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SUMMATION FORMULAE INVOLVING MULTIPLE

HARMONIC NUMBERS

Dongwei Guo and Wenchang Chu∗

By means of the generating function approach, we derive several summation

formulae involving multiple harmonic numbers Hn,`(σ), as well as other com-

binatorial numbers named after Bernoulli, Euler, Bell, Genocchi and Stirling.

1. INTRODUCTION AND MOTIVATION

The harmonic numbers and the alternating ones are well–known that are
defined by

H0 = 0 and Hn =

n∑
k=1

1

k
for n ≥ 1;

H0 = 0 and Hn =

n∑
k=1

(−1)k

k
for n ≥ 1;

as well as their generating functions

∞∑
n=0

Hnx
n =
− ln(1− x)

1− x
and

∞∑
n=0

Hnxn =
− ln(1 + x)

1− x
.

For their wide applications in combinatorics, number theory and computer
science (for example, the analysis of algorithms), properties and identities that
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involve them have been explored by various methods (cf. [1, 3, 7]). Further gen-
eralizations can be found in the papers [4, 5, 8, 9, 10].

By introducing a variable σ, we can unify the both numbers by

H0(σ) = 0 and Hn(σ) =

n∑
k=1

σk

k
for n ≥ 1

with the generating function

∞∑
n=0

Hn(σ)xn =
− ln(1− xσ)

1− x
.

In this paper, we shall examine the following harmonic–like numbers

Hn,0(σ) ≡ 1 and Hn,`(σ) =
∑

k1,k2,··· ,k`≥1
k1+k2+···+k`≤n

σk1+k2+···+k`

k1k2 · · · k`
for n ≥ 1.

When ` = 1 and σ = ±1, they will reduce to Hn and Hn, respectively.

Classifying according to the sum m = k1 + k2 + · · ·+ k`, we have

Hn,`(σ) =

n∑
m=1

Gm,`(σ) where Gm,`(σ) :=
∑

k1,k2,··· ,k`≥1
k1+k2+···+k`=m

σm

k1k2 · · · k`
.

Since the generating function of Gm,`(σ) is equal to

∞∑
m=0

Gm,`(σ)xm = ln`
1

1− xσ
,

the generating function for the sequence Hn,`(σ) of their partial sums results in

∞∑
n=0

Hn,`(σ)xn =
{− ln(1− xσ)}`

1− x
.

Let [xn]f(x) stand for the coefficient of xn in the formal power series f(x).
Then we have the following expression

Hn,`(σ) = [xn]
{− ln(1− xσ)}`

1− x
=

n∑
m=1

`!

m!

[
m

`

]
σm,

where the signless Stirling numbers of the first kind is given by the generating
function

∞∑
m=0

`!

m!

[
m

`

]
xm = ln`

1

1− x
.
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When σ = 1, Cheon and El-Mikkawy [2] found not only the generating func-
tion

∞∑
n=0

Hn,`(1)xn =

{
− ln(1− x)

}`
1− x

,

but also the following explicit expression

Hn,`(1) =

[
n+ 1

`+ 1

]
`!

n!
.

Unfortunately, for Hn,`(−1), there does not exist such an elegant expression.

By making use of Riordan arrays, Cheon and El-Mikkawy [2] proved four
summation formulae about the multiple harmonic numbers Hn,`(1). Examining
carefully the structure of their sums, we find that they fit into the following general
scheme about formal power series.

Observe that the numbers Hn,`(σ) form a Riordan array generated by the
formal power series pair (

1

1− x
, ln

1

1− xσ

)
.

If Λ(x) is another formal power series

Λ(x) :=

∞∑
`=0

λ`x
`

then we can evaluate the sum

(1)

∞∑
`=0

λ`Hn,`(σ) =

∞∑
`=0

λ`[x
n]
{− ln(1− xσ)}`

1− x
= [xn]

Λ(− ln(1− xσ))

1− x
.

According to this scheme, we shall establish seven classes of summation for-
mulae about Hn,`(σ), including the aforementioned four identities of Cheon and
El-Mikkawy [2]Theorem 3.2. Then the paper will end in Section 3 with a comment
about a composite sum involving the derangement numbers.

