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ANOTHER TWO FAMILIES OF INTEGER-VALUED
POLYNOMIALS ASSOCIATED WITH FINITE
TRIGONOMETRIC SUMS

Durde Cvijovié

As a sequel to our recent paper, its general approach was here extended to
finite alternating trigonometric sums giving rise to polynomials which were
systematically examined in full detail as well as in a unified manner using
simple arguments. Two new general families of integer—valued polynomials
(along with four other families derived from them, also integer—valued, in-
cluding two already known) were deduced. Also, these polynomials enable
closed-form summation of a great deal of general families of finite sums.

1. INTRODUCTION

A polynomial P,(z) := an2"™ + ap_12" ' + ... + a1x + ap, n € N :=
{1,2,3,...,}, where the coefficients a, k¥ € Ny := N U {0}, are, in general, ra-
tional numbers, is called integer—valued (numerical or integral-valued) if it takes
an integer value whenever z is an integer. These polynomials have been studied
considerably ever since (see, for instance, [10, pp. 129-133] and [4]; see also [7] for a
recent interesting result) and the most known example is the sequence of binomial
coefficients {(7)}o2 o with (§) =1 and (7)) =z(z —1)(z —2) - (x —n+1)/nl.

Observe that, by making use of the Lagrange interpolation formula, Byrne
and Smith [3, Theorem 2] derived for the first time the integer—valued polynomial
sequence associated with the cotangent sum » 7 _, cot?™ [(2p — 1)m/(4 q)] whose co-
efficients could be determined recursively from certain relations. Two additional
the integer—valued polynomials associated with Y3!_; cot®™ [(2p — 1)7/(2(2q + 1))]
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and >0, ese? [(2p — 1)7/(2(2q + 1))] were explicitly defined by Hassan (see, re-
spectively, Theorem 4.3 and Eq. (3.18) together with Remark 4.5 (2) in [8, pp.
822 and 817]) utilizing a sampling theorem associated with second-order discrete
eigenvalue problem.

Recently, in an attempt to examine in a more detail various integral-valued
polynomials arising in summation of some finite trigonometric sums [1-3,8], Cvi-
jovié [5, Theorem 1] deduced two new very general families of integer—valued poly-
nomials with rational coefficients, {Asay, (2)}52 o and {Bay, (2)}52 o. In addition, six
other polynomial families were derived from them, also integer—valued, including
three previously studied [3,8]. These polynomial sequences are associated with and
provide easy closed-form summations of numerous families of finite trigonometric
sums (for more details about this topic see, for instance, [6,9] and relevant refer-
ences therein) in a compact and simple form [5, Corollary 2], the most important
instances being [5, Theorem 2]:

f_:lcot% (%) ~ Asn(g) and ilcsc% (%) — Ban(e)  (nqEN).

Note, however, that, instead technical and specialized (numerical analysis) meth-
ods, by making use of simpler and more familiar arguments commonly used in work
with polynomials in general, Cvijovi¢ [5] established the existence and properties
of {Aon(2)}52 o and {Ba,(x)}22, (and their special cases) in a systematic and
unified manner as well as in a general context.

Herein, as a sequel to our recent work on integer—valued polynomials, it was
aimed to extend the paper’s general approach [5] to finite alternating trigonometric
sums giving rise to such polynomials. In doing so, by avoiding specialized meth-
ods, examples being the Lagrange and Hermite interpolation, the main intention
was to provide, in a general context as well as in systematic and unified manner,
more straightforward proofs for some already known and to (possibly) generate and
prove new results using simple and more familiar arguments commonly applied in
characterisation of polynomial sequences. In addition, it was also intended to fully
examine closed—form summation of certain associated finite sums.

2. STATEMENT OF MAIN RESULTS

Observe that, throughout the text, as usual, we set an empty sum to be zero.
Our main results are as follows.

