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In this paper we present some new upper bounds of the CusA-HUYGENS and
the HUYGENS approximations. Bounds are obtained in the forms of some
polynomial and some rational functions.

1. INTRODUCTION

In this paper it is considered the following CUSA-HUYGENS inequality

(1) ﬂ<x<gsinx+ltanx
2+ cosw 3 3 ’
for z € (0, g), as shown in [1], [2] and [3]. Let us emphasize that the following

approximation:

3sinz
TR —
24 cosx

(2)

for € (0,n], was first surmised in the DE CUSA’s Opera book, see [4] and [6].
Approximation stated above will be called the CUSA-HUYGENS approximation.
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Let us consider the error of the CUSA-HUYGENS approzimation as the follow-
ing function:

3sinx
3 R =-r - —
(3) () == 2+ cosz’

for x € [0, 7]. One estimate of the precision of the CUusA-HUYGENS approximation
is given by the following statement of LING ZHU:

Theorem 1. [7] It is true that:

1 3sinx
4 — P g T
@ 1807 =77 2% cosa
and
1 3sinz (1 —cosx)?
5 — T <z — 1
(5) 100" =7 2+cos:c( +9(3+2(zosx)>’

for x € (0,7]. Moreover, 1/180 and 1/2100 are the best constants in the previous
inequalities, respectively.

The results of the previous theorem are corrections of the Theorem 3.4.20
from monograph [1]. This important discovery and the resulting corrections took
place in 2018, almost half a century after the publication of classics [7].

In this paper we consider also the following HUYGENS’s approzimation:

(6) 2 + 1t
T~ -sinz+ - tanz
3 3 ’

for x € (O, g) Estimates of the errors function of HUYGENS approximation

Qz) = %sinx + %tanm —x, for x € (O, %), are achieved by use of some poly-
nomial functions and some rational functions. Necessary theoretical basis for that
research are stated in the following section.

2. PRELIMINARIES

Double sided Taylor approximations

Let us introduce some notation and the basic claims that shall be used according

to the papers [8] and [9]. Let us begin from real function f : (a,b) — R for which

there are the finite values f*)(a+) = lim+ f®(2), k=0,1,...,n, for n€Ny. Here
r—a

we use the notation T;/>**(z) for TAYLOR polynomial of order n, for n € Ny, for
function f(x) defined in right neighbourhood of a:

"4k (g
) Thet() =Y L@ gy

k!
k=0
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We shall call T} ¢+ (z) the first TAYLOR approzimation in the right neighbourhood
of a [8]. For neNy, we define the remainder of first TAYLOR approzimation in
the right neighbourhood of a by Rl-**(z) = f(z) — T>**(z). In the paper [8] are
considered the polynomials:

ﬁRZ’fﬁ(bf)(x —a)" : n>1
f(-) : n=0,

and determined asthe second TAYLOR approzimation in right neighbourhood of a,
for n €Ny, [8]. Then the following statement is true.

8) T ()=

Theorem 2. Let us assume that f : (a,b) — R, and that n is natural number
such that there exist f*)(a+), for k€{0,1,2,...,n}. Let us assume that f(z)
is increasing on (a,b). Then for every x € (a,b) following inequality is true:

(9) T (2) < flx) < TF 0" (a).
At that, if f)(z) is decreasing over (a,b), then reversed inequality from (9) is true.

The previous statement we call the Theorem on double-sided TAYLOR’s ap-
prozimations in [8] and [9], i.e. Theorem WD in [26]-[30]. Let us emphasize that
the proof of this Theorem (i.e. Theorem 2 in [10]) is based on L’HOSPITAL’s rule
for the monotonicity. A similar method is used in proving some related theorems in
[11], [12] and [13], which were previously published. Further, the following claims
are true.

Proposition 1. [8] Let f : (a,b) — R be such real a function that there exist
the first and the second TAYLOR approzimation in the right neighbourhood of a, for
some n € Ny. Then,

1)  sen(THH (@) - TR (@) = sen(F0-) - TLR),

for every x € (a,b).