Throughout the paper, the following well–known classical numbers (cf. Com-
tet [6]§1.14) will be used without being recalled:

� Bernoulli numbers Bn with the generating function

∞∑
k=0

Bk
k!
xk =

x

ex − 1
.

� Euler numbers En with the generating function

∞∑
k=0

Ek
k!
xk =

2ex

e2x + 1
.
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� Genocchi numbers Gn with the generating function

∞∑
k=1

Gk
k!
xk =

2x

ex + 1
.

� Bell numbers Bn with the generating function

∞∑
k=0

Bk
k!
xk = ee

x−1.

� The derangement numbers Dn with the generating function

∞∑
k=0

Dk

k!
xk =

e−x

1− x
.

� The Stirling number of the second kind with the generating function∑
n≥k

xn

n!
S(n, k) =

(ex − 1)k

k!
.

In order to reduce lengthy expressions, we shall make use of the following
notations. As usual, the logical function is defined by χ(true) = 1 and χ(false) = 0.
For a real number x, the smallest integer ≥ x and the greatest integer ≤ x will be
denoted dxe and bxc, respectively. When m is a natural number, i ≡m j stands for
that “i is congruent to j modulo m”.

2. SEVEN CLASSES OF SUMMATION FORMULAE

In this section, we prove seven summation theorems, where all the formulae
are valid for n ≥ 1 because there are always the same initial value “1” for the
results corresponding to the trivial case n = 0. To our knowledge, all the for-
mulae displayed in this section are new except for those being explicitly given by
references.

We start with the following summation theorem.

Theorem 1. For the sum defined by

An(τ, σ) :=

n∑
`=0

τ `

`!
Hn,`(σ)

the following identity holds

An(τ, σ) =

n∑
k=0

(
τ + k − 1

k

)
σk.
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Two particular cases are highlighted below, where the former integrates the
first two formulae given by Cheon and El-Mikkawy [2]Theorem 3.2: i & ii:

An(±1, 1) =

{
n+ 1, “ + ”;

0, “− ”;

An(±1,−1) =

{
1− χ(n ≡2 1), “ + ”;

2, “− ”.

Proof. Consider the exponential function Λ(x) = exτ in (1). Then we have
immediately

n∑
`=0

τ `

`!
Hn,`(σ) = [xn]

(1− xσ)−τ

1− x
=

n∑
k=0

(
τ + k − 1

k

)
σk.

The next theorem is a variant of Theorem 1.

Theorem 2. For the sum defined by

Bn(τ, σ) :=

n∑
`=1

τ `

(`− 1)!
Hn,`(σ)

the following identity holds

Bn(τ, σ) = τ

n∑
k=0

(
τ + k − 1

k

)
σkHn−k(σ).

We record two special cases, where the first one corresponding to “−” is due
to Cheon and El-Mikkawy [2]Theorem 3.2: iii:

Bn(±1, 1) =

(n+ 1)Hn − n, “ + ”;
−1

n
, “− ”;

Bn(±1,−1) =


1

2

{
Hn + (−1)nHn

}
, “ + ”;

−Hn −Hn−1, “− ”.

Proof. Analogously let Λ(x) = τxexτ in (1). Then we can evaluate

n∑
`=1

τ `

(`− 1)!
Hn,`(σ) = [xn]

τ

(1− xσ)τ
× ln(1− xσ)

x− 1

= τ

n∑
k=0

(
τ + k − 1

k

)
σkHn−k(σ).
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Theorem 3. For the sum defined by

Cn(τ, σ) :=

n∑
`=0

B`
τ `

`!
Hn,`(σ)

the following identities hold

Cn(1, σ) =
Hn+1(σ)

σ
−Hn(σ),

Cn(−1, σ) =
Hn+1(σ)

σ
.

In particular for σ = ±1, we deduce further, where the former with the minus
sign “−” is equivalent to Cheon and El-Mikkawy [2]Theorem 3.2: iv:

Cn(±1, 1) =


1

n+ 1
, “ + ”;

Hn+1, “− ”;

Cn(±1,−1) =

{
−Hn −Hn+1, “ + ”;

−Hn+1, “− ”.

Proof. Choose Λ(x) = τx
exτ−1 , the generating function of Bernoulli numbers.

