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In this paper we present some new upper bounds of the Cusa-Huygens and
the Huygens approximations. Bounds are obtained in the forms of some
polynomial and some rational functions.

1. INTRODUCTION

In this paper it is considered the following Cusa-Huygens inequality

(1)
3 sinx

2 + cosx
< x <

2

3
sinx+

1

3
tanx,

for x ∈
(

0,
π

2

)
, as shown in [1], [2] and [3]. Let us emphasize that the following

approximation:

(2) x ≈ 3 sinx

2 + cosx
,

for x ∈ (0, π], was �rst surmised in the De Cusa's Opera book, see [4] and [6].
Approximation stated above will be called the Cusa-Huygens approximation.
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Let us consider the error of the Cusa-Huygens approximation as the follow-
ing function:

(3) R(x) = x− 3 sinx

2 + cosx
,

for x ∈ [0, π]. One estimate of the precision of the Cusa-Huygens approximation
is given by the following statement of Ling Zhu:

Theorem 1. [7] It is true that:

(4)
1

180
x5 < x− 3 sinx

2 + cosx
,

and

(5)
1

2100
x7 < x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
,

for x ∈ (0, π]. Moreover, 1/180 and 1/2100 are the best constants in the previous

inequalities, respectively.

The results of the previous theorem are corrections of the Theorem 3.4.20
from monograph [1]. This important discovery and the resulting corrections took
place in 2018, almost half a century after the publication of classics [7].

In this paper we consider also the following Huygens's approximation:

(6) x ≈ 2

3
sinx+

1

3
tanx,

for x ∈
(

0,
π

2

)
. Estimates of the errors function of Huygens approximation

Q(x) =
2

3
sinx +

1

3
tanx − x, for x ∈

(
0,
π

2

)
, are achieved by use of some poly-

nomial functions and some rational functions. Necessary theoretical basis for that
research are stated in the following section.

2. PRELIMINARIES

Double sided Taylor approximations

Let us introduce some notation and the basic claims that shall be used according
to the papers [8] and [9]. Let us begin from real function f : (a, b) −→ R for which
there are the �nite values f (k)(a+) = lim

x→a+
f (k)(x), k = 0, 1, . . . , n, for n∈N0. Here

we use the notation T f, a+n (x) for Taylor polynomial of order n, for n ∈ N0, for
function f(x) de�ned in right neighbourhood of a:

(7) T f, a+n (x) =

n∑
k=0

f (k)(a+)

k!
(x− a)k.
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We shall call T f, a+n (x) the �rst Taylor approximation in the right neighbourhood

of a [8]. For n∈N0, we de�ne the remainder of �rst Taylor approximation in

the right neighbourhood of a by Rf, a+n (x) = f(x) − T f, a+n (x). In the paper [8] are
considered the polynomials:

(8) T
f ; a+, b−
n (x) =

 T f, a+n−1 (x) +
1

(b− a)n
Rf, a+n−1 (b−)(x− a)n : n ≥ 1

f(b−) : n = 0,

and determined asthe second Taylor approximation in right neighbourhood of a,
for n∈N0, [8]. Then the following statement is true.

Theorem 2. Let us assume that f : (a, b) −→ R, and that n is natural number

such that there exist f (k)(a+), for k ∈ {0, 1, 2, . . . , n}. Let us assume that f (n)(x)
is increasing on (a, b). Then for every x∈(a, b) following inequality is true :

(9) T f, a+n (x) < f(x) < Tf ; a+, b−
n (x).

At that, if f (n)(x) is decreasing over (a, b), then reversed inequality from (9) is true.

The previous statement we call the Theorem on double-sided Taylor's ap-

proximations in [8] and [9], i.e. Theorem WD in [26]-[30]. Let us emphasize that
the proof of this Theorem (i.e. Theorem 2 in [10]) is based on L'Hospital's rule
for the monotonicity. A similar method is used in proving some related theorems in
[11], [12] and [13], which were previously published. Further, the following claims
are true.

Proposition 1. [8] Let f : (a, b) −→ R be such real a function that there exist

the �rst and the second Taylor approximation in the right neighbourhood of a, for
some n ∈ N0. Then,

(10) sgn
(
T
f, a+, b−
n (x) − Tf, a+, b−

n+1 (x)
)

= sgn
(
f(b−) − T f, a+n (b)

)
,

for every x ∈ (a, b).

