−∞
χ2(x; p)dx =

∫ t

−∞
fp(t)dt,

where

fp(t) =
√

2p χ2(
√

2p t+ p; p),

that is,

(1) fp(t) =


√
2p

2p/2Γ(p/2)
exp

(
−

√
2pt+p
2

) (√
2pt+ p

) p
2−1

(
t > −

√
p

2

)
0

(
t ≤ −

√
p

2

)
.

Moreover, Chen and Wang [4] presented the following asymptotic formula in terms
of 1

n (where n ∈ N := {1, 2, 3, · · · }):

fn(t) = φ(t)

{
1 +

√
2

(
1

3
t3 − t

)
1

n1/2
+

(
1

9
t6 − 7

6
t4 + 2t2 − 1

6

)
1

n

+
√
2

(
1

81
t9 − 5

18
t7 +

47

30
t5 − 37

18
t3 +

1

6
t

)
1

n3/2

+

(
1

486
t12 − 13

162
t10 +

314

360
t8 − 1031

270
t6 +

151

36
t4 − 1

3
t2 +

1

72

)
1

n2

+O

(
1

n5/2

)}
(2)

as n → ∞, which leads us to the known result

(3) lim
n→∞

fn(t) = φ(t),

where

φ(t) =
1√
2π

e−t2/2

is the probability density function of the standard normal distribution.
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This paper is essentially a sequel to the earlier work [3]. We here establish
complete asymptotic expansions for the probability density function:

fp(t) =
√
2pχ2(

√
2pt+ p; p)

as p → ∞. More precisely, we prove an explicit formula for determining the coeffi-
cients aj ≡ aj(t) (j ∈ N) (see Theorem 1) such that

fp(t) ∼ φ(t) exp

 ∞∑
j=1

aj
pj/2

 (p → ∞).

Based upon the obtained result, we give a recurrence relation (see Theorem 2)
and an explicit formula (see Theorem 3) for determining the coefficients bj ≡ bj(t)
(j ∈ N) such that

(4) fp(t) ∼ φ(t)

1 +
∞∑
j=1

bj
pj/2

 (p → ∞),

which further develops the Chen-Wang result (2) in order to produce a complete
asymptotic expansion.

2. THE ASYMPTOTIC EXPANSION OF fp(t)

In this section, we first state and prove Theorem 1 below.

Theorem 1. The density function fp(t), defined by (1), has the following asymp-
totic expansion:

(5) fp(t) ∼ φ(t) exp

 ∞∑
j=1

aj
pj/2

 (p → ∞),

with the coefficients aj ≡ aj(t) (j ∈ N) given by

a2j−1 =
(
√
2t)2j+1

2(2j + 1)
− (

√
2t)2j−1

2j − 1
, a2j = − (−1)j+12jBj+1

j(j + 1)
− (

√
2t)2j+2

2(2j + 2)
+

(
√
2 t)2j

2j
,

(6)

where Bn (n ∈ N0 := N ∪ {0}) are the Bernoulli numbers defined by the following
generating function:

(7)
x

ex − 1
=

∞∑
n=0

Bn
xn

n!
(|x| < 2π).
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Proof. The logarithm of the (Euler’s) gamma function Γ(x) has the following
asymptotic expansion (see, for example, [8, p. 32]; see also [12, p. 24]):

ln Γ(x) ∼
(
x− 1

2

)
lnx− x+

1

2
ln(2π) +

∞∑
n=1

(−1)n+1Bn+1

n(n+ 1)

1

xn
(x → ∞),(8)

where Bn denotes the Bernoulli numbers defined by the generating function: (7).
Using (8) and the Taylor-Maclaurin expansion of ln(1 + t):

ln(1 + t) =

∞∑
j=1

(−1)j−1

j
tj (−1 < t ≤ 1),

we obtain

ln
(
fp(t)

)
=

1

2
ln(2p)− 1 + ln 2

2
p− t√

2

√
p− ln Γ

(p
2

)
+
(p
2
− 1
)
ln p+

(p
2
− 1
)
ln

(
1 +

√
2t

√
p

)

∼ 1

2
ln(2p)− 1 + ln 2

2
p− t√

2

√
p

−

(p

2
− 1

2

)
ln
(p
2

)
− p

2
+

1

2
ln(2π) +

∞∑
j=1

(−1)j+1Bj+1

j(j + 1)

