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SINE AND COSINE TYPES OF GENERATING

FUNCTIONS

Mohammad Masjed-Jamei and Zahra Moalemi

We introduce two sine and cosine types of generating functions in a general

case and apply them to the generating functions of classical hypergeometric

orthogonal polynomials as well as some widely investigated combinatorial

numbers such as Bernoulli, Euler and Genocchi numbers. This approach can

also be applied to other celebrated sequences.

1. INTRODUCTION

The generating function of a sequence of polynomials {Pn(x)} is defined by
a bivariate function, say G(x, t), whose expansion in powers of t has the form

(1) G(x, t) =

∞∑
n=0

Pn(x)tn,

for sufficiently small |t|. Since λ∗nP
∗
n(x) = Pn(x) is also a polynomial, relation (1)

can be transformed to

(2) G(x, t) =

∞∑
n=0

λ∗nP
∗
n(x)tn.

For λ∗n = 1
n! , (2) is called the exponential type of generating functions. For instance,

the Sheffer polynomials {sn(x)} [33, 35] are generated by an exponential generating
function as

(3) f(t) exp
(
xH(t)

)
=

∞∑
n=0

sn(x)
tn

n!
,
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where

f(t) =

∞∑
n=0

fn
tn

n!
(f0 6= 0),

and

H(t) =

∞∑
n=0

hn
tn

n!
(h0 = 0).

The Sheffer polynomials can also be defined by means of a pair of functions, say(
u(t), v(t)

)
, where u(t) is an invertible series and v(t) is a delta series, i.e.

u(t) =

∞∑
n=0

un
tn

n!
(u0 6= 0),

and

v(t) =

∞∑
n=1

vn
tn

n!
(v1 6= 0).

If v−1(t) denotes the compositional inverse of v(t), the exponential generating func-
tion of Sheffer polynomials is given by

1

u
(
v−1(t)

) exp
(
xv−1(t)

)
=

∞∑
n=0

sn(x)
tn

n!
,

for

f(t) =
1

u
(
v−1(t)

) and H(t) = v−1(t).

When u(t) ≡ 1, the sequence corresponding to the pair
(
1, v(t)

)
is called the asso-

ciated Sheffer sequence for v(t) denoted by {σn(x)}, and its exponential generating
function is represented as

exp
(
xv−1(t)

)
=

∞∑
n=0

σn(x)
tn

n!
.

Many special polynomials such as Bernoulli polynomials of the second kind,
Boole polynomials, Laguerre polynomials, Meixner polynomials of the first and
second kinds, Poisson-Charlier polynomials and Stirling polynomials are particu-
lar cases of Sheffer sequences. Also, Abel polynomials, Bell polynomials, central
factorial, falling factorial, Mahler polynomials, Mittag-Leffler polynomials, Mott
polynomials and power polynomials are some particular examples of the associated
Sheffer sequences [28].

As an important case of Sheffer sequences, Appell polynomials {An(x)} ap-
pear when H(t) ≡ v−1(t) ≡ t in (3). In other words

f(t)ext =

∞∑
n=0

An(x)
tn

n!
,
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represents the generating function of these polynomials where f is a formal power
series in t.

The Appell polynomials have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry [2]. Three special cases
of them are respectively Bernoulli polynomials Bn(x), Euler polynomials En(x) and
Genocchi polynomials Gn(x) which are defined by

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π),

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
(|t| < π),

and
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
(|t| < π).

In this sense, Bernoulli numbers Bn := Bn(0), Euler numbers En := 2nEn( 1
2 ) and

Genocchi numbers Gn := Gn(0) have found various applications in number theory,
combinatorics and numerical analysis [8].

Another important case of Appell polynomials is the Apostol type of Bernoulli,
Euler and Genocchi polynomials which are respectively generated by

t

λet − 1
ext =

∞∑
n=0

Bn(x;λ)
tn

n!
(|t+ ln λ| < 2π),(4)

2

λet + 1
ext =

∞∑
n=0

En(x;λ)
tn

n!
(|t+ ln λ| < π),(5)

and

(6)
2t

λet + 1
ext =

∞∑
n=0

Gn(x;λ)
tn

n!
(|t+ ln λ| < π),

where

(7) Bn,λ := Bn(0;λ), En,λ := En(0;λ) and Gn,λ := Gn(0;λ),

denote the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi numbers [14,
16].

Up to now, many authors have studied these numbers and polynomials in the
literature in detail, for example see [4, 13, 26]. In [14, 15], the author computes the
Fourier expansions and integral representations of Apostol-Bernoulli and Apostol-
Euler polynomials while in [27], the author investigates the Padé approximation of
these polynomials. Also in [9] and [12], a q-extension of Apostol-Euler polynomials
is given. For Genocchi polynomials and their various extensions see e.g. [5, 10, 11].
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Besides the aforesaid references, some new types of Bernoulli, Euler and Genocchi
polynomials and their Apostol type have been recently introduced in [17, 18, 19]
and [31, 32]. In [31, 32] the following generating functions

(8) f(t;λ) ept cos qt =

∞∑
n=0

A(c)
n (p, q;λ)

tn

n!
,

and

(9) f(t;λ) ept sin qt =

∞∑
n=0

A(s)
n (p, q;λ)

tn

n!
,

are introduced for p, q ∈ R, and the functions

f(t;λ) =
t

λet − 1
, f(t;λ) =

2

λet + 1
and f(t;λ) =

2t

λet + 1
,

are then replaced in (8) and (9) to derive new families of polynomials A
(c)
n (p, q;λ)

and A
(s)
n (p, q;λ), where A

(c)
n (p, q;λ) denotes the cosine type of Apostol-Bernoulli,

Apostol-Euler and Apostol-Genocchi polynomials and A
(s)
n (p, q;λ) denotes the sine

type of them. Note that λ = 1 gives the cosine and sine types of usual Bernoulli,
Euler and Genocchi polynomials which are separately studied in [17, 18, 19].

