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ON RAPIDLY VARYING SEQUENCES

Valentina Timotić, Dragan Djurčić and Ljubǐsa D.R. Kočinac∗

In this paper we investigate certain connections between the class Rs,∞ of

rapidly varying sequences (in the sense of de Haan) and the rapid equivalence,

selection principles and game theory.

1. INTRODUCTION

In 1930, J. Karamata [8] initiated investigation in asymptotic analysis of
divergent processes, nowadays known as Karamata’s theory of regular variation.
In 1970, de Haan [11] defined and investigated rapid variation and so stimulated
further development in asymptotic analysis. Two important objects in de Haan’s
theory of rapid variation are the class of rapidly varying functions and the class of
rapidly varying sequences. The theory of regular and rapid variability has many
applications in different branches of mathematics: probability theory, number the-
ory, differential and difference equations, in particular in description of asymptotic
properties of solutions of these equations, time scales theory, dynamic equations,
q-calculus, and so on. The book [1] is a nice exposition of Karamata theory and
the theory of rapid variability (see also [12, 11]).

We recall the definitions of rapidly varying functions and sequences.

Definition 1. ([11, 1]) A function φ : [a,∞) → (0,∞), a > 0, is said to be rapidly
varying of index of variability ∞ if it is measurable and satisfies the asymptotic
condition

lim
t→∞

φ(λt)

φ(t)
= ∞, λ > 1.

The class of rapidly varying functions of index of variability ∞ is denoted by Rf,∞.
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Definition 2. ([2]) A sequence c = (cn)n∈N of positive real numbers is rapidly
varying (of index of variability ∞) if the following asymptotic condition is satisfied:

lim
n→∞

c[λn]

cn
= ∞, λ > 1,

where for a real number x, [x] denotes the greatest integer part of x. Rs,∞ denotes
the class of rapidly varying sequences (see [2, 3, 4]).

Throughout the paper N will denote the set of natural numbers, R the set
of real numbers, S the set of sequences of positive real numbers, and S1 the set of
nondecreasing sequences from S. Further, for two positive real functions g, h the
symbol ∼ is used to denote the strong asymptotic equivalence relation defined by

g(x) ∼ h(x), x → ∞, ⇔ lim
x→∞

g(x)

h(x)
= 1,

while the symbol ≍ denotes the weak asymptotic equivalence relation defined by

g(x) ≍ h(x), x → ∞, ⇔ 0 < limx→∞
g(x)

h(x)
≤ limx→∞

g(x)

h(x)
< ∞.

(see [1]).

In this paper we define and study a new equivalence relation in the class
Rs,∞ ∩ S1, in particular its relations with selection principles and game theory.

2. RESULTS

We begin this section with definitions and concepts that we use in this article.

Real functions g, h : [a,∞) → R, (a > 0), are mutually asymptotically
inverse, denoted by

g(x)
∗∼ h(x), as x → ∞,

(see [1, 6, 5]), if for each λ > 1 there is an x0 = x0(λ) ≥ a such that the inequality

g
(x
λ

)
≤ h(x) ≤ g(λx),

is satisfied for each x ≥ x0.

Especially, real functions (which are mutually asymptotically inverse) g, h :
[a,∞) → (0,∞), (a > 0), are mutually rapidly equivalent, in denotation

g(x)
r∼ h(x), as x → ∞,

(see [7, 13]) if

lim
x→∞

g(λx)

h(x)
= ∞ and lim

x→∞

h(λx)

g(x)
= ∞
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hold for each λ > 1.

Sequences of positive real numbers (cn)n∈N and (dn)n∈N are mutually rapidly
equivalent in denotation

cn
r∼ dn, as n → ∞,

if

lim
n→∞

c[λn]

dn
= ∞ and lim

n→∞

d[λn]

cn
= ∞

hold for each λ > 1.