2j

pj


+
(p
2
− 1
)
ln p+

(p
2
− 1
) ∞∑

j=1

(−1)j−1

j

(√
2t

√
p

)j

as p → ∞. After some elementary transformations, we find that

ln
(
fp(t)

)
∼ − ln(

√
2π)− t2

2
−

∞∑
j=1

(−1)j+12jBj+1

j(j + 1)pj

+

∞∑
j=1

(−1)j−1

(
(
√
2t)j+2

2(j + 2)
− (

√
2 t)j

j

)
1

pj/2

or, alternatively,

ln
(
fp(t)

)
∼ − ln(

√
2π)− t2

2
−

∞∑
j=1

(
(−1)j+12jBj+1

j(j + 1)
+

(
√
2t)2j+2

2(2j + 2)
− (

√
2t)2j

2j

)
1

pj

+

∞∑
j=1

(
(
√
2 t)2j+1

2(2j + 1)
− (

√
2t)2j−1

2j − 1

)
1

p(2j−1)/2
,
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which can be written as follows

ln
(
fp(t)

)
∼ − ln(

√
2π)− t2

2
+

∞∑
j=1

aj
pj/2

,(9)

where the coefficients aj (j ∈ N) are given by

a2j−1 =
(
√
2t)2j+1

2(2j + 1)
− (

√
2t)2j−1

2j − 1
, a2j = − (−1)j+12jBj+1

j(j + 1)
− (

√
2t)2j+2

2(2j + 2)
+

(
√
2t)2j

2j
.

Clearly, (9) can be written as (5). The proof of Theorem 1 is now completed.

We find from (6) that the first few coefficients aj are given by
(10)

a1 =
√
2

(
1

3
t3 − t

)
, a2 = −1

2
t4+t2−1

6
, a3 = 2

√
2

(
1

5
t5 − 1

3
t3
)
, a4 = −2

3
t6+t4.

We thus obtain the following explicit asymptotic expansion:

fp(t) ∼ φ(t) exp

{
√
2

(
1

3
t3 − t

)
1

p1/2
+

(
−1

2
t4 + t2 − 1

6

)
1

p

+ 2
√
2

(
1

5
t5 − 1

3
t3
)

1

p3/2
+

(
−2

3
t6 + t4

)
1

p2
+ · · ·

}
(p → ∞).

Theorem 2 below gives a recurrence relation for determining the coefficients
bj in (4), based upon the Bell polynomials. The Bell polynomials, named in honor
of Eric Temple Bell (1883-1960), are a triangular array of polynomials given by
(see, for example, Comtet [5, pp. 133–134] and Cvijović [6])

Bn,k(x1, x2, · · · , xn−k+1)

=
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

where the sum is taken over all sequences j1, j2, j3, · · · , jn−k+1 of non-negative
integers such that

j1 + j2 + · · ·+ jn−k+1 = k and j1 + 2j2 + · · ·+ (n− k + 1)jn−k+1 = n.

The following sum:

Bn(x1, x2, x3, · · · , xn) =

n∑
k=1

Bn,k(x1, x2, x3, · · · , xn−k+1)
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is sometimes called the nth complete Bell polynomial. The complete Bell polyno-
mials satisfy the following identity:

Bn(x1, x2, x3, · · · , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1

(
n−1
1

)
x2

(
n−1
2

)
x3

(
n−1
3

)
x4 · · · · · · xn

−1 x1

(
n−2
1

)
x2

(
n−2
2

)
x3 · · · · · · xn−1

0 −1 x1

(
n−3
1

)
x2 · · · · · · xn−2

0 0 −1 x1 · · · · · · xn−3

0 0 0 −1 · · · · · · xn−4

...
...

...
...

. . .
. . .

...
0 0 0 0 · · · −1 x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(11)

In order to contrast them with complete Bell polynomials, the polynomials Bn,k

defined above are sometimes called partial Bell polynomials. The complete Bell
polynomials appear in the exponential of a formal power series:

exp

( ∞∑
n=1

xn

n!
un

)
=

∞∑
n=0

Bn(x1, · · · , xn)

n!
un.(12)

The Bell polynomials are quite general polynomials and they have been found
in many applications in combinatorics. In his monograph, Comtet [5] devoted much
to a thorough presentation of the Bell polynomials in the chapter on identities and
expansions. For more results, see the works by Charalambides [2, Chapter 11] and
Riordan [10, Chapter 5].