The main aim of this paper is to introduce sine and cosine types of generating
functions in a general case containing all above-mentioned examples as particular
cases.

Research in the field of generating functions is not limited only to their role in
combinatorics. Another subject which they are invloved in concerns to the classical
orthogonal polynomials, because generating functions of such polynomials help us
investigate their basic properties and applications. For instance, the generating
function of Legendre polynomials appears in electromagnetism [29]. Also, the
polynomial value at some specific points such as 1 or −1 can be computed by its
generating function. Since classical orthogonal polynomials have found interesting
applications in physics and engineering, extending them may somehow lead to new
applications that logically develop the previous known applications, see e.g. [7].

In this paper, we introduce sine and cosine types of generating functions in a
general case and apply them for two main classes, i.e. for the generating functions
of classical hypergeometric orthogonal polynomials and for widely-investigated se-
quences of numbers appeared in number theory. For this purpose, we first introduce
two trigonometric types of generating functions in Section 2. Then in Section 3 we
introduce two families of generating functions for Jacobi polynomials and its sub-
cases (i.e. Chebyshev, Legendre and ultraspherical polynomials) as well as Laguerre
and Hermite polynomials. Finally, Section 4 is devoted to sine and cosine types of
generating functions of the well known sequences of numbers such as Bernoulli, Eu-
ler, Genocchi and Stirling numbers, though our approach can be applied for other
celebrated sequences, too.
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2. SINE AND COSINE TYPES OF GENERATING FUNCTIONS

Let us start with a sequence of bivariate functions, as defined in [24], as

(10) Fm
(
p, q; {λr, ar, br}mr=1

)
=

m∑
r=1

λrf(arp+ brq) ,

in which {λr, ar, br}mr=1 are real or complex numbers and f is an arbitrary differ-
entiable function. By noting the bivariate Taylor expansion

F (p, q) =

∞∑
k=0

1

k!

( k∑
j=0

(
k

j

)
∂kF

∂pj∂qk−j

∣∣∣∣
(0,0)

pjqk−j
)
,

we find that

(11) Fm
(
p, q; {λr, ar, br}mr=1

)
=

∞∑
k=0

f (k)(0)

k!

( k∑
j=0

(
k

j

)( m∑
r=1

λr a
j
r b
k−j
r

)
pjqk−j

)
.

For simplicity, if in (11)
(12)

Ak
(
p, q; {λr, ar, br}mr=1

)
=

k∑
j=0

(
k

j

)( m∑
r=1

λr a
j
r b
k−j
r

)
pjqk−j =

m∑
r=1

λr(arp+ brq)
k
,

then (10) is simplified as

(13)

m∑
r=1

λrf(arp+ brq) =

∞∑
k=0

f (k)(0)

k!
Ak
(
p, q; {λr, ar, br}mr=1

)
.

Moreover, by noting (12), the relation

Ak
(
p, px; {λr, ar, br}mr=1

)
=pk

k∑
j=0

(
k

j

)( m∑
r=1

λr a
j
r b
k−j
r

)
xk−j=pk

m∑
r=1

λr(ar+brx)
k
,

implies that (13) is a generating function for the polynomials

Pk
(
x; {λr, ar, br}mr=1

)
= p−kAk

(
p, px; {λr, ar, br}mr=1

)
=

m∑
r=1

λr(ar + brx)
k
,

as follows

m∑
r=1

λrf
(
p(ar + brx)

)
=

∞∑
k=0

Pk
(
x; {λr, ar, br}mr=1

)
f (k)(0)

pk

k!
.

Now, suppose in (13) that

m = 2, λ1 = −λ2 =
1

2i
, a1 = a2 = 1 and b1 = −b2 = i =

√
−1,
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to reach the identity

(14)
1

2i

(
f(p+ iq)− f(p− iq)

)
=

∞∑
k=1

f (k)(0)

k!
Sk(p, q),

where, according to (12),

(15) Sk(p, q) =
(p+ iq)

k − (p− iq)
k

2i
=

[(k−1)/2]∑
j=0

(−1)
j

(
k

2j + 1

)
pk−2j−1q2j+1.

Once again, if in (13) we assume that

m = 2, λ1 = λ2 =
1

2
, a1 = a2 = 1 and b1 = −b2 = i =

√
−1,

then we get

(16)
1

2

(
f(p+ iq) + f(p− iq)

)
=

∞∑
k=0

f (k)(0)

k!
Ck(p, q),

where

(17) Ck(p, q) =
(p+ iq)

k
+ (p− iq)

k

2
=

[k/2]∑
j=0

(−1)
j

(
k

2j

)
pk−2jq2j .

The two sequences Ck(p, q) and Sk(p, q) which are respectively the real and imag-
inary parts of the complex function zk for z = p + iq, will play a key role in
introducing our generating functions.

The two real sequences (15) and (17) show that the left-hand side of the
expansions (14) and (16) are real-valued functions. The following lemma which can
be proved directly and independantly in standard textbooks of complex analysis
such as [3] has found interesting applications, see e.g. [21, 24].