Theorem 1. Define two sequences of real functions in x, {@on1(x)}>, and
{PBaont1(x)}2 o, by generating relations

Go(w,t) =Y Shonp1(@) " and  Ggla,t) =Y Bonia(z)t*" ),
n=0 n=0
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where
2t
Gy (z,t) = 7 _:; sec [2x arctan t]
and
24 1)t

Cale,t) = %

Then, we have that {eoni1(x)}22 o and {PBant+1(2)}52y are sequences of
integer—valued polynomials with rational coefficients defined explicitly by

sec[(2x + 1) arcsint] .

(1)

Ao (z) = (_1)n2xz 2%2(_1)1 <Il€> Z (2(2;;1):5) <(2l+2)ﬂc—;n—m>

k=0 1=0

and by

2n k
(2)  Poni(@)=(-D" 2z +1) kz;; 22k ;(—1)1 (?) <(2x - 1;? v ”) :

Also, {1 (2)}13% 0 {F50 11 ()} 00 { B3, 11 (0) 152 o and {257, () 152 o wiith the
polynomials given as gy ((x) = Ghony1(2)/2, Bt 1(2) = (Bonti(z) +1) /2,
Brr(@) = (Bonsr (1) — 1) /2 and Bonar(z) = ()22 + DAE(z) are se-

quences of integer—valued polynomials.

Theorem 2. Let {eh,11(2)}52 o and {PBan+1(2)}52 o be the sequences of integer—
valued polynomials defined as in Theorem 1.
Then, for any non—negative integer n and any positive integer q, we have that

ottt (B0 g

p=1 4q

and

2q+1 T
Z (_1)?*1 S€C2n+1 (2q—~_1) = %2%"{‘1((]).
p=1

Remark 1. Among six sequences of integer—valued polynomials given by Theorem
1, only {1 (x)}52 g and {%5) (x)} 2 o were studied previously.

Byrne and Smith [3, Theorem 1], evaluating the alternating cotangent sum
(3) in closed form, established the polynomials 27, | (x) with coefficients specified
by recursive relations, which was also used in the summation (up to a multiplicative
constant) of the finite sum (4) [8, Egs. 3.13 and 4.21]. Note, however, that <7, | (z)
are here defined explicitly (divide the formula (1) by 2) and that they are special
case of more general 2%, 11(x).
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Hassan showed that the sums (5) [8, Egs. 3.21 and 4.23] and (6) [8, Eq. 3.48]
are integer—valued and summed them up by means of the following polynomials [8,
Lemma 4.1]

1

=1

% cos (( + 1)) + cos (z6) |,

where A\ = cos 6, which, in essence, are our %3 () (equal to the double sum in (2))
[cf. (5) and (6) with [8, Remark 4.2 and Eq. 4.23]; 2”72 in [8, Eq. 4.23] should be
2r—1].

Corollary 1. In terms of the integer—valued polynomials introduced by Theorem 1,
for non—negative integers n and positive integers q, the following summations hold

() Hunsla) = § or@) = Do (17 oort (L)

? = 1q
) = (- Zq;l(—up—ltanw (%) 7
) 5(Frnato) - 17 = ,,i(‘”pj st (=)
- (1)qpilsec%“ (Zflpfl) _ (Uqlpilsecml ((222%)
© = (—1>q1pf1<—1>Plsec2"+l (325) - 3 (cvrearvame - ).

3. PROOF OF THE RESULTS

To establish the main results, for a better clarity of the proofs, we need several
auxiliary (mainly known) results collected as two lemmas and proved in detail for
the sake of a self-contained presentation. Observe that the summation in Lemma
1 (b) could not be found in the literature, and it may be of some independent
interest.