We now state and prove our second main result as Theorem 2.

Theorem 2. The density function fp(t), defined by (1), has the following asymp-
totic expansion:

(13) fp(t) ∼ φ(t)

1 +

∞∑
j=1

bj
pj/2

 (p → ∞),

with the coefficients bj ≡ bj(t) (j ∈ N) given by

b0 = 1, bj =

j−1∑
ℓ=0

j − ℓ

j
aj−ℓbℓ (j ∈ N),(14)

where aj (j ∈ N) are given in (6).
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Proof. Replacing p by p2 in (5), we get

(15) fp2(t) ∼ φ(t) exp

 ∞∑
j=1

aj
pj

 (p → ∞).

By using (15) and (12), we find that

fp2(t)

φ(t)
∼ exp

( ∞∑
n=1

n!an
n!

1

pn

)
=

∞∑
n=0

bn
pn

,

where

(16) bn =
Bn

(
1! a1, 2! a2, · · · , n! an

)
n!

.

Bulò et al. [1, Theorem 1] proved that the complete Bell polynomials can be
expressed using the following recursive formula:

Bn(x1, x2, · · · , xn) =


n−1∑
ℓ=0

(
n−1
ℓ

)
xn−ℓBℓ(x1, x2, · · · , xℓ) (n > 0)

1 (otherwise).

Thus, clearly, the formula (16) can be rewritten as follows:

b0 = 1 and

bn =
1

n!

n−1∑
ℓ=0

(
n− 1

ℓ

)
(n− ℓ)!an−ℓBℓ

(
1! a1, 2! a2 · · · , ℓ! aℓ

)
=

1

n!

n−1∑
ℓ=0

(
n− 1

ℓ

)
(n− ℓ)!an−ℓℓ!bℓ

=

n−1∑
ℓ=0

n− ℓ

n
an−ℓbℓ (n ∈ N).

The proof of Theorem 2 is thus completed.

We now give explicit numerical values of the first few bj by using the recur-
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rence relation (14). Noting that (10) holds true, we have

b0 = 1,

b1 = a1b0 =
√
2

(
1

3
t3 − t

)
,

b2 =
1

2
a1b1 + a2b0 =

1

9
t6 − 7

6
t4 + 2t2 − 1

6
,

b3 =
1

3
a1b2 +

2

3
a2b1 + a3b0 =

√
2

(
1

81
t9 − 5

18
t7 +

47

30
t5 − 37

18
t3 +

1

6
t

)
,

b4 = a4b0 +
3

4
a3b1 +

1

2
a2b2 +

1

4
a1b3

=
1

486
t12 − 13

162
t10 +

314

360
t8 − 1031

270
t6 +

151

36
t4 − 1

3
t2 +

1

72
.

Thus, in the limit as p → ∞, we obtain

fp(t) ∼ φ(t)

{
1 +

√
2

(
1

3
t3 − t

)
1

p1/2
+

(
1

9
t6 − 7

6
t4 + 2t2 − 1

6

)
1

p

+
√
2

(
1

81
t9 − 5

18
t7 +

47

30
t5 − 37

18
t3 +

1

6
t

)
1

p3/2

+

(
1

486
t12 − 13

162
t10 +

314

360
t8 − 1031

270
t6 +

151

36
t4 − 1

3
t2 +

1

72

)
1

p2
+ · · ·

}
,

(17)

which obviously develops the Chen-Wang result (2) in order to produce a complete
asymptotic expansion.

Remark 1. We can calculate the coefficients bj in (13) by using the formulas (16)
and (11), namely,

bn =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1! a1
(
n−1
1

)
2! a2

(
n−1
2

)
3! a3

(
n−1
3

)
4! a4 · · · · · · n! an

−1 1! a1
(
n−2
1

)
2! a2

(
n−2
2

)
3! a3 · · · · · · (n− 1)! an−1

0 −1 1! a1
(
n−3
1

)
2! a2 · · · · · · (n− 2)! an−2

0 0 −1 1! a1 · · · · · · (n− 3)! an−3

0 0 0 −1 · · · · · · (n− 4)! an−4

...
...