Lemma 1. If f is a complex function such that

f(x+ iy) = u(x, y) + i v(x, y),

then

u(x, y) =
f(x+ iy) + f(x− iy)

2
∈ R,

and

v(x, y) =
f(x+ iy)− f(x− iy)

2i
∈ R.

For example, if f(z) = zα for any α ∈ C, then substituting it into Lemma 1
leads to the identity

zα = Cα(x, y) + iSα(x, y),
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where

Cα(x, y) =

∞∑
j=0

(−1)j
(
α

2j

)
xα−2jy2j ,

and

Sα(x, y) =

∞∑
j=0

(−1)j
(

α

2j + 1

)
xα−2j−1y2j+1.

Moreover, the equality (zα)β = zαβ implies the following interesting identity(
Cα(x, y) + iSα(x, y)

)β
= Cαβ(x, y) + iSαβ(x, y),

for any α, β ∈ C.

One of the advantages of the sequences Cα(p, q) and Sα(p, q) is that they can
be represented in polar forms. In other words, if

r =
√
p2 + q2 and θ = arg(p+ iq),

for p, q ∈ R such that p2 + q2 6= 0, then we have

(18) Sα(p, q) = rα sin(αθ) and Cα(p, q) = rα cos(αθ),

or equivalently

(19) Sα(p, q) = (p2 + q2)
α
2 sin

(
α arctan

q

p

)
,

and

(20) Cα(p, q) = (p2 + q2)
α
2 cos

(
α arctan

q

p

)
.

A remarkable case in relations (19) and (20) is when q = λp, so that we have

Sα(p, λp) =
(
1 + λ2

)α
2 sin

(
α arctanλ

)
pα,

and

Cα(p, λp) =
(
1 + λ2

)α
2 cos

(
α arctanλ

)
pα.

Moreover, it is not difficult to verify from (18) that

(21) |Cα(p, q)| ≤ (p2 + q2)
α
2 and |Sα(p, q)| ≤ (p2 + q2)

α
2 .

By using (21), we can directly conclude that if the limit

R = lim
k→∞

∣∣∣∣ f (k+1)(0)

(k + 1)f (k)(0)

∣∣∣∣ ,
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exists, then the expansions (14) and (16) are absolutely convergent provided that√
p2 + q2 <

1

R
.

Throughout the paper, we assume that p and q are always chosen to be small
enough such that any appeared series converges absolutely.

We are now in a good position to define sine and cosine types of generating
functions in two different cases.

2.1 First Kind of Trigonometric-Type Generating Functions

Suppose that the generating function of a sequence of polynomials is given by

G(z, t) =

∞∑
n=0

Pn(z)tn,

with

(22) Pn(z) =

n∑
k=0

c∗n,k(a∗z + b∗)k,

in which {c∗n,k}nk=0 are pre-determined coefficients and a∗, b∗ ∈ R.

By referring to the real-valued functions (14) and (16) and taking z = p± iq,
we respectively obtain

G
(s)
I (p, q; t) =

1

2i

(
G(p+ iq, t)−G(p− iq, t)

)
=

∞∑
n=0

1

2i

(
Pn(p+ iq)− Pn(p− iq)

)
tn

=

∞∑
n=0

( n∑
k=0

c∗n,k
1

2i

(
(a∗p+ b∗ + ia∗q)k − (a∗p+ b∗ − ia∗q)k

))
tn

=

∞∑
n=0

( n∑
k=0

c∗n,k Sk(a∗p+ b∗, a∗q)
)
tn,

and

G
(c)
I (p, q; t) =

1

2

(
G(p+ iq, t) +G(p− iq, t)

)
=

∞∑
n=0

1

2

(
Pn(p+ iq) + Pn(p− iq)

)
tn

=

∞∑
n=0

( n∑
k=0

c∗n,k
1

2

(
(a∗p+ b∗ + ia∗q)k + (a∗p+ b∗ − ia∗q)k

)
tn

=

∞∑
n=0

( n∑
k=0

c∗n,k Ck(a∗p+ b∗, a∗q)
)
tn,

as the first kind of the sine and cosine types of the generating function G(z, t). In
fact, they are respectively the imaginary and real parts of the generating function
G(z, t) with respect to the variable z.
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2.2 Second Kind of Trigonometric-Type Generating Functions

This turn, we consider t = p± iq to respectively obtain

G
(s)
II (z; p, q) =

1

2i

(
G(z, p+ iq)−G(z, p− iq)

)
=

∞∑
n=0

1

2i

(
(p+ iq)n − (p− iq)n

)
Pn(z) =

∞∑
n=0

Sn(p, q)Pn(z),

and

G
(c)
II (z; p, q) =

1

2

(
G(z, p+ iq) +G(z, p− iq)

)
=

∞∑
n=0

1

2

(
(p+ iq)n + (p− iq)n

)
Pn(z) =

∞∑
n=0

Cn(p, q)Pn(z),

as the imaginary and real parts of the generating function G(z, t) with respect to
the variable t. We call them the second kind of the sine and cosine types of the
function G(z, t), respectively.

3. SINE AND COSINE TYPES OF THE GENERATING
FUNCTIONS OF CLASSICAL ORTHOGONAL POLYNOMIALS

All classical orthogonal polynomials [6, 34] can be defined in terms of hyper-
geometric series

(23) pFq

(
a1, a2, ... , ap
b1, b2, ... , bq

∣∣∣∣ z) =

∞∑
k=0

(a1)k ... (ap)k
(b1)k ... (bq)k

zk

k!
,

in which

(r)k =

k−1∏
j=0

(r + j),

denotes the Pochhammer symbol [1] and z may be a complex variable.