Proposition 3. Let sequences c = (cn)n∈N and d = (dn)n∈N be elements from S1.
If cn

r∼ dn, as n → ∞, then c ∈ Rs,∞ and d ∈ Rs,∞.

Proof. From cn
r∼ dn as n → ∞ it follows that for each λ > 1 we have

limn→∞
c[λn]

cn
≥ limn→∞

c[ λn

[
√

λn]
· [

√
λn]

]
d[

√
λn]

· limn→∞
d[

√
λn]

cn

≥ limn→+∞

c[ λn√
λn

·[
√
λn]

]
d[

√
λn]

· (∞)

= limn→∞
c[
√
λ[

√
λn]]

d[
√
λn]

· (∞) = (∞) · (∞) = ∞.

Therefore c ∈ Rs,∞. Analogously we prove d ∈ Rs,∞.

Proposition 4. Relation
r∼ is an equivalence relation in Rs,∞ ∩ S1.

Proof. 1. (Reflexivity) Let c ∈ Rs,∞, then limn→∞
c[λn]

cn
= ∞ holds, for each λ > 1,

hence cn
r∼ cn, as n → ∞, so that reflexivity holds.

2.(Symmetry) According to the definition of relation
r∼, symmetry holds.

3. (Transitivity) Let c = (cn)n∈N, d = (dn)n∈N and e = (en)n∈N be elements

from Rs,∞ ∩ S1 such that cn
r∼ dn, as n → ∞, and dn

r∼ en, as n → ∞. Then for
each λ > 1 we have

limn→∞
c[λn]

en
≥ limn→∞

c[λn]

d[
√
λn]

· limn→∞
d[

√
λn]

en

≥ limn→∞
c[
√
λ[

√
λn]]

d[
√
λn]

· (∞) = (∞) · (∞) = ∞.

Analogously we prove that limn→∞
e[λn]

cn
= ∞ holds, hence cn

r∼ en holds, as
n → ∞.

Let c = (cn)n∈N be element from S. Then the sequences

(1) c = (cn)n∈N, cn = max{cp|1 ≤ p ≤ n} (cumulative minimum)
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and

(2) c = (cn)n∈N, cn = min{cp|p ≥ n} (cumulative maximum)

are called upper and lower associate of the sequence c, respectively (see [1]).

Proposition 5. Let c ∈ Rs,∞ and cn ≍ dn, as n → ∞. Then cn
r∼ dn, as n → ∞.

Proof. For each λ > 1 it holds

limn→∞
c[λn]

dn
≥ limn→∞

c[λn]

cn
· limn→∞

cn
dn

= ∞,

and

limn→∞
d[λn]

cn
≥ limn→∞

d[λn]

c[λn]
· limn→∞

c[λn]

cn
= ∞.

This means that cn
r∼ dn, as n → ∞.

Proposition 6. Let c = (cn)n∈N ∈ S. Then the sequence c ∈ Rs,∞ if and only if

cn
r∼ cn holds, as n → ∞.

Proof. (⇒) If c ∈ Rs,∞, then according to [2, Theorem 2.1], the function φ(x) =
c[x], x ≥ 1, belongs to the class Rf,∞. It means that (according to [7, Theorem

1.1]) limn→∞
φ(λx)

φ(x) = ∞, for each λ > 1, where the cumulative minimum φ and

cumulative maximum φ are defined analogously with (1) and (2): φ(x) = inf{φ(t) :
t ≥ x} and φ(x) = sup{φ(t) : t ≤ x}. Thus, limn→∞

c[λn]

cn
= ∞ for each λ > 1. The

inequality cn ≤ cn ≤ cn, for n ∈ N, implies that for each λ > 1 it holds

limn→∞
c[λn]

cn
≥ lim

n→∞

c[λn]

cn
= ∞.

This means cn
r∼ cn, as n → ∞.