Theorem 3. [8] Let f : (a,b) — R be a real analytic function with the power
series:

(11) f@) = ez —a)t,
k=0

where ¢, € R and ¢ > 0 for every k € Ng. Then,
T (z) < ... <THot(x) <ThA (@) < ...
(12) S flr) <
L S TEAEY (@) < THeH b (2) <. < T (),

for every x € (a,b). If ¢, € R and ¢ < 0 for every k € Ny, then the reversed
inequality is true.
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Inequality for BERNOULLI numbers

Let (By) be the sequence of BERNOULLI numbers as it is usually considered, for
example see [14]. In this paper we use the following well the known inequality for
BERNOULLI numbers as given by D. A’NIELLO in [15]:

2(2n)! 1 2(2n)! 1
B .
w2 22n — ] < Pan < w2 22n — 2

(13)

The previous inequality can be rewritten in the equivalent form

2n 2n 92n __ 2n o92n
(14) 2" _ 22— D[Ban| _ 27 22 1

w2n (2n)! w2 220 — 27

for n € N, and it shall be used in the next section.

3. THE MAIN RESULTS

3.1 The case of Cusa-Huygens approximation

In this section we determinate some upper bounds of one estimation of error of the
CUsA-HUYGENS approximation.

In connection with inequality (4), we consider the following statements.
Lemma 1. The function

_ 30sint + 15costsint

1 = : R
(15) ht) 4cos?t + 22cost+ 19 [0,7] —
has:
1. exactly one mazimum on (0,7) at the point
3
42+/105 4

(16) t; =7 —arccos|1— 98+ + - = 2.73210...

14 98 + 42/105

and the numerical value of the function h(t) in the point t1 is

(17) h(ty) = 2.95947...;

2. ezactly one inflection point on the interval (0, )

35 —3v21
(18) ty = T — arccos —g = 2.43258...

and the numerical value of the function h(t) at the point ts is

(19) h(ty) = 2.63119....
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Proof. Based on the first and the second derivatives of the function h(t) :

_ 210 cos® t + 630 cos®t + 810 cost + 375

(20) W) = (4cos?t + 22cost + 19)2

and

(21) B () = 30(28 cos?t + 70 cost + 37) (cost — 1)? sint,
(4cos?t+22cost + 19)3

the statements 1. and 2. are true. O

Lemma 2. The equation

(22) h(t) =t,
has exactly one solution

(23) to = 2.83982...
in (0, 7).

Proof. We have h(0) = 0 and h(n) = 0. The function h(t) is strictly
increasing on (0,¢1) and strictly decreasing on (¢1, 7). The function A(t) is convex
on (0,t2) and concave on the interval (¢, 7). Let us note that

h(tl) >t; and h(tz) > to.

Therefore there exists exactly one solution of the equation h(t) =t in (¢, ) with
the numerical value to = 2.83982.... O

Lemma 3. The function

" 3sint

(24) f(t) = % :(0,7) — R

has exactly one mazimum at to = 2.83982... and the numerical value of the function
f(¢t) in the point of the maximum is

(25) M = f(to) = 0.010756....

Proof. The statement follows from the first derivative

~ 30sint + 15costsint — (4cos® t + 22 cost + 19)t

26 "(t
(26) A (2 + cost)?ts
directly and using the previous two lemmas. ([
Let us denote
(27) : ! 92.96406
m=-—=————=092
YT M, 0.010756. .

Then, based on the previous three lemmas and the result of the paper LING ZHU
[7] we have the following statement.
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Theorem 4. The following inequalities are true

1 3sinz 1 1
28 — P 2P o R 5
(28) 1807 ST 3 cosz S my”  92.06406..°"

for z€(0,].

The above consideration on estimates of the precision of the CUSA-HUYGENS
approximation may be further generalized by determining the M ACLAURIN series
of the CusA-HUYGENS function:

3sinx

(29) 0(z) L [0,71] — R.

- 2+ cosx
Next, in the connection with inequality (5) we consider the following statements.
Lemma 4. The function

294 sinT + 217 cos TsinT + 14 cos® Tsin T
(30) k(1) =
2cos3 7+ T8 cos?2 T + 258 cos T + 187

:[0,7] — R
has

1. exactly one mazimum on (0,7) at the point

(31) 71 = 2.79340...

and the numerical value of the function k at the point T is

(32) k(r1) = 2.97564...;

2. exactly one inflection point on (0, )
(33) Ty = 2.55459...
and the numerical value of the function k at the point 1o is

(34) K(r2) = 2.71423....