According to the ratio test, the series (23) is convergent for any p ≤ q + 1.
In fact, it converges in |z| < 1 for p = q + 1, converges everywhere for p < q + 1
and converges nowhere (z 6= 0) for p > q + 1. Moreover, for p = q + 1 it absolutely
converges for |z| = 1 if the condition

A∗ = Re

 q∑
j=1

bj −
q+1∑
j=1

aj

 > 0,

holds and is conditionally convergent for |z| = 1 and z 6= 1 if −1 < A∗ ≤ 0 and is
finally divergent for |z| = 1 and z 6= 1 if A∗ ≤ −1.
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There are two important cases of the series (23) respectively as follows

2F1

(
a, b
c

∣∣∣∣ z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!

=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt
(24)

(Re c > Re b > 0),

which converges in |z| ≤ 1 and the second case, which converges everywhere as

1F1

(
a
c

∣∣∣∣ z) =

∞∑
k=0

(a)k
(c)k

zk

k!
=

Γ(c)

Γ(a) Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1ezt dt(25)

(Re c > Re a > 0).

Since the same approach as used in Sections 2.1 and 2.2 can be applied for
two hypergeometric series (24) and (25), we can directly find that

∞∑
k=0

(a)k(b)k
(c)k

Sk(p, q)

k!

=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1−t)c−b−1
(

(1−pt)2+q2t2
)− a2

sin
(
−a arctan

qt

1− pt

)
dt,

and

∞∑
k=0

(a)k(b)k
(c)k

Ck(p, q)

k!

=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1−t)c−b−1
(

(1−pt)2+q2t2
)− a2

cos
(
a arctan

qt

1− pt

)
dt,

and similarly, corresponding to (25), we obtain

∞∑
k=0

(a)k
(c)k

Sk(p, q)

k!
=

Γ(c)

Γ(a) Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1ept sin qt dt,

and
∞∑
k=0

(a)k
(c)k

Ck(p, q)

k!
=

Γ(c)

Γ(a) Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1ept cos qt dt.

Note that the aforesaid approach can be applied for other special functions [25] and
well-known inequalities [20]. For example, recently in [22, 23], we have applied
this approach for the integral representation of gamma function

Γ(z) =

∫ ∞
0

xz−1e−x dx,
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to respectively define

Γs(p, q) =
1

2i

(
Γ(p+ iq)− Γ(p− iq)

)
=

∫ ∞
0

xp−1e−x sin
(
q lnx

)
dx,

and

Γc(p, q) =
1

2

(
Γ(p+ iq) + Γ(p− iq)

)
=

∫ ∞
0

xp−1e−x cos
(
q lnx

)
dx,

for any p > 0 and q ∈ R. Also, by using the limit definition of the gamma function,
we obtain

Γs(p, q) = lim
n→∞

n!np sin
(
q lnn−

n∑
k=0

arctan
q

p+ k

)
n∏
k=0

(
(p+ k)2 + q2

) 1
2

,

and

Γc(p, q) = lim
n→∞

n!np cos
(
q lnn−

n∑
k=0

arctan
q

p+ k

)
n∏
k=0

(
(p+ k)2 + q2

) 1
2

.

Since the beta function has a close relationship with the gamma function as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x) Γ(y)

Γ(x+ y)
(Rex > 0, Re y > 0),

the equality

1

2

(
tir(1− t)is + t−ir(1− t)−is

)
= cos

(
r ln t+ s ln(1− t)

)
,

implies to define the sine and cosine types of the beta function as follows

Bs(p, q, r, s) =
1

2i

(
B(p+ ir, q + is)−B(p− ir, q − is)

)
=

∫ 1

0

tp−1(1− t)q−1 sin
(
r ln t+ s ln(1− t)

)
dt,

and

Bc(p, q, r, s) =
1

2

(
B(p+ ir, q + is) +B(p− ir, q − is)

)
=

∫ 1

0

tp−1(1− t)q−1 cos
(
r ln t+ s ln(1− t)

)
dt.

In what follows, we now define the sine and cosine types of generating func-
tions of classical orthogonal polynomials.
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3.1 Trigonometric-Type Generating Functions of Jacobi Polynomials

The Jacobi polynomials

P (α,β)
n (z) =

(α+ 1)n
n!

2F1

(
−n, 1 + α+ β + n

α+ 1

∣∣∣∣ 1− z
2

)
(26)

=

n∑
k=0

c
(α,β)
n,k

(1− z
2

)k
,

for

c
(α,β)
n,k =

(α+ 1)n
n!

(−n)k(1 + α+ β + n)k
(α+ 1)k k!

,

satisfy the relation

2α+β

ρ(1 + ρ− t)α(1 + ρ+ t)β
=

∞∑
n=0

P (α,β)
n (z) tn |t| < 1,

where

ρ = ρ(z, t) =
√

1− 2tz + t2 and α, β > −1.