Theorem 3. [8] Let f : (a, b) −→ R be a real analytic function with the power

series:

(11) f(x) =

∞∑
k=0

ck(x− a)k,

where ck ∈ R and ck ≥ 0 for every k ∈ N0. Then,

(12)

T f, a+0 (x) ≤ . . . ≤ T f, a+n (x) ≤ T f, a+n+1 (x) ≤ . . .

. . . ≤ f(x) ≤ . . .

. . . ≤ Tf ; a+, b−
n+1 (x) ≤ Tf ; a+, b−

n (x) ≤ . . . ≤ Tf ; a+, b−
0 (x),

for every x ∈ (a, b). If ck ∈ R and ck ≤ 0 for every k ∈ N0, then the reversed

inequality is true.
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Inequality for Bernoulli numbers

Let (Bk) be the sequence of Bernoulli numbers as it is usually considered, for
example see [14]. In this paper we use the following well the known inequality for
Bernoulli numbers as given by D. A'niello in [15]:

(13)
2(2n)!

π2n

1

22n − 1
< B2n <

2(2n)!

π2n

1

22n − 2
.

The previous inequality can be rewritten in the equivalent form

(14) 2
22n

π2n
<

22n(22n − 1)|B2n|
(2n)!

< 2
22n

π2n

22n − 1

22n − 2
,

for n ∈ N, and it shall be used in the next section.

3. THE MAIN RESULTS

3.1 The case of Cusa-Huygens approximation

In this section we determinate some upper bounds of one estimation of error of the
Cusa-Huygens approximation.

In connection with inequality (4), we consider the following statements.

Lemma 1. The function

(15) h(t) =
30 sin t+ 15 cos t sin t

4 cos2 t+ 22 cos t+ 19
: [0, π] −→ R

has :

1. exactly one maximum on (0, π) at the point

(16) t1 = π − arccos

(
1−

3
√

98 + 42
√

105

14
+

4
3
√

98 + 42
√

105

)
= 2.73210...

and the numerical value of the function h(t) in the point t1 is

(17) h(t1) = 2.95947... ;

2. exactly one in�ection point on the interval (0, π)

(18) t2 = π − arccos
35− 3

√
21

28
= 2.43258...

and the numerical value of the function h(t) at the point t2 is

(19) h(t2) = 2.63119... .
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Proof. Based on the �rst and the second derivatives of the function h(t) :

(20) h′(t) =
210 cos3 t+ 630 cos2 t+ 810 cos t+ 375

(4 cos2 t+ 22 cos t+ 19)2

and

(21) h′′(t) =
30(28 cos2 t+ 70 cos t+ 37) (cos t− 1)2 sin t

(4 cos2 t+ 22 cos t+ 19)3
,

the statements 1. and 2. are true. �

Lemma 2. The equation

(22) h(t) = t,

has exactly one solution

(23) t0 = 2.83982...

in (0, π).

Proof. We have h(0) = 0 and h(π) = 0. The function h(t) is strictly
increasing on (0, t1) and strictly decreasing on (t1, π). The function h(t) is convex
on (0, t2) and concave on the interval (t2, π). Let us note that

h(t1) > t1 and h(t2) > t2.

Therefore there exists exactly one solution of the equation h(t) = t in (t1, π) with
the numerical value t0 = 2.83982... . �

Lemma 3. The function

(24) f(t) =
t− 3 sin t

2 + cos t

t5
: (0, π) −→ R

has exactly one maximum at t0 = 2.83982... and the numerical value of the function

f(t) in the point of the maximum is

(25) M1 = f(t0) = 0.010756... .

Proof. The statement follows from the �rst derivative

(26) f ′(t) =
30 sin t+ 15 cos t sin t− (4 cos2 t+ 22 cos t+ 19)t

(2 + cos t)2t6

directly and using the previous two lemmas. �

Let us denote

(27) m1 =
1

M1
=

1

0.010756 . . .
= 92.96406... .

Then, based on the previous three lemmas and the result of the paper Ling Zhu

[7] we have the following statement.
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Theorem 4. The following inequalities are true

(28)
1

180
x5 < x− 3 sinx

2 + cosx
≤ 1

m1
x5 =

1

92.96406...
x5,

for x∈(0, π].