(⇐) It holds limn→∞
c[λn]

cn
= ∞, for each λ > 1, and thus

limx→∞
c[λx]

c[x]
= limx→∞

c[λx
[x]

·[x]]

c[x]
≥ limx→∞

c[λ[x]]

c[x]
= ∞

for each λ > 1, because the cumulative minimum is a nondecreasing function.
Again, according to [7, Theorem 1.1] the function φ(x) = c[x], x > 1, belongs to
the class Rf,∞ and hence the sequence c = (cn)n∈N, as its restriction on N, is an
element of the class Rs,∞.

Proposition 7. Let c = (cn)n∈N ∈ S and let the sequence d = (dn)n∈N be an
element of the class Rs,∞. If dn ≤ cn ≤ dn, for n ≥ n0 ≥ 1, then c ∈ Rs,∞.
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Proof. Let c = (cn)n∈N ∈ S. As d = (dn)n∈N is in the class Rs,∞, according to [2,
Theorem 2.1], the function φ(x) = d[x], x ≥ 1, belongs to the class Rf,∞. Therefore,
according to [7, Theorem 1.1], for each λ > 1 we have

limn→∞
c[λn]

cn
≥ limn→∞

d[λn]

dn
≥ lim

x→∞

d[λx]

d[x]
= ∞.

It means that c ∈ Rs,∞.

Let c = (cn)n∈N ∈ S. Then the sequence

(3) c̃ = (c̃n)n∈N, c̃n =
1

n

n−1∑
k=1

ck

is called the sequence of additive midpoint of the sequence c (see [1]).

Proposition 8. Let c = (cn)n∈N ∈ Rs,∞. Then c̃ ∈ Rs,∞ and cn
r∼ c̃n, as n → ∞.

Proof. Since c = (cn)n∈N ∈ Rs,∞, then, according to [2, Theorem 2.1], the function
φ(x) = c[x], x ≥ 1, belongs to the class Rf,∞. It follows that (see [7, p. 890])

φ̃(x) =
1

x

x∫
1

φ(t)dt, x ≥ 2,

belongs to the class Rf,∞. Consequently,

φ̃(n) =
1

n

n∫
1

φ(t)dt =
1

n

n−1∑
k=1

ck, n ≥ 2,

is an element of the class Rs,∞, and it holds that φ̃(n) = c̃n. By [7, Theorem 1.3],

φ̃(x)
r∼ φ(x), as x → ∞,

and thus
cn = φ(n)

r∼ φ̃(n) = c̃n, as n → ∞,

also holds.

Let us state the definition of well known selection principles, which we call
αi selection principles (see [9]).

Definition 9. Let A and B be subfamilies of the set S. The symbol αi(A,B),
i ∈ {2, 3, 4}, denotes the following selection hypotheses: for each sequence (An)n∈N
of elements from A there is an element B ∈ B such that:
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1. α2(A,B): the set Im(An) ∩ Im(B) is infinite for each n ∈ N;

2. α3(A,B): the set Im(An) ∩ Im(B) is infinite for infinitely many n ∈ N;

3. α4(A,B): the set Im(An) ∩ Im(B) is nonempty for infinitely many n ∈ N,

where Im denotes the image of the corresponding set.

Let us recall the definition of an infinitely long game related to α2 (see [9, 10]).

Definition 10. Let A and B be nonempty subfamilies of the set S. The symbol
Gα2

(A,B) denotes the following infinitely long game for two players, I and II, who
play a round for each natural number n. In the first round I chooses an arbitrary
element (A1,j)j∈N from A, and II chooses a subsequence yr1 = (A1,r1(j))j∈N of

the sequence A1. At the kth round, k ≥ 2, I chooses an arbitrary element Ak =
(Ak,j)j∈N from A and II chooses a subsequence yrk = (Ak,rk(j))j∈N of the sequence
Ak, such that Im(rk(j)) ∩ Im(rp(j)) = ∅ is satisfied, for each p ≤ k − 1. II wins a
play

A1, yr1 ; . . . ;Ak, yrk ; . . .

if and only if all elements from Y =
⋃

k∈N
⋃

j∈N Ak, rk(j), with respect to second
index, form a subsequence y = (ym)m∈N ∈ B.