By noting that

c∗n,k = c
(α,β)
n,k , a∗ = −1

2
and b∗ =

1

2
,

in (22), there are two different types of generating functions to extend the Jacobi
polynomials (26). To reach this goal, we first simplify the following relations

(27) G
(s)
I (p, q; t; α, β) =

2α+β−1

i
×(

1√
1 + t2 − 2t(p+ iq)

(
1− t+

√
1 + t2 − 2t(p+ iq)

)α(
1 + t+

√
1 + t2 − 2t(p+ iq)

) β
− 1√

1 + t2 − 2t(p− iq)
(
1− t+

√
1 + t2 − 2t(p− iq)

)α(
1 + t+

√
1 + t2 − 2t(p− iq)

) β
)
,

and

(28) G
(c)
I (p, q; t ;α, β) = 2α+β−1×(

1√
1 + t2 − 2t(p+ iq)

(
1− t+

√
1 + t2 − 2t(p+ iq)

)α(
1 + t+

√
1 + t2 − 2t(p+ iq)

) β
+

1√
1 + t2 − 2t(p− iq)

(
1− t+

√
1 + t2 − 2t(p− iq)

)α(
1 + t+

√
1 + t2 − 2t(p− iq)

) β
)
.
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In order to simplify (27) and (28), we directly use Lemma 1 and the well-known
Euler identity eiθ = cos θ + i sin θ to respectively obtain√

1 + t2 − 2pt− i 2qt =
√
ρ∗ e−iθ∗ ,

(
1− t+

√
1 + t2 − 2pt− i 2qt

)−α
=(

ρ∗ + (1− t)2 + 2(1− t)
√
ρ∗ cos θ∗

)−α2
e
αi arctan

√
ρ∗ sin θ∗

1−t+
√
ρ∗ cos θ∗ ,

and(
1 + t+

√
1 + t2 − 2pt− i 2qt

)−β
=(

ρ∗ + (1 + t)2 + 2(1 + t)
√
ρ∗ cos θ∗

)− β2
e
βi arctan

√
ρ∗ sin θ∗

1+t+
√
ρ∗ cos θ∗ ,

in which

ρ∗ =
√

(1 + t2 − 2pt)2 + 4q2t2 and θ∗ =
1

2
arctan

2qt

1 + t2 − 2pt
.

On the other hand, since

cos2(
1

2
arctan z) =

1 +
√

1 + z2

2
√

1 + z2
,

we have
√
ρ∗ cos θ∗ =

1√
2

√
ρ∗ + |1 + t2 − 2pt|,

and
√
ρ∗ sin θ∗ =

1√
2

√
ρ∗ − |1 + t2 − 2pt|.

The above results finally give the first kind of the sine and cosine generating func-
tions of Jacobi polynomials as follows

(
ρ∗+(1−t)2+

√
2(1−t)

√
ρ∗+|1+t2−2pt|

)−α
2
(
ρ∗+(1+t)2+

√
2(1+t)

√
ρ∗+|1+t2−2pt|

)− β
2

2−(α+β)
√
ρ∗

×sin
(
θ∗+α arctan

√
ρ∗−|1+t2−2pt|

√
2(1−t)+

√
ρ∗+|1+t2−2pt|

+β arctan

√
ρ∗−|1+t2−2pt|

√
2(1+t)+

√
ρ∗+|1+t2−2pt|

)

=

∞∑
n=0

(
n∑
k=0

c
(α,β)
n,k Sk

(1− p
2

,− q
2

))
tn,
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and

(29)(
ρ∗+(1−t)2+

√
2(1−t)

√
ρ∗+|1+t2−2pt|

)−α
2
(
ρ∗+(1+t)2+

√
2(1+t)

√
ρ∗+|1+t2−2pt|

)− β
2

2−(α+β)
√
ρ∗

×cos
(
θ∗+α arctan

√
ρ∗−|1+t2−2pt|

√
2(1−t)+

√
ρ∗+|1+t2−2pt|

+β arctan

√
ρ∗−|1+t2−2pt|

√
2(1+t)+

√
ρ∗+|1+t2−2pt|

)

=

∞∑
n=0

(
n∑
k=0

c
(α,β)
n,k Ck

(1− p
2

,− q
2

))
tn.

An interesting case in (29) is when q = λ(p−1) and p = x leading to a generalization
of the Jacobi polynomials as

P (α,β)
n (x;λ) =

n∑
k=0

c
(α,β)
n,k

(
1 + λ2

) k
2 cos

(
k arctanλ

)(1− x
2

)k
.

Similarly, to compute the second kind of the sine and cosine generating func-
tions of the Jacobi polynomials, we should first compute the following relations

G
(s)
II (z; p, q ;α, β) =

2α+β−1

i
×

(30)

((
1+(p+iq)2−2(p+iq)z

)− 1
2 ×(

1−(p+iq)+
√

1+(p+iq)2−2(p+iq)z
)−α(

1+p+iq+
√

1+(p+iq)2−2(p+iq)z
)−β

−
(
1+(p−iq)2−2(p−iq)z

)− 1
2×(

1−(p−iq)+
√

1+(p−iq)2−2(p−iq)z
)−α(

1+p−iq+
√

1+(p−iq)2−2(p−iq)z
)−β)

,

and

G
(c)
II (z; p, q ;α, β) = 2α+β−1×

(31)

((
1+(p+iq)2−2(p+iq)z

)− 1
2 ×(

1−(p+iq)+
√

1+(p+iq)2−2(p+iq)z
)−α(

1+p+iq+
√

1+(p+iq)2−2(p+iq)z
)−β

+
(
1+(p−iq)2−2(p−iq)z

)− 1
2×(

1−(p−iq)+
√

1+(p−iq)2−2(p−iq)z
)−α(

1+p−iq+
√

1+(p−iq)2−2(p−iq)z
)−β)

.
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In order to simplify (30) and (31), we can use Lemma 1 once again to respec-
tively get √

1 + (p+ iq)2 − 2(p+ iq)z =
√
R∗ eiφ∗ ,(

1− p− iq +
√
R∗ cosφ∗ + i

√
R∗ sinφ∗

)−α
=
(
q2+(1−p)2+R∗+2

√
R∗
(
(1−p) cosφ∗−q sinφ∗

))−α2
e
−αi arctan

√
R∗ sinφ∗−q√
R∗ cosφ∗+1−p ,

and (
1 + p+ iq +

√
R∗ cosφ∗ + i

√
R∗ sinφ∗

)−β
=
(
q2+(1 + p)2+R∗+2

√
R∗
(
(1+p) cosφ∗+q sinφ∗

))− β2
e
−βi arctan

√
R∗ sinφ∗+q√

R∗ cosφ∗+1+p ,

in which

R∗ =

√(
1 + p2 − 2pz − q2

)2
+ 4q2(p− z)2 and φ∗ =

1

2
arctan

2q(p− z)
1 + p2 − 2pz − q2

.