Proof. Based on the first and the second derivatives of the function k(1)

(35) K (1) = 658 cos® T+6076 cos* T+41776 cos® T+96236 cos? T+95606 cos T+ 35273
(2 cos3 7+ 78 cos? 7+258 cos T+ 187)2
and
(36) K () = 14(94 cos* T—1648 cos® 7—23700 cos? T— 46207 cos T —23039) (cos 7—1)3 sin T

(2 cos3 7+ 78 cos? 7+258 cos T+187)3

the statements 1. and 2. are true. O
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Lemma 5. The equation

(37) K(T) =T,
has ezactly one solution

(38) To = 2.87934...
in (0, 7).

Proof. We have k(0) = 0 and s(m) = 0. The function x(7) is strictly
increasing on (0,71) and strictly decreasing on the interval (71,7). The function
k(7) is convex on (0, 72) and concave on (72, 7). Let us note that

k(mi) >71 and  kK(12) > Ta.

Therefore then exists exactly one solution of the equation x(7) = 7 in (71, 7) with
the numerical value 7y = 2.87934.... O

Lemma 6. The function

T —

3sinT (1 (1 —cosT)?
24 cosT

9(3+2cosT)

= ) :(0,7) — R

(39) g9(r) =

has exactly one mazimum in at point 79 = 2.87934... and the numerical value of
the function g(7) at the point of the maximum is

(40) My = g(79) = 0.001112...

Proof. The statement follows from the first derivative

(41) '(r) = 294 sin T + cos 7sin 7(217 + 14 cos ) — (2 cos® 7 + 78 cos? T + 258 cos T + 187)T
g 3(3+2cosT)278
directly and the previous two lemmas. O

Let us denote

1
(42) My = — = 899.04062.....
Mo

Then, based on the previous three lemmas and the result of LING ZHU [7] we have
the following statement.

Theorem 5. The following inequalities are true

1 3sinz (1 — cosx)? 1 1
43 S _ < 7 7
(43) 100" =7 2+cosx( * 9(3 4 2cos z)

= e T 899.04062...

for z€(0,].
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The above consideration may be further generalized using the MACLAURIN
series of the function:

(44) o) 3sinx (1 (1 — cosz)

= : 10 R.
2+ cosz 9(3+2cos:c)> [0,7] —

3.2 The Case of Huygens approximation
In this part we determine some upper bounds of one estimate of the error of the

HuUYGENS approximation. The results stated in preliminarily section are applied
to the function:

2 1
(45) go(x):§sinx+ gtanx: (O,W) — R,

2
that we shall call the HUYGENS function.

Some polynomial bounds of the HUYGENS function. Let us start from the
well-known power series, see [14]

e}

: -1)*
(46) sinx = Z %x%ﬂ,
k=0

where x € R and

[eS)
22k+2(22k+2 _ 1)|B2k 2|
47 t — + 2k+1
(47) an ; D] x )

where |z| < g Based on the previous two power series, it follows:

o0
1 5, 1 72, 7 9 3931 11 2k+1
48 ot 2P T =
(48)  p(@) ==+ 5507 + o’ + Gt + amEge® T ’;Oa’“x ’

with coefficients

2(_1)k 22k+2(22k+2 _ 1)|B2k+2|

(49) U = 30k 4 1)1 32k +2)! ’

where = € (0, Z) and k € Ny. Based on inequalities (14), it follows that

2

(50) ax > 0,

for k € Ng. From there comes that, based on Theorem 3, the following claim about
some polynomial inequalities for the HUYGENS function is true.
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Theorem 6. Let there be given the function p(x) = ZakakH : (0, g) — R,
k=0

with coefficients ay, determined with (49), and let ¢ € (0, g) be fized. Then for
x€(0,c¢), it holds:

T (@) < ... < TP (2) < TH N (2) < ...

2 1
(51) ...<§sina:+§tanx<...

S TE T () < TET T (2) < . < T (a).