We get from (1)

n∑
`=0

B`
τ `

`!
Hn,`(σ) = [xn]

τ

(1− xσ)−τ − 1
× ln(1− xσ)

x− 1
.

For τ = 1, we can determine the coefficient

[xn]
1− xσ
xσ

× ln(1− xσ)

x− 1
=
Hn+1(σ)

σ
−Hn(σ).

Instead, when τ = −1, the coefficient becomes

[xn]
1

xσ
× ln(1− xσ)

x− 1
=
Hn+1(σ)

σ
.

Theorem 4. For the sum defined by

Dn(τ, σ) :=

n∑
`=0

S(`,m)
τ `

`!
Hn,`(σ)

the following identities hold

Dn(1, σ) =
σm

m!

n∑
k=m

(
k − 1

m− 1

)
σk,

Dn(−1, σ) =
(−σ)m

m!
χ(m ≤ n).
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When σ = ±1, they can be restated as follows:

Dn(±1, 1) =


1

m!

(
n

m

)
, “ + ”;

(−1)m

m!
χ(m ≤ n), “− ”;

Dn(±1,−1) =


(−1)m

m!

n∑
k=m

(
k − 1

m− 1

)
(−1)k, “ + ”;

χ(m ≤ n)

m!
, “− ”.

Proof. Let Λ(x) = (exτ−1)m

m! be the exponential generating function of Stirling
numbers of the second kind. We have from (1)

n∑
`=0

S(`,m)
τ `

`!
Hn,`(σ) = [xn]

{(1− xσ)−τ − 1}m

m!(1− x)
.

For τ = 1, we can determine the coefficient

[xn]
(xσ)m(1− xσ)−m

m!(1− x)
=
σm

m!

n∑
k=m

(
k − 1

m− 1

)
σk.

Instead, when τ = −1, the coefficient becomes

[xn]
(−xσ)m

m!(1− x)
=

(−σ)m

m!
χ(m ≤ n).

Theorem 5. For the sum defined by

En(τ, σ) :=
n∑
`=0

B`
τ `

`!
Hn,`(σ)

the following identities hold

En(1, σ) = 1 +

n∑
k=1

k∑
i=1

(
k − 1

i− 1

)
σk

i!
,

En(−1, σ) =

n∑
k=0

(−σ)k

k!
.
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For σ = ±1, these formulae can be further simplified into

En(±1, 1) =


1 +

n∑
k=1

1

k!

(
n

k

)
, “ + ”;

Dn

n!
, “− ”;

En(±1,−1) =


1 +

n∑
k=1

k∑
i=1

(−1)k

i!

(
k − 1

i− 1

)
, “ + ”;

n∑
k=0

1

k!
, “− ”.

Proof. Consider Λ(x) = exp
(
exτ − 1

)
, the generating function of Bell num-

bers. We can express the sum in (1) as

n∑
`=0

B`
τ `

`!
Hn,`(σ) = [xn]

exp{(1− xσ)−τ − 1}
1− x

.

For τ = 1, we can determine the coefficient

[xn]
exp( xσ

1−xσ
)

1− x
=

n∑
k=0

[xk] exp(
xσ

1− xσ
)
.

Instead, when τ = −1, the coefficient becomes

[xn]
exp(−xσ)

1− x
=

n∑
k=0

(−σ)k

k!
.

Theorem 6. For the sum defined by

Fn(τ, σ) :=

n∑
`=0

G`
τ `

`!
Hn,`(σ)

the following identities hold

Fn(1, σ) = Hn(σ)−
n∑
k=1

σk

2k
Hn−k(σ),

Fn(−1, σ) = −
n∑
k=0

σk

2k
Hn−k(σ).

Observe that

n∑
k=1

σk

2k
Hn−k(σ) =

n−1∑
k=1

σk

2k

n−k∑
i=1

σi

i
=

n−1∑
i=1

σi

i

n−i∑
k=1

σk

2k

=

n−1∑
i=1

σi

i

( σ
2 − (σ2 )n−i+1

1− σ
2

)
.
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When σ = ±1, the formulae in Theorem 6 can stated explicitly as follows:

Fn(±1, 1) =



n∑
k=1

2k

2nk
, “ + ”;

−2Hn +

n∑
k=1

2k

2nk
, “− ”;

Fn(±1,−1) =


4

3
Hn −

(−1)n

3

n∑
k=1

2k

2nk
, “ + ”;

−2

3
Hn −

(−1)n

3

n∑
k=1

2k

2nk
, “− ”.