On the other side, since

√
R∗ cosφ∗ =

1√
2

√
R∗ + |1 + p2 − 2pz − q2|,

and √
R∗ sinφ∗ =

1√
2

√
R∗ − |1 + p2 − 2pz − q2|,

the above results eventually give the second kind of the sine and cosine generating
functions of Jacobi polynomials as follows:

1

2−(α+β)
√
R∗

(
q2 + (1− p)2 +R∗ + 2

√
R∗
(
(1− p) sinφ∗ − q sinφ∗

))−α2
(32)

×
(
q2 + (1 + p)2 +R∗ + 2

√
R∗
(
(1 + p) cosφ∗ + q sinφ∗

))− β2
× sin

(
φ∗ − α arctan

√
R∗ − |1 + p2 − 2pz − q2| − q

√
z√

R∗ + |1 + p2 − 2pz − q2| + (1− p)
√
z

− β arctan

√
R∗ − |1 + p2 − 2pz − q2| + q

√
z√

R∗ + |1 + p2 − 2pz − q2| + (1 + p)
√
z

)

=

∞∑
n=0

P (α,β)
n (z)Sn(p, q) (p2 + q2 < 1),
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and

1

2−(α+β)
√
R∗

(
q2 + (1− p)2 +R∗ + 2

√
R∗
(
(1− p) cosφ∗ − q sinφ∗

))−α2
(33)

×
(
q2 + (1 + p)2 +R∗ + 2

√
R∗
(
(1 + p) cosφ∗ + q sinφ∗

))− β2
× cos

(
φ∗ − α arctan

√
R∗ − |1 + p2 − 2pz − q2| − q

√
z√

R∗ + |1 + p2 − 2pz − q2| + (1− p)
√
z

− β arctan

√
R∗ − |1 + p2 − 2pz − q2| + q

√
z√

R∗ + |1 + p2 − 2pz − q2| + (1 + p)
√
z

)

=

∞∑
n=0

P (α,β)
n (z)Cn(p, q) (p2 + q2 < 1).

For instance, replacing p = 0 in (32) and (33) respectively give the generating
functions of odd and even degrees of Jacobi polynomials as follows

∞∑
n=0

P (α,β)
n (z)Sn(0, q) =

∞∑
n=0

P (α,β)
n (z) sin

nπ

2
qn =

∞∑
j=0

(−1)jP
(α,β)
2j+1 (z) q2j+1,

and
∞∑
n=0

P (α,β)
n (z)Cn(0, q) =

∞∑
n=0

P (α,β)
n (z) cos

nπ

2
qn =

∞∑
j=0

(−1)jP
(α,β)
2j (z) q2j .

There are some particular cases of Jacobi polynomials which can be defined
by a different type of their generating functions [6]. For instance, the Ultraspherical
(or Gegenbauer) polynomials

C(λ)
n (z) =

(2λ)n
n!

2F1

(
−n, n+ 2λ

λ+ 1
2

∣∣∣∣ 1− z
2

)
=

(2λ)n
n!

n∑
k=0

(−n)k(n+ 2λ)k

(λ+ 1
2 )k k!

(1− z
2

)k
,

have a generating function for λ > − 1
2 and λ 6= 0 as

(34) (1− 2tz + t2)−λ =

∞∑
n=0

C(λ)
n (z) tn |t| < 1.

Hence, the first kind of the sine and cosine types of (34) are computed as(
(1 + t2 − 2pt)2 + 4q2t2

)−λ2
sin
(
λ arctan

2qt

1 + t2 − 2pt

)
=
∞∑
n=0

(
n∑
k=0

(−n)k(n+ 2λ)k

(λ+ 1
2 )k k!

Sk

(
1−p

2 ,− q2
))

(2λ)n
tn

n!
,
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and (
(1 + t2 − 2pt)2 + 4q2t2

)−λ2
cos
(
λ arctan

2qt

1 + t2 − 2pt

)
=
∞∑
n=0

(
n∑
k=0

(−n)k(n+ 2λ)k

(λ+ 1
2 )k k!

Ck

(
1−p

2 ,− q2
))

(2λ)n
tn

n!
.

As well, the second kind of the sine and cosine generating functions of ultraspherical
polynomials are eventually computed as

(35)
(

(1 + p2 − q2 − 2pz)2 + 4q2(p− z)2
)−λ2

sin
(
λ arctan

2q(z − p)
1 + p2 − q2 − 2pz

)
=
∞∑
n=0

C(λ)
n (z)Sn(p, q),

and

(36)
(

(1 + p2 − q2 − 2pz)2 + 4q2(p− z)2
)−λ2

cos
(
λ arctan

2q(p− z)
1 + p2 − q2 − 2pz

)
=

∞∑
n=0

C(λ)
n (z)Cn(p, q).

For example, since

C(λ)
n (1) =

(2λ)n
n!