Lemma 1. Let 6§ and 6 be real numbers and let n be a positive integer. Then, the
following summations holds true:
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. . (k) (2kt)m
. RS (5 + ) cos (6 + 5 ) 2n cosnf cos nd .
a) z(il) (2k+1) = cos(2n0) + cos(2nd) (nis even);
™ cos(2n cos(2n
cos? 0 — cos? (5 + T)

km
cos (5 + 7) 2nsin (ng) cos nf cos nd

n—1
b —1)* = is odd).
) 1;)( ) sin2 0 — cos? (5 + kj) cos 0( cos(2nd) + cos(2nd)) (nisodd)

Proof of Lemma 1. It is necessary to begin by deriving the next two summation
formulae (see, for instance, [13, Egs. (1.0.2a) and (1.0.2b)],

% n(l — ") B nil 1—2?
2 —2amcosnd +1 L= 22 —2xcos (6 + 2ET) +1
and
8) nz" sin né _ "il Z sin (5 + %TW)
2 —2ancosnd +1 = ¥? — 2z cos (64 2Em) +1
Let w, = e, n € N, be a primitive root of unity. Then, the factorisation
1—2" = [[;Z% (1 — zwk) of a polynomial P,(z) = 1 — 2" leads to the partial

fraction decomposition of n/(1 — 2™)

n—1
n 1
9 = .
©) 1—2m k;)l—zwfg

Upon setting z = x e in (9) followed by taking real and imaginary parts, one
obtains respectively

n(l—x”cosné) _”z_:l 1—xcos(6+2k”)

n_
22" — 2z cosnd +1

10
(10) x2—2xcos((5—|—2kT”)+1

k=0
and the summation (8). Replace « by 1/z in (10), so that (10) yields

n—1

na" (z" — cosnd) z? — zcos (6 4+ 2ET)
227" — 2 cosnd + 1 7kzox2 —21’COS((5+21€T7T) +1

(11)

At last, the desired formula (7) results upon subtracting (11) from (10).
In order to establish Part (a) (cf. [13, Eq. (3.0.1a)]), first note that the
summation

n—1 gin (5 + %’T) cos (6 + %ﬂ) nsin(2nd)
i—o cos26f — cos? (5 + %ﬂ) - cos(2nf) — cos(2nd)

(12)
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follows at once from (8) on putting z = €2* and cos?6 = (1 + 2)?/(4x) in the
expression LHS = RHS with

LHS -— nx™ sin(2 nd) B nsin(2nd)
©ox2n—2gm cos(2nd) +1  a" + a7 —2 cos(2nd)

and

n-t xsin(26+2k”)

z2 sm(5—|— ’”)cos(&—i—k—
(

RHS := =
Z —2$COS(25+2’”F +1 (14 x)? —2x[1+cos(2

:O

E

1”7 sin (6 + %) cos (6 + %)
2 g (14 x)2/(4x) — cos? (5+ kT”)

Next, after replacing ¢ with § + 7/(2n), the summation formula (12) becomes

n—1 gin (5 + M) cos (5 + %) nsin(2nd)

13 - _
(13) — cos2 0 — cos? (5 e k+1)7r) cos(2nb) + cos(2nd)’

ing

2n

while (13) could be further rearranged to give

14 _ .
(14) Z cos2 0 — cos2 (5 + W) sinnd + cosnf

k is even

Subtracting (13) from (14) results finally in the proposed summation in Part (a).
To prove Part (b), we need the following easily derivable summation

n—1 . .
sinf cos 6 nsin(2nd)

15 = e N).
1 k=0 cos? 0 — cos? (5 + ’%) cos(2nf) — cos(2nd) (neN)

Indeed, the deduction of (15) is enabled by (7) on putting = €2*’ and cos? § =
(14 z)?/(4x) in LHS = RHS, with

n(l —22")(1 + )2 _ n(x™ —x™™) 1+
(227 — 22 cos(2nd) + 1) (1 — 22) a4 am—2cos(2nd) 1 —x

LHS :=
and

n—1 n—1

(1+x)2 (1+2)2/(4x)