Example 1. Let us introduce some examples of the inequalities obtained for n =
0,1,2,3,4,5.

n = 0: Let ce (O, g) be fized. Then for x€(0,c), it holds:

2 1 . _ 2 1
(52) 0=T¢""(z) < gsinx—i— gtanx <TEH (2) = gsinc—l— gtanc.

n = 1: Let ce (0, g) be fized. Then for x€(0,c), it holds:

2 . 1
2 1 ) _ =sinc+ - tanc
(33) x=T9"(z) < gsinx—k gtanx < T (1) = %x

n =2,3,4: Let ce (O, g) be fized. Then for x€(0,c) holds:

2 . 1

2 1 ) =sinc+ - tanc

(54) x:Tf’0+(x)<§sinx+§tanx<Trf’0+’c_(x):a:+—3 3 ",
CTL

forn=2,3.4.

n =>5: Let ce (O7 g) be fixed. Then for x€(0,c), it holds:
(55)
2 . 1
1 5 0t g ) 1 0104, e _ §s1nc+§tanc 5
T+ 557 =T (3:)<3sma:+3tana:<ﬂ’5 (:1:)——05 x°.

From the previous Theorem, directly follows the estimate of the function of error
of HUYGENS approximation Q(x) = % sinz + % tan x — z with previously considered
polynomial functions.



252 B. Malesevi¢, M. Nenezi¢, L. Zhu, B. Banjac and M. Petrovié¢

Theorem 7. Let there be given the function p(x) = ZakakH : (0, g) — R,
k=0
with coefficients (ay) determined with (49), and let c € (0, g) be fixed. Then for
x€(0,c¢) holds:
T (@) e < ... <T9 (@)~ < TH (@)~ < ...
2 1
(56) ...<c-sinz+ -tanz —xz < ...
3 3
< TE T (@)~ < TET T (@)~ <L < TN (1) — 2
Some rational bounds for the HUYGENS function. In this section are con-

sidered some series for tangent function obtained from well known series for the
cotangent function [14]:

oo

1 92k+2|B
(57) v .
_ 1 1 1 3 2 &
T 3Tt st
which converges for 0 < |z| < m. From the previous series we conclude that
2 92k+2| 2kl
tanz = Wl _22 | 2k+2|(§_x>
- - 2k +2)! \2
2 T k=0

(58)

1 _1(3_95)_1(1_36)3_1@_36)5_
E,x 3\2 45\ 2 945\ 2
2

for 0 < ’g—x‘ < 7, which holds for x € (O, g) From there ¢(x) = tanz —

m
- —x
2

determines real analytic function on (O, g) Let us notice that M. NENEZIC and
L. ZHu obtained the following series in [30]:

oo

tanz = —= ! —l—Zbkxk,
5% k=0
(59)
__1 _2 _ A, o 82 (E_E) 3_ 32,4
T . 7r+(1 TrQ)x 7r3x + 3 * 5 te
2
for z € (O7 g), with coefficients
2 L k=0
7T
(60) by = k41 ok+1 k41
27" — 1) Bia| 2 k>0,

(k+1)! ]
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for k€Np. Let us introduce the sequence

ok+1
(61) By = (1)1, = ) k=2
k= k= 2k+1(2k+1 —1)[Bpid| ok+1 =201
(k+1)! ok T

for ¢ € Ny. Based on the inequality (14) the following statement is easily checked.

Lemma 7. For fized x € (07 g) and sequence (By), it holds:
(62) BrzF >0, lim Bz =0,

k—o0
and (Bra*) is strictly monotonically decreasing.

Based on the LEIBNI1Z alternating series test, the next statement about some ratio-
nal inequalities for the tangent function follows .

Theorem 8. Let there be given the function:

(63) (x) = tanz — = L o_ i (—1)k1 Bzt - (07 g) LR

o |

with coefficients (By) determined by (61). Then for x € (0, g) holds:

1 ,0 1 ,0 1 ,0
TP @) << T @) < A+ T @) <
7 7 7 7 2
(64) <tanz <
1 0+ 1 0+ 1 0+
< E + T (x) < G +T9% () < ... < — + T ().
2 2 2

Furthermore, let us consider the function

1 oo
(65) 1/J(x):¢(x)_% ! =S sina + gtanx—% L= ot (0, g) LR,
PR 277 k=0
with coefficients (cx) given by
2
— k=0
k—1
) 2= 2FFLFH 1) |Byy,| 2R .
(66) e = 3k1 3(k+1)! T ¢ K=l
PAa .
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for j€Ny. Let us introduce the sequence

2

o : k=0
k—1
kel 2(-1)7 | 2MEMI_1)Byy|  2M
(67) w=(-1)"""cx= 2 CE] s ¢ k=251
2k+1 )
371-7“ : k:2j+2,

for j €Ny. By applying symbolic, algebra system, we can determine the initial part
of the power series of ¥ (x), for example up to the sixth degree:

2 4 8 o 16 3 32 4 (1 64\ 5 128 4
__2 1—7) _ 8 2 10,5 52 (f—f.) 12y
(68) () 37T+( 32 t 37r3x 37r4x 37T5gj + 20 3wS a? 37r7w +

Based on inequality (14) the following statement can be simply checked.