The above consideration on estimates of the precision of the Cusa-Huygens
approximation may be further generalized by determining the Maclaurin series
of the Cusa-Huygens function:

(29) θ(x) =
3 sinx

2 + cosx
: [0, π] −→ R.

Next, in the connection with inequality (5) we consider the following statements.

Lemma 4. The function

(30) κ(τ) =
294 sin τ + 217 cos τ sin τ + 14 cos2 τ sin τ

2 cos3 τ + 78 cos2 τ + 258 cos τ + 187
: [0, π] −→ R

has

1. exactly one maximum on (0, π) at the point

(31) τ1 = 2.79340...

and the numerical value of the function κ at the point τ1 is

(32) κ(τ1) = 2.97564... ;

2. exactly one in�ection point on (0, π)

(33) τ2 = 2.55459...

and the numerical value of the function κ at the point τ2 is

(34) κ(τ2) = 2.71423... .

Proof. Based on the �rst and the second derivatives of the function κ(τ)

(35) κ′(τ) =
658 cos5 τ+6076 cos4 τ+41776 cos3 τ+96236 cos2 τ+95606 cos τ+35273

(2 cos3 τ+78 cos2 τ+258 cos τ+187)2

and

(36) κ′′(τ) =
14(94 cos4 τ−1648 cos3 τ−23700 cos2 τ−46207 cos τ−23039) (cos τ−1)3 sin τ

(2 cos3 τ+78 cos2 τ+258 cos τ+187)3

the statements 1. and 2. are true. �
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Lemma 5. The equation

(37) κ(τ) = τ,

has exactly one solution

(38) τ0 = 2.87934...

in (0, π).

Proof. We have κ(0) = 0 and κ(π) = 0. The function κ(τ) is strictly
increasing on (0, τ1) and strictly decreasing on the interval (τ1, π). The function
κ(τ) is convex on (0, τ2) and concave on (τ2, π). Let us note that

κ(τ1) > τ1 and κ(τ2) > τ2.

Therefore then exists exactly one solution of the equation κ(τ) = τ in (τ1, π) with
the numerical value τ0 = 2.87934... . �

Lemma 6. The function

(39) g(τ) =
τ − 3 sin τ

2 + cos τ

(
1 +

(1− cos τ)2

9(3 + 2 cos τ)

)
τ7

: (0, π) −→ R

has exactly one maximum in at point τ0 = 2.87934... and the numerical value of

the function g(τ) at the point of the maximum is

(40) M2 = g(τ0) = 0.001112...

Proof. The statement follows from the �rst derivative

(41) g′(τ) =
294 sin τ + cos τ sin τ(217 + 14 cos τ)− (2 cos3 τ + 78 cos2 τ + 258 cos τ + 187)τ

3(3 + 2 cos τ)2τ8

directly and the previous two lemmas. �

Let us denote

(42) m2 =
1

M2
= 899.04062... .

Then, based on the previous three lemmas and the result of Ling Zhu [7] we have
the following statement.

Theorem 5. The following inequalities are true

(43)
1

2100
x7 < x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
≤ 1

m2
x7 =

1

899.04062...
x7,

for x∈(0, π].
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The above consideration may be further generalized using the Maclaurin

series of the function:

(44) Θ(x) =
3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
: [0, π] −→ R.

3.2 The Case of Huygens approximation

In this part we determine some upper bounds of one estimate of the error of the
Huygens approximation. The results stated in preliminarily section are applied
to the function:

(45) ϕ(x) =
2

3
sinx+

1

3
tanx :

(
0,
π

2

)
−→ R,

that we shall call the Huygens function.

Some polynomial bounds of the Huygens function. Let us start from the
well-known power series, see [14]

(46) sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1,

where x ∈ R and

(47) tanx =

∞∑
k=0

22k+2(22k+2 − 1)|B2k+2|
(2k + 2)!

x2k+1,

where |x| < π

2
. Based on the previous two power series, it follows:

(48) ϕ(x) = x+
1

20
x5 +

1

56
x7 +

7

960
x9 +

3931

1330560
x11 + . . . =

∞∑
k=0

akx
2k+1,

with coe�cients

(49) ak =
2(−1)k

3(2k + 1)!
+

22k+2(22k+2 − 1)|B2k+2|
3(2k + 2)!