...
...

. . .
. . .

...
0 0 0 0 · · · −1 1! a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(18)
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3. AN ALTERNATIVE REPRESENTATION FOR THE
COEFFICIENTS bj

By mainly using the partition function, we can provide an alternative repre-
sentation formula for calculating the coefficients bj ≡ bj(x) (j ∈ N) in (13) as in
Theorem 2. In order to do this, we introduce the following set of partitions of an
integer n ∈ N:

(19) An := {(k1, k2, · · · , kn) ∈ Nn
0 : k1 + 2k2 + · · ·+ nkn = n} .

In Number Theory, the partition function p(n) represents the number of possible
partitions of n ∈ N, that is, the number of distinct ways of representing n as a sum
of natural numbers (with their order being irrelevant). By convention, p(0) = 1
and p(−n) = 0 (n ∈ N). Beginning with p(0) = 1, the first several values of the
partition function p(n) given by p(0) = 1):

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, · · · .

It is easy to see that the cardinality of the set An is equal to the partition function
p(n).

Theorem 3. The coefficients bj ≡ bj(t) (j ∈ N) in (13) can be calculated by using
the following formula:

(20) bj =
∑

(k1,k2,··· ,kj)∈Aj

ak1
1 ak2

2 · · · akj

j

k1! k2! · · · kj !
,

where Aj are given in (19) and aj (j ∈ N) are given in (6).

Proof. In view of (13), we can let

ln

(
fp2(t)

φ(t)

)
= ln

1 +

m∑
j=1

bj
pj

+O

(
1

pm+1

)
(p → ∞),

where b1, · · · , bm are real numbers to be determined. Then, by using the Fun-
damental Theorem of Algebra, we see that there exist unique complex numbers
λ1, · · · , λm such that

(21) 1 +
b1
p

+ · · ·+ bm
pm

=

(
1 +

λ1

p

)
· · ·
(
1 +

λm

p

)
.

Also, by applying the following series expansion:

ln

(
1 +

z

p

)
=

m∑
j=1

(−1)j−1zj

jpj
+O

(
1

pm+1

)
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for |z| < |p| and p → ∞, we obtain

(22) ln

(
1 +

b1
p

+ · · ·+ bm
pm

)
=

m∑
j=1

(−1)j−1Sj

jpj
+O

(
1

pm+1

)
(p → ∞),

where
Sj = λj

1 + · · ·+ λj
m (j = 1, 2, · · · ,m).

It follows from (15) that

(23) ln

(
fp2(t)

φ(t)

)
=

m∑
j=1

aj
pj

+O

(
1

pm+1

)
(p → ∞).

From (22) and (23), we obtain

(24) Sj = (−1)j−1jaj (j = 1, 2, · · · ,m),

that is,

(25)



λ1 + · · ·+ λm = S1,

λ2
1 + · · ·+ λ2

m = S2,
...
...

λm
1 + · · ·+ λm

m = Sm.

We now let

Pm(p) = pm + c1p
m−1 + · · ·+ cm−1p+ cm

be a polynomial with zeros λ1, · · · , λm, which satisfy the system of equations (25).
So we have

(26) Pm(p) = (p− λ1) · · · (p− λm).

Then the Newton formulas (see, for example, [7]) give the following connection
between the coefficients cj and the power sums Sj :

Sj + Sj−1c1 + Sj−2c2 + · · ·+ S1cj−1 + jcj = 0 for j = 1, · · · ,m.

It is known (see [7]) that cj can be expressed in terms of Sj as follows:

cj =
∑

(k1,k2,··· ,kj)∈Aj

(−1)k1+k2+···+kj

k1!k2! · · · kj !

(
S1

1

)k1
(
S2

2

)k2

· · ·
(
Sj

j

)kj

,

where the Aj (j ∈ N) are given in (19).
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From (26), we obtain

(−1)m

pm
Pm(−p) =

(
1 +

λ1

p

)
· · ·
(
1 +

λm

p

)
.