A strategy σ for the player II is a coding strategy if II remembers only the
most recent move by I and by II before deciding how to play the next move.

Let c = (cn)n∈N ∈ S. Then we define

(4) [c]r = {d = (dn)n∈N ∈ S| cn
r∼ dn, n → ∞}

in Rs,∞, and for c = (cn)n∈N ∈ S1 we define

(5) [c]
′

r = {d = (dn)n∈N ∈ S1| cn
r∼ dn, n → ∞}

as the equivalence class in R∞,s ∩ S1, with regard to Propositions 3 and 4.

Proposition 11. The player II has a winning coding strategy in the game Gα2
([c]′r,

[c]r), for each fixed element c ∈ Rs,∞ ∩ S1.

Proof. (1st round): Let the sequence c = (cn)n∈N ∈ Rs,∞ ∩ S1 generating the

class [c]
′

r ∈ S1 be given and let σ be the strategy of the player II. The player I
chooses a sequence x1 = (x1,n)n∈N ∈ [c]

′

r arbitrary. Then the player II chooses
the subsequence σ(x1) = (x1,k1(n))n∈N of the sequence x1, where Im(k1) is the set
of natural numbers greater then or equal to n1 which are divisible by 2 and not
divisible by 22, and n1 is a natural number such that

c[λn]

x1,n
≥ 2 and

x1,[λn]

cn
≥ 2 hold

for each λ > 1 + ε, ε > 0, and each n ≥ n1. The last inequalities are possible
because of monotonicity of sequences c and x1.
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(mth round, m ≥ 2): The player I chooses the sequence xm = (xm,n)m∈N ∈
[c]

′

r arbitrary. Then the player II chooses the subsequence

σ(xm, (xm−1,km−1(n))n∈N) = (xm,km(n))n∈N

of the sequence xm, so that Im(km) is the set of natural numbers greater then
or equal to nm, which are divisible by 2m and not divisible by 2m+1, nm ∈ N,
and

c[λn]

xm,n
≥ 2m and

xm,[λn]

cn
≥ 2m hold for each λ > 1 + ε, ε > 0, and each

n ≥ nm. The last inequalities hold because the sequences (cn)n∈N and (xm,n)n∈N
are nondecreasing.

Now, we will look at the set Y =
⋃

m∈N
⋃

n∈N xm,km(n) of positive real num-
bers indexed by two indexes. This set we can consider as the subsequence of the
sequence y = (yi)i∈N given by:

yi =

{
xm,km(n), if i = km(n) for some m,n ∈ N;
ci, otherwise.

By the construction of the sequence y, we have that y ∈ S. Also, the intersection
of y and xm, m ∈ N, is an infinite set.

Let us prove that ym
r∼ cm, as m → ∞. Let M > 0. Choose the smallest

m ∈ N such that 2m > M . For each k ∈ {1, 2, ...,m − 1} there is n∗
k ∈ N, so that

c[λn]

xk,n
≥ M and

xk,[λn]

cn
≥ M hold for each n ≥ n∗

k. Let n∗ = max{n∗
1, . . . , n

∗
m−1}.

Therefore, the inequalities
c[λi]

yi
≥ M and

y[λi]

ci
≥ M hold for each λ > 1 + ε, ε > 0,

and each i ≥ n∗. Therefore, yi
r∼ ci, as i → ∞, because M was arbitrary. One

concludes that y ∈ [c]r.

Corollary 12. The selection principle α2([c]
′

r, [c]r) holds for each fixed element c
from the class Rs,∞ ∩ S1.

From Corollary 12 and [10, p. 109] we have

Corollary 13. The selection principles αi([c]
′

r, [c]r) hold for i ∈ {3, 4}, where c is
an arbitrary and fixed element from Rs,∞ ∩ S1.
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