,

where x ∈
(

0,
π

2

)
and k ∈ N0. Based on inequalities (14), it follows that

(50) ak > 0,

for k ∈ N0. From there comes that, based on Theorem 3, the following claim about
some polynomial inequalities for the Huygens function is true.
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Theorem 6. Let there be given the function ϕ(x) =

∞∑
k=0

akx
2k+1 :

(
0,
π

2

)
−→ R,

with coe�cients ak determined with (49), and let c ∈
(

0,
π

2

)
be �xed. Then for

x∈(0, c), it holds:

(51)

Tϕ, 0+0 (x) < . . . < Tϕ, 0+n (x) < Tϕ, 0+n+1 (x) < . . .

. . . <
2

3
sinx+

1

3
tanx < . . .

. . . < Tϕ; 0+, c−
n+1 (x) < Tϕ; 0+, c−

n (x) < . . . < Tϕ; 0+, c−
0 (x).

Example 1. Let us introduce some examples of the inequalities obtained for n =
0, 1, 2, 3, 4, 5.

n = 0: Let c∈
(

0,
π

2

)
be �xed. Then for x∈(0, c), it holds:

(52) 0 = Tϕ, 0+0 (x) <
2

3
sinx+

1

3
tanx < Tϕ; 0+, c−

0 (x) =
2

3
sin c+

1

3
tan c.

n = 1: Let c∈
(

0,
π

2

)
be �xed. Then for x∈(0, c), it holds:

(53) x = Tϕ, 0+1 (x) <
2

3
sinx+

1

3
tanx < Tϕ; 0+, c−

1 (x) =

2

3
sin c+

1

3
tan c

c
x.

n = 2, 3, 4: Let c∈
(

0,
π

2

)
be �xed. Then for x∈(0, c) holds:

(54) x = Tϕ, 0+n (x) <
2

3
sinx+

1

3
tanx < Tϕ; 0+, c−

n (x) = x+

2

3
sin c+

1

3
tan c

cn
xn,

for n = 2, 3, 4.

n = 5: Let c∈
(

0,
π

2

)
be �xed. Then for x∈(0, c), it holds:

(55)

x+
1

20
x5 = Tϕ, 0+5 (x) <

2

3
sinx+

1

3
tanx < Tϕ; 0+, c−

5 (x) =

2

3
sin c+

1

3
tan c

c5
x5.

From the previous Theorem, directly follows the estimate of the function of error

of Huygens approximation Q(x) =
2

3
sinx+

1

3
tanx−x with previously considered

polynomial functions.
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Theorem 7. Let there be given the function ϕ(x) =

∞∑
k=0

akx
2k+1 :

(
0,
π

2

)
−→ R,

with coe�cients (ak) determined with (49), and let c ∈
(

0,
π

2

)
be �xed. Then for

x∈(0, c) holds:

(56)

Tϕ, 0+0 (x)− x < . . . < Tϕ, 0+n (x)− x < Tϕ, 0+n+1 (x)− x < . . .

. . . <
2

3
sinx+

1

3
tanx− x < . . .

. . . < Tϕ; 0+, c−
n+1 (x)− x < Tϕ; 0+, c−

n (x)− x < . . . < Tϕ; 0+, c−
0 (x)− x.

Some rational bounds for the Huygens function. In this section are con-
sidered some series for tangent function obtained from well known series for the
cotangent function [14]:

(57)
cotx =

1

x
−
∞∑
k=0

22k+2|B2k+2|
(2k + 2)!

x2k+1

=
1

x
− 1

3
x− 1

45
x3 − 2

945
x5 − . . .

which converges for 0 < |x| < π. From the previous series we conclude that

(58)

tanx =
1

π

2
− x
−
∞∑
k=0

22k+2|B2k+2|
(2k + 2)!