Lemma 8. For fized x € (0, g) and sequence (), it holds:
(69) Yk >0 (for k>3), lim ek =0,
k— o0

and (ypx®) | is strictly monotonically decreasing.

Based on the LEIBNIZ alternating series test, follows the statement about
some rational inequalities for the HUYGENS function.

Theorem 9. Let there be given the function:

(70) P(x) = p(x) — %Eim = Z (—1)Fypa® - (O, g) — R,
2 k=0

with coefficients () determined by (66). Then for x € (0, %), it holds:

11 0+ 11 0+ 1 1 0+
ngJrTf (:c><...<§Lx+Tg;l (x)<§Lx+T5€l+2(a:)<...
2 2 2
(71) <Zginz+ Ltane <
3 3
1 1 0+ 1 1 0+ 1 1 0+
g T TE) < g — + TN ) < < g T (),
577 577 577

Example 2. Let us introduce some examples of inequalities obtained for n = 2, 3.
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n=2: Forxe (O, g), it holds:

1 1 2 4 8 16 32
1 _ 2 1_7) _ 8 92 16 35 4_
3 37r+( s . 3 . . 7Tx

T 3m2 3 3t 3mb
2
1 ot
51, + T () <
2
2
(72) <§S1nx+ftanm<
1 1 0+
<§7r +T§b (x):
5737
1 1 2 4 8 16
S 1—7) _ 82 168
37T, 37r+( 302) " 3m T T 3
2

n =3: Forze (0, g), it holds:

1 1 2 4 8 16 - 32 1 64 128
1 _ 2 177) _ 8 o 16 5 32 4 (777) 5128 6
3T _ . 37r+( 3r2) 7 T3 T Tt T 5 T aee) T T3
2
1 Two+
=g ;T <
2
2. 1t
(73) <§smx+§ anzr <
1 $.0+ (. _
<§7r +T5 ($)_
2-
1 1 2 4 8 16 32 1 64 5
= — —_ 177) . 2773 4 ( )o'
3T _, 37r+( 372) 73T T3 Tyt g0 3ee) T
2
Remark 10. For z € (0, g), it holds:
2 . 1 1 .0+ 1 0,0+
(74) ssine 4+ - tane < c—— + 15 (ac)<7,r + 177 (z).
3 3 357a: 35,

From the previous Theorem it simply follows the error function of HUYGENS

approximation Q(z) = gsinx + étanx — x with previously considered rational

functions.

Theorem 11. Let there be given the function:

(75) ¥(z) = o(x) —
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with coefficients (v;) given by (66). Then for x € (0, %), it holds

11 0+ 11 ot 11 o4
§E_$+Tf (x)—x<...<§3_$+T2d;L (2) 2 < g7 +TE @)~ <.
2 2 5
2 . 1,

(76) <§s1nx+§ anr —x <

1 1 ,0+ 1 1 0+ 1 1 o0+
<z AT @ <z +TA@ e < <3+ T @) - o

E_m E_m 5_13

4. CONCLUSION

Based on inequalities (4) and (5), stated by ZHU [7], using elementary analysis
we have obtained in Theorems 4 and 5 two new double inequalities which can
be used to estimate some polynomial bounds of the error function of the CuUsa-
HUYGENS approximation. With Theorem 7 we determined some bounds of the
error function of the HUYGENS approximation using polynomial functions and with
Theorem 11 we determined some bounds of the error function of the HUYGENS
approximation using rational functions. Let us emphasize that by Theorem 8 we
gave some bounds of tangent function by use of rational functions which can be
applied to other parts of Theory of analytical inequalities. Lastly, let us notice that
the proofs of the considered inequalities can be also obtained by applying some
methods and algorithms presented in papers [16], [17], [18], [19]-[26], [31]-[34]
and in dissertation [35]. One automatic theorem prover related to some classes
of inequalities, such as those presented in this paper, is currently being developed
by our project team [36]. We expect that in near future some classes of problems
related to analytic inequalities will be automatically proven by use of such software.
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