Proof. Let Λ(x) = 2xτ
1+exτ be the generating function of Genocchi numbers.

We have from (1)

n∑
`=0

G`
τ `

`!
Hn,`(σ) = [xn]

2τ

1 + (1− xσ)−τ
× ln(1− xσ)

x− 1
.

For τ = 1, we can determine the coefficient

[xn]
2(1− xσ)

2− xσ
× ln(1− xσ)

x− 1
= Hn(σ)−

n∑
k=1

σk

2k
Hn−k(σ).

Instead, when τ = −1, the coefficient becomes

[xn]
−2

2− xσ
× ln(1− xσ)

x− 1
= −

n∑
k=0

σk

2k
Hn−k(σ).

Theorem 7. For the sum defined by

Gn(σ) :=

n∑
`=0

E`
`!
Hn,`(σ)

the following identities hold

Gn(1) = χ(n 6≡4 3)
(−1)b

n
4 c

2b
n
2 c

,

Gn(−1) =
4

5
+

(−1)b
n
4 c

5 · 2bn2 c
×


1, n ≡4 0;

1, n ≡4 1;

−3, n ≡4 2;

2, n ≡4 3.
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Proof. Finally specify Λ(x) = 2ex

1+e2x by the generating function of Euler
numbers in (1), where another variable τ is suppressed because this function is
even. Then the corresponding sum can be reformulated as

n∑
`=0

E`
`!
Hn,`(σ) = [xn]

2(1− xσ)

(1− x)
{

1 + (1− xσ)2
} .

When σ = 1, by making use of partial fractions

2

1 + (1− x)2
− 1

1− x
=

i

1 + i− x
− i

1− i− x
− 1

1− x
,

we can extract ‘the coefficient of xn’

[xn]
2

1 + (1− x)2
=

i

(1 + i)n+1
− i

(1− i)n+1

= 2−
n+1
2

{
ie−

n+1
4 πi − ie

n+1
4 πi

}
.

Then the first formula for Gn(1) follows from the simplification

{
ie−

n+1
4 πi − ie

n+1
4 πi

}
= (−1)b

n
4 c ×


√

2, n ≡4 0;

2, n ≡4 1;√
2, n ≡4 2;

0, n ≡4 3.

Alternatively for σ = −1, we can decompose the rational fraction

2(1 + x)

(1− x)
{

1 + (1 + x)2
} =

4

5(1− x)
+

2− i

5(1 + x+ i)
+

2 + i

5(1 + x− i)

and determine ‘the coefficient of xn’

[xn]
2(1 + x)

(1− x)
{

1 + (1 + x)2
} =

4

5
+

(−1)n(2− i)

5(1 + i)n+1
+

(−1)n(2 + i)

5(1− i)n+1

=
4

5
+

(−1)n

5 · 2n+1
2

+
{

(2 + i)e
n+1
4 πi + (2− i)e−

n+1
4 πi

}
.

Then the second formula for Gn(−1) follows from the simplification

{
(2 + i)e

n+1
4 πi + (2− i)e−

n+1
4 πi

}
= (−1)d

n
4 e ×


√

2, n ≡4 0;

2, n ≡4 1;

3
√

2, n ≡4 2;

4, n ≡4 3.
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3. CONCLUDING COMMENTS

There should be a number of further choices for the formal power series Λ(x)
in (1), that may lead us to more summation formulae. For instance, Specifying in

(1) by the generating function Λ(x) = e−xτ

1−xτ of the derangement numbers, we have
the sum

n∑
`=0

D`
τ `

`!
Hn(`) = [xn]

(1− xσ)τ

(1− x){1 + τ ln(1− xσ)}
.

When τ = σ = 1, we can evaluate the sum

n∑
`=0

D`

`!
Hn,`(1) = [xn]

1

1 + ln(1− x)
=

n∑
k=0

k!

n!

[
n

k

]
.

However, for other values of τ and σ, the corresponding sums don’t admit such nice
expressions.
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