RHS := '
kz::o1—’_”®2_2$COS(25+2]€7T kzz:o 1+2)%/(4x) — cos? (§ + £X)
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On the other hand, (7) can be also rewritten as

n(l —z?)(1 + 2?) Z (1+22)/(2x)
(1+ 22" — 22" cosnd)(1 — x2) (1+22)/(2z) — cos (§ + 2Em)

)

which, through substitutions = €' and (1 + 22)/(2z) = cos#, results in

n—1 n—1

n sin né cot 6 cosf cosf

cosnf — cosnd :;,COSO*COS (5+%) :ICZZOCOSQ, (=1)* cos (5+ i%r)

(16)

when 7 is an odd natural number. Now, the difference between (16) and (15) times
cos 6 gives

nil( 1)k oS (5+ %T) 2nsinnf cosnd (nisodd)
_ _ : '
k=0 cos? § — cos? (5 + ’%r) sin 0 ( cos(2n6) — cos(2nd))

Finally, the sought formula given in Part (b) follows from the last equation after
replacing 6 with 6 + 7/2.

Lemma 2. We have that:

a) The formal power series expansion of the secant function is given by

sect = Z 2k Z ( ) er@e,
=0

b) If t = tand, then

R [ AN - 1k: « t2k .
()= 20 (M)(m)a’

c) If t =sin#, then

e?) i < >t2k( 1 —t2)a"2k,

Proof of Lemma 2. The required formal power series follows without difficulty

20 St
_ € Y —k 219 _ o k 210
Secail—(l—e%a)ﬂie kEZOQ ( = E 2” E ( ) .

k=0 =0

To obtain Re (e*?) with ¢ = tan 6, recall that tan6 = +(e*? —1)/(e**Y + 1), then

1—at 1 —at)? 11—t
220 _ w_ | t) hence e = !

1+ 1+t Vit
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and the sought follows by the expansion of 1 — ¢t. Likewise, ¥ = 1t + /1 — t2
comes from ¢t = sin@ and 21sinf = e — e=*? thus the series of 1t + /1 — ¢2 gives
Re (e‘“a).

Proof of Corollary 1. Knowing that Theorem 2 holds (see its proof below), the
proposed summations are readily derivable by simple arguments and by making
use of elementary series identities. For instance, to show that

Spi= > (=P et [(2p — )7 /(4 )] = Hon-1(q)/2,

p=1
it suffices to note that @, _1(q) = S1 + Sz where

2q

Sy = Z (=Pt eot>™  [(2p— 1)m/(4q)]

p=q+1

amounts to

i 2(2 1—p)—1
Sy = Z(_l)Q‘Z—PCo‘Qn—l ([ ( q+ v p) ]ﬂ—> = 9.
p=1

Proof of Theorem 1. This theorem gives explicit definitions of the polynomials
ont1(2) and PBani1(x) and to deduce them we need Lemma 2.

To derive the proposed formula for 27,41 (z) in (1), set ¢ = tan # and combine
Parts (a) and (b) of Lemma 2. Then we have

(oo}

k
2tx 2tx _ k ) =
G (z,t) = T e [2zarctant] = ey E 27k E (—l)l(l> Re (&2 21D #0)
k =0

=0

[eS) k
(7) =w) 27" (<) (’f) Xon.i(a,1)

k=0 1=0

where X, 1(z,t) can be further rearranged as follows

- m 221+ 1)x 2t
Xm,z(m,t):mzzo(_l) < ( o ) >(1+tQ)(21+1)z+1
_ Z (—1)mg2mL <2(2;;1)x> Z(—l)"t2"<(2l +?11)x—|—n>
— SRS (1)m+nt2m+1+2n(2(2l+l)z> ((2l+1)x+n)
TLZ:OmZ:O 2m n
IRl n—m)tm, 2mt142(n—m) [ 21+ 1Dz (21 + 1)z +n—m
S ani e (2214 1)z [@l+ Dz +n—m
(18) —7;0(—1)15 * ng( 2m )( n—m >
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by making use of the familiar summation 1/(1 — ¢t)>™1 = 3> (“ +”)t" [11, Eq.
5.2.11.16, p. 710] as well as the identity 0" (> 2" g Ak.n = Doro 2o Ak, n—k
[12, Eq. (1), p. 56]. Next, in view of both equations, (17) and ( 8), coefficients

with odd powers of ¢ in the expansion of G (x,t) with respect to ¢ are:

1t " (22l+ Dz [(2l4+ Dz +n—m
e e () 2 () ()
The inner double sum (with respect to [ and m) in the last expression is the kth
difference operation on a polynomial with degree 2n, therefore it will vanish if
k > 2n. Hence, the upper limit for k is 2n, which leads to the explicit formula for
the polynomial sequence {@%,11(2)}52  given in (1).

To deduce the formula for the polynomials %o, 1(z) in (2) we apply Parts
(a) and (c) of Lemma 2 and set t = sin 6.

Ga(z,t) = (2317\/;2{/ sec [(2z + 1) arcsin |
20+ 1)t o= 1 W(21+1)(2z+1
2t s e S () o)
(19) — e+ 1) > 23 (1) <’;> Yo 1(2,1)
k=0  1=0

with Y;, i(z,t) given by
N mpzmtt (20+1)(2z + 1) 2(21+D)z+2(1—m)
Yoo 1(z, 1) = ZO(—U t ( - (V1-12)
(21+1 Y2z +1) Qz+1Dl4+z—m
P (2z+1 Y2z +1)\[Qz+1D)i4+z—m
(-t (

m=0

3
I

(71)mt2 m—+1

I
NgE

3
I

M

3
Il
o

gL

(20) - 2n

Il
<}

n

where, to obtain the second, third and last line, we utilized respectively the binomial
summation (1+z)* = Y>°_ (%) 2™, the above-listed double series identity and the
following identity involving blnomlal coefficients > _ (22‘1 ;fbl) (a=m) = 22n (%)
[11, Eq. 4.2.5.81, p. 621]. Finally, the explicit formula for the polynomial sequence
{PBan+1(x)}22 , given by (2) follows by extracting coefficients with odd powers of
t in the expansion of Gg(x,t) (i.e., (19) and (20) combined together) with respect
to t and using the above—detailed ”difference operation” argument.

To conclude the proof, it is known that <7, () [3, Theorem 1] and %45 (x)
[8, Eq. 4.23] are integer—valued (see Remark 1). What remains is to demon-
strate that @%,11(x) and PBa,11(x) as well as their two other special cases intro-
duced by Theorem 1 are all integer—valued. For @, 1(z) and HBay,y1(x) this is
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straightforward: recall the relationships 7,1 (x) = 2.9, () and HBapi1(x) =

(=D)"(2z + 1) $B5x(x). Moreover, since %5 (x) is always an odd number for any

integer x [8, Eq. 4.23], it follows then that %a,1(z) is such, hence %3 | (x) and
ons1(2) are integer—valued too on account of their definitions.

Proof of Theorem 2. To prove this theorem the main ingredient in the proof is
Lemma 1.

The summation formula in Lemma 1 (a) (which is valid for even positive
integers) enables verification of the proposed summation involving the integer—
valued polynomials @, +1(z). Indeed, bearing in mind that ¢ is a positive integer
and that ¢ = tan @, we have

sin 0 sin 0 2 x cos 26 cos xd
- cos(2x6) + cos(2 z0)

sin 0 cos 0 sin ((2’“4;1)”) cos (01’4;1)")
q q
082 0 — cos? (M)
4q
sin 0 cos 6 sin ((2p4_1)"> cos ((2p4_1)")
q q
sin? (%) cos? 0 — cos? (%) sin? 0

(1)1 tanf tan? (22527
=3 1
p=1 tan (%) tan? (%) —tan?0

2q %) 2n
_ (71)1,,1 tan 6 Z tan 6
- ((2P—1)