(
π

2
− x
)2k+1

=
1

π

2
− x
− 1

3

(
π

2
− x
)
− 1

45

(
π

2
− x
)3
− 2

945

(
π

2
− x
)5
− . . .

for 0<
∣∣∣π
2
−x
∣∣∣< π, which holds for x ∈

(
0,
π

2

)
. From there φ(x) = tanx− 1

π

2
− x

determines real analytic function on
(

0,
π

2

)
. Let us notice that M. Nenezi¢ and

L. Zhu obtained the following series in [30]:

(59)

tanx =
1

π

2
− x

+

∞∑
k=0

bkx
k,

=
1

π

2
− x
− 2

π
+
(

1− 4

π2

)
x− 8

π3
x2 +

(
1

3
− 16

π4

)
x3 − 32

π5
x4 + . . .

for x ∈
(

0,
π

2

)
, with coe�cients

(60) bk =


− 2

π
: k = 0

2k+1(2k+1 − 1)|Bk+1|
(k + 1)!

− 2k+1

πk+1
: k > 0,
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for k∈N0. Let us introduce the sequence

(61) βk = (−1)k−1bk =


2k+1

πk+1
: k = 2`

2k+1(2k+1 − 1)|Bk+1|
(k + 1)!

− 2k+1

πk+1
: k = 2`− 1,

for ` ∈ N0. Based on the inequality (14) the following statement is easily checked.

Lemma 7. For �xed x∈
(

0,
π

2

)
and sequence (βk), it holds:

(62) βkx
k > 0, lim

k→∞
βkx

k = 0,

and (βkx
k) is strictly monotonically decreasing.

Based on the Leibniz alternating series test, the next statement about some ratio-
nal inequalities for the tangent function follows .

Theorem 8. Let there be given the function:

(63) φ(x) = tanx− 1
π

2
− x

=

∞∑
k=0

(−1)k−1βkx
k :
(

0,
π

2

)
−→ R,

with coe�cients (βk) determined by (61). Then for x ∈
(

0,
π

2

)
holds:

(64)

1
π

2
−x

+ Tφ,0+0 (x) < . . . <
1

π

2
−x

+ Tφ,0+2n (x) <
1

π

2
−x

+ Tφ,0+2n+2(x) < . . .

< tanx <

. . . <
1

π

2
−x

+ Tφ,0+2n+1(x) <
1

π

2
−x

+ Tφ,0+2n−1(x) < . . . <
1

π

2
−x

+ Tφ,0+1 (x).

Furthermore, let us consider the function

(65) ψ(x)=ϕ(x)− 1

3

1
π

2
−x

=
2

3
sinx+

1

3
tanx− 1

3

1
π

2
−x

=

∞∑
k=0

ckx
k :
(

0,
π

2

)
−→ R,

with coe�cients (ck) given by

(66) ck =



− 2

3π
: k = 0

2(−1)
k−1
2

3k!
+

2k+1(2k+1−1)|Bk+1|
3(k + 1)!

− 2k+1

3πk+1
: k = 2j + 1

− 2k+1

3πk+1
: k = 2j + 2,
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for j∈N0. Let us introduce the sequence

(67) γk=(−1)k−1ck=



2

3π
: k=0

2(−1)
k−1
2

3k!
+

2k+1(2k+1−1)|Bk+1|
3(k + 1)!

− 2k+1

3πk+1
: k=2j+1

2k+1

3πk+1
: k=2j+2,

for j∈N0. By applying symbolic, algebra system, we can determine the initial part
of the power series of ψ(x), for example up to the sixth degree:

(68) ψ(x)=− 2

3π
+
(
1− 4

3π2

)
x− 8

3π3
x2− 16

3π4
x3− 32

3π5
x4+

(
1

20
− 64

3π6

)
x5− 128

3π7
x6+. . .

Based on inequality (14) the following statement can be simply checked.

Lemma 8. For �xed x∈
(

0,
π

2

)
and sequence (γk), it holds:

(69) γkx
k > 0 (for k > 3), lim

k→∞
γkx

k = 0,

and (γkx
k) ↓ is strictly monotonically decreasing.

Based on the Leibniz alternating series test, follows the statement about
some rational inequalities for the Huygens function.

Theorem 9. Let there be given the function:

(70) ψ(x) = ϕ(x)− 1

3

1
π

2
−x

=

∞∑
k=0

(−1)k−1γkx
k :
(

0,
π

2

)
−→ R,

with coe�cients (γk) determined by (66). Then for x∈
(

0,
π

2

)
, it holds:

(71)

1

3

1
π

2
−x

+ Tψ,0+4 (x) < . . . <
1

3

1
π

2
−x

+ Tψ,0+2n (x) <
1

3

1
π

2
−x

+ Tψ,0+2n+2(x) < . . .