=

(
n+ 2λ− 1

n

)
,

replacing z = 1 in equations (35) and (36) yields

∞∑
n=0

(
n+ 2λ− 1

n

)
Sn(p, q) =

(
(1− p)2 + q2

)−λ
sin
(
λ arctan

2q(1− p)
(1− p)2 − q2

)
,

and

∞∑
n=0

(
n+ 2λ− 1

n

)
Cn(p, q) =

(
(1− p)2 + q2

)−λ
cos
(
λ arctan

2q(p− 1)

(1− p)2 − q2

)
,

where λ > − 1
2 and p2 + q2 < 1.

3.2 Trigonometric-Type Generating Functions of Laguerre Polynomials

For α > −1, the Laguerre polynomials

L(α)
n (z) =

(
n+ α

n

)
1F1

(
−n
α+ 1

∣∣∣∣ z) =

n∑
k=0

(−1)k
1

k!

(
n+ α

n− k

)
zk,
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satisfy the relation

(37) (1− t)−α−1 exp
( tz

t− 1

)
=

∞∑
n=0

L(α)
n (z) tn |t| < 1.

Hence, they can be extended through their sine and cosine generating functions as

(1− t)−α−1 exp
( pt

t− 1

)
sin
( qt

t− 1

)
=

∞∑
n=0

( n∑
k=0

(−1)k
1

k!

(
n+ α

n− k

)
Sk(p, q)

)
tn,

and

(38) (1− t)−α−1 exp
( pt

t− 1

)
cos
( qt

t− 1

)
=

∞∑
n=0

( n∑
k=0

(−1)k
1

k!

(
n+ α

n− k

)
Ck(p, q)

)
tn.

An interesting case in (38) is when q = λp and p = x leading to a generalization of
the Laguerre polynomials as

L(α)
n (x;λ) =

n∑
k=0

(−1)k

k!

(
n+ α

n− k

)(
1 + λ2

) k
2 cos

(
k arctanλ

)
xk.

Similarly, replacing t = p± iq in (37) respectively yields

(39)

−
(

(1−p)2+q2
)−α+1

2

exp
( (p(p−1)+q2)z

(1−p)2+q2

)
sin
( qz

(1−p)2+q2
+(α+1) arctan

q

p−1

)
=

∞∑
n=0

L(α)
n (z)Sn(p, q),

and

(40)(
(1−p)2+q2

)−α+1
2

exp
( (p(p−1)+q2)z

(1−p)2+q2

)
cos
( qz

(1−p)2+q2
+(α+1) arctan

q

p−1

)
=

∞∑
n=0

L(α)
n (z)Cn(p, q),

for p2 + q2 < 1. For instance, if q = 2p in (39) and (40) then

∞∑
n=0

(
√

5)n sin(n arctan 2)L(α)
n (z) pn =

−
(

1−2p+5p2
)−α+1

2

exp
( (5p− 1)pz

1− 2p+ 5p2

)
sin
( 2pz

1− 2p+ 5p2
+(α+1) arctan

2p

p− 1

)
,
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and

∞∑
n=0

(
√

5)n cos(n arctan 2)L(α)
n (z) pn =

(
1−2p+5p2

)−α+1
2

exp
( (5p− 1)pz

1− 2p+ 5p2

)
cos
( 2pz

1− 2p+ 5p2
+(α+1) arctan

2p

p− 1

)
,

which are valid for any p ∈ (−
√

5
5 ,
√

5
5 ).

3.3 Generating Functions of Hermite Polynomials

The Hermite polynomials

Hn(z) = (2z)n2F0

(
−n2 , −

n−1
2

−

∣∣∣∣ − z−2

)
=

[n2 ]∑
k=0

(−1)k n! 2n−2k

k!(n− 2k)!
zn−2k,

satisfy the relation

(41) exp
(
2tz − t2

)
=

∞∑
n=0

Hn(z)
tn

n!
.

Hence

exp
(
2pt− t2

)
sin(2qt) =

∞∑
n=0

( n
2∑

k=0

(−1)k n! 2n−2k

k! (n− 2k)!
Sn−2k(p, q)

) tn
n!
,

and

exp
(
2pt− t2

)
cos(2qt) =

∞∑
n=0

( [n2 ]∑
k=0

(−1)k n! 2n−2k

k! (n− 2k)!
Cn−2k(p, q)

) tn
n!
,

are known as the first kind of the sine and cosine types of Hermite polynomials
generating functions. Moreover, taking t = p ± iq in (41) gives the second kind of
the sine and cosine generating functions as follows

exp
(
2pz + q2 − p2

)
sin
(
2q(z − p)

)
=

∞∑
n=0

Hn(z)

n!
Sn(p, q),

and

exp
(
2pz + q2 − p2

)
cos
(
2q(z − p)

)
=

∞∑
n=0

Hn(z)

n!
Cn(p, q).

For instance, for q = p we have

exp(2pz) sin
(
2p(z − p)

)
=

∞∑
n=0

(
√

2)n sin(
nπ

4
)Hn(z)

pn

n!
,
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and

exp(2pz) cos
(
2p(z − p)

)
=

∞∑
n=0

(
√

2)n cos(
nπ

4
)Hn(z)

pn

n!
,

where λ∗n = (
√

2)n

n! sin(nπ4 ) and λ∗n = (
√

2)n

n! cos(nπ4 ) in (2) respectively.

4. SINE AND COSINE TYPES OF GENERATING FUNCTIONS OF
SOME WIDELY-INVESTIGATED NUMBERS

Following the same approach, we can now define the sine and cosine types
of generating functions of Sheffer polynomials and as special cases, introduce the
trigonometric types of generating functions of some well-known sequences of num-
bers in the literature such as Bernoulli, Euler, Genocchi and in general Apostol
type of them.