We thus have

(27) 1 +
(−1)c1

p
+

(−1)2c2
p2

+ · · ·+ (−1)mcm
pm

=

(
1 +

λ1

p

)
· · ·
(
1 +

λm

p

)
.

Thus, in light of (21) and (27), the coefficients bj are given by

bj = (−1)jcj

= (−1)j
∑

(k1, k2, ··· , kj)∈Aj

(−1)k1+k2+···+kj

k1!k2! · · · kj !

(
S1

1

)k1
(
S2

2

)k2

· · ·
(
Sj

j

)kj

=
∑

(k1,k2,··· ,kj)∈Aj

ak1
1 ak2

2 · · · akj

j

k1! k2! · · · kj !
,

where the Sj are specified in (24). The proof of Theorem 3 is now completed.

We next give explicit numerical values of the first few bj by using the partition
set (19) and the formula (20). Noting that (10) holds true, we find that

b1 =
∑
k1=1

ak1
1

k1!
= a1 =

√
2

(
1

3
t3 − t

)
.

For k1 + 2k2 = 2, since p(2) = 2, the partition set A2 in (19) is seen to have
2 elements given by

A2 = {(0, 1), (2, 0)} .
From (20), we find that

b2 =
∑

(k1,k2)∈A2

ak1
1 ak2

2

k1! k2!
=

a01 a12
0! 1!

+
a21 a02
2! 0!

=
1

9
t6 − 7

6
t4 + 2t2 − 1

6
.

For k1 + 2k2 + 3k3 = 3, since p(3) = 3, as above, the partition set A3 in (19)
contains 3 elements given by

A3 = {(0, 0, 1), (1, 1, 0), (3, 0, 0)} .

We then find from (20) that

b3 =
∑

(k1,k2,k3)∈A3

ak1
1 ak2

2 ak3
3

k1! k2! k3!
=

a01 a02 a13
0! 0! 1!

+
a11 a12 a03
1! 1! 0!

+
a31 a02 a03
3! 0! 0!

=
√
2

(
1

81
t9 − 5

18
t7 +

47

30
t5 − 37

18
t3 +

1

6
t

)
.
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In a similar manner, the partition set A4 can be found to have 5 = p(4)
elements given by

A4 = {(0, 0, 0, 1), (1, 0, 1, 0), (0, 2, 0, 0), (2, 1, 0, 0), (4, 0, 0, 0)} ,

which yields

b4 =
1

486
t12 − 13

162
t10 +

314

360
t8 − 1031

270
t6 +

151

36
t4 − 1

3
t2 +

1

72
.

We note that the values of bj (for j = 1, 2, 3, 4) above are equal to the
coefficients appearing in (17). The representation using a recursive algorithm for the
coefficients bj in (14) is more practical for numerical evaluation than the expressions
in (18) and (20).

The standard normal distribution and χ2-distribution are clearly among the
most common distributions in statistics. The formula (3) is a textbook fact. By
Scheffé’s theorem [11], this implies the convergence of the total variation distance:

dTV (p) =
1

2

∫ ∞

−∞
|fp(x)− φ(x)|dx(28)

tends to 0 as p → ∞ (see also the work by Pinelis [9]).

Remark 2. As an application of (17), we obtain

dTV (p) =
1

2

∫ ∞

−∞
|fp(x)− φ(x)|dx

=
1

2

∫ ∞

−∞
φ(x)

∣∣∣∣∣
√
2
(
1
3x

3 − x
)

√
p

+O

(
1

p

)∣∣∣∣∣dx −→ 0(29)

in the limit as p → ∞.

4. CONCLUSION

For a χ2-distribution χ2(x;n), the probability density function χ2(x;n) with
n degrees of freedom is known to be asymmetrical. In our present investigation, by
successfully applying several interesting recent developments by (for example) Chen
and Wang [4], we have derived a potentially useful asymptotic formula in terms
of 1

n as n → ∞ as well as a complete asymptotic expansion for the corresponding
probability density function. Our main results in this article are stated and proved
as theorems (see Theorems 1, 2 and 3 of the preceding section). One of our results
has been shown to lead to a known result for the probability density function of
the standard normal distribution.

It is believed that our main results and their corollaries and consequences will
prove to be worthy of motivating further developments in the study and analysis
of probability distributions and probability generating functions.
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