<
2

3
sinx+

1

3
tanx <

. . . <
1

3

1
π

2
−x

+ Tψ,0+2n+1(x) <
1

3

1
π

2
−x

+ Tψ,0+2n−1(x) < . . . <
1

3

1
π

2
−x

+ Tψ,0+3 (x).

Example 2. Let us introduce some examples of inequalities obtained for n = 2, 3.
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n = 2: For x∈
(

0,
π

2

)
, it holds:

(72)

1

3

1
π

2
−x
− 2

3π
+
(
1− 4

3π2

)
x− 8

3π3
x2− 16

3π4
x3− 32

3π5
x4 =

=
1

3

1
π

2
−x

+ Tψ,0+4 (x) <

<
2

3
sinx+

1

3
tanx <

<
1

3

1
π

2
−x

+ Tψ,0+3 (x) =

=
1

3

1
π

2
−x
− 2

3π
+
(
1− 4

3π2

)
x− 8

3π3
x2− 16

3π4
x3.

n = 3: For x∈
(

0,
π

2

)
, it holds:

(73)

1

3

1
π

2
−x
− 2

3π
+
(
1− 4

3π2

)
x− 8

3π3
x2− 16

3π4
x3− 32

3π5
x4+

(
1

20
− 64

3π6

)
x5− 128

3π7
x6

=
1

3

1
π

2
−x

+ Tψ,0+6 (x) <

<
2

3
sinx+

1

3
tanx <

<
1

3

1
π

2
−x

+ Tψ,0+5 (x) =

=
1

3

1
π

2
−x
− 2

3π
+
(
1− 4

3π2

)
x− 8

3π3
x2− 16

3π4
x3− 32

3π5
x4+

(
1

20
− 64

3π6

)
x5.

Remark 10. For x∈
(

0,
π

2

)
, it holds:

(74)
2

3
sinx+

1

3
tanx <

1

3

1
π

2
−x

+ Tψ,0+2 (x) <
1

3

1
π

2
−x

+ Tψ,0+1 (x).

From the previous Theorem it simply follows the error function of Huygens

approximation Q(x) =
2

3
sinx +

1

3
tanx − x with previously considered rational

functions.

Theorem 11. Let there be given the function:

(75) ψ(x) = φ(x)− 1

3

1
π

2
−x

=

∞∑
k=0

(−1)k−1γkx
k :
(

0,
π

2

)
−→ R,
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with coe�cients (γk) given by (66). Then for x∈
(

0,
π

2

)
, it holds

(76)

1

3

1
π

2
−x

+ Tψ,0+4 (x)− x < . . . <
1

3

1
π

2
−x

+ Tψ,0+2n (x)− x < 1

3

1
π

2
−x

+ Tψ,0+2n+2(x)− x < . . .

<
2

3
sinx+

1

3
tanx− x <

. . . <
1

3

1
π

2
−x

+ Tψ,0+2n+1(x)− x < 1

3

1
π

2
−x

+ Tψ,0+2n−1(x)− x < . . . <
1

3

1
π

2
−x

+ Tψ,0+3 (x)− x.

4. CONCLUSION

Based on inequalities (4) and (5), stated by Zhu [7], using elementary analysis
we have obtained in Theorems 4 and 5 two new double inequalities which can
be used to estimate some polynomial bounds of the error function of the Cusa-
Huygens approximation. With Theorem 7 we determined some bounds of the
error function of the Huygens approximation using polynomial functions and with
Theorem 11 we determined some bounds of the error function of the Huygens
approximation using rational functions. Let us emphasize that by Theorem 8 we
gave some bounds of tangent function by use of rational functions which can be
applied to other parts of Theory of analytical inequalities. Lastly, let us notice that
the proofs of the considered inequalities can be also obtained by applying some
methods and algorithms presented in papers [16], [17], [18], [19]-[26], [31]-[34]
and in dissertation [35]. One automatic theorem prover related to some classes
of inequalities, such as those presented in this paper, is currently being developed
by our project team [36]. We expect that in near future some classes of problems
related to analytic inequalities will be automatically proven by use of such software.
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