By noting the identity (3), the first kind of the sine and cosine types of Sheffer
polynomials generating functions are given by

f(t) exp
(
pH(t)

)
sin
(
qH(t)

)
=

∞∑
n=0

( n∑
k=0

s
(k)
n (0)

k!
Sk(p, q)

) tn
n!
,

and

f(t) exp
(
pH(t)

)
cos
(
qH(t)

)
=

∞∑
n=0

( n∑
k=0

s
(k)
n (0)

k!
Ck(p, q)

) tn
n!
.

Also, the second kinds respectively read as

1

2i

(
f(p+ iq) exp

(
zH(p+ iq)

)
− f(p− iq) exp

(
zH(p− iq)

))
=

∞∑
n=0

sn(z)

n!
Sn(p, q),

and

1

2

(
f(p+ iq) exp

(
zH(p+ iq)

)
+ f(p− iq) exp

(
zH(p− iq)

))
=

∞∑
n=0

sn(z)

n!
Cn(p, q).

4.1 Trigonometric Types of Generating Functions of Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi Numbers

As we pointed out, the first kind of Apostol-Bernoulli, Apostol-Euler and
Apostol-Genocchi polynomials and their associated numbers have been introduced
in [31] by defining six specific generating functions. For instance, the first kind of
the sine and cosine types of the generating functions for Apostol-Bernoulli polyno-
mials are given by

t

λet − 1
ept sin qt =

∞∑
n=0

B(s)
n (p, q;λ)

tn

n!
,
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and
t

λet − 1
ept cos qt =

∞∑
n=0

B(c)
n (p, q;λ)

tn

n!
,

in which

B(s)
n (p, q;λ) =

n∑
k=0

(
n

k

)
Bn−k,λSk(p, q),

B(c)
n (p, q;λ) =

n∑
k=0

(
n

k

)
Bn−k,λCk(p, q),

and Bn−k,λ is defined according to (7).

Now to comput the second kind of the sine and cosine types of the generating
functions for Apostol-Bernoulli polynomials, it is enough to refer to the generating
function of these polynomials in (4) to respectively obtain

epz
((
λep(p cos q + q sin q)− p

)
sin(qz)−

(
λep(p sin q − q cos q)− q

)
cos(qz)

)
λep(λep − 2 cos q) + 1

=

∞∑
n=0

Bn(z;λ)
Sn(p, q)

n!
,

and

epz
((
λep(p cos q + q sin q)− p

)
cos(qz) +

(
λep(p sin q − q cos q)− q

)
sin(qz)

)
λep(λep − 2 cos q) + 1

=

∞∑
n=0

Bn(z;λ)
Cn(p, q)

n!
.

Hence, the Apostol-Bernoulli numbers Bn,λ = Bn(0;λ) satisfy the relations

q − λep(p sin q − q cos q)

λep(λep − 2 cos q) + 1
=

∞∑
n=0

Bn,λ
Sn(p, q)

n!
,

and
λep(p cos q + q sin q)− p
λep(λep − 2 cos q) + 1

=

∞∑
n=0

Bn,λ
Cn(p, q)

n!
.

Similarly, by considering the generating function of Apostol-Euler polynomi-
als in (5), it can be shown that the corresponding sine type is given by

2epz
(

sin(qz) + λep
(

cos q sin(qz)− sin q cos(qz)
))

λep(λep + 2 cos q) + 1
=

∞∑
n=0

En(z;λ)
Sn(p, q)

n!
,
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and the cosine type by

2epz
(

cos(qz) + λep
(

cos q cos(qz) + sin q sin(qz)
))

λep(λep + 2 cos q) + 1
=

∞∑
n=0

En(z;λ)
Cn(p, q)

n!
.

This means that the Apostol-Euler numbers En,λ = En(0;λ) satisfy the relations

−2λep sin q

λep(λep + 2 cos q) + 1
=

∞∑
n=0

En,λ
Sn(p, q)

n!
,

and
2
(
1 + λep cos q

)
λep(λep + 2 cos q) + 1

=

∞∑
n=0

En,λ
Cn(p, q)

n!
.

Finally, by considering the generating function of Apostol-Genocchi polyno-
mials in (6), we respectively obtain

2epz
((
p+ λep(p cos q + q sin q)

)
sin qz +

(
q + λep(q cos q − p sin q)

)
cos qz

)
λep(λep + 2 cos q) + 1

=

∞∑
n=0

Gn(z;λ)
Sn(p, q)

n!
,

and

2epz
((
p+ λep(p cos q + q sin q)

)
cos qz −

(
q + λep(q cos q − p sin q)

)
sin qz

)
λep(λep + 2 cos q) + 1

=

∞∑
n=0

Gn(z;λ)
Cn(p, q)

n!
.

Therefore, the Apostol-Genocchi numbers Gn,λ = Gn(0;λ) satisfy the relations

2
(
q + λep(q cos q − p sin q)

)
λep(λep + 2 cos q) + 1

=
∞∑
n=0

Gn,λ
Sn(p, q)

n!
,

and
2
(
p+ λep(p cos q + q sin q)

)
λep(λep + 2 cos q) + 1

=

∞∑
n=0

Gn,λ
Cn(p, q)

n!
.

Note that sine and cosine types of generating functions of other well known
sequences of numbers such as combinatorial numbers and polynomials associated
with Peters polynomials [30] can be defined through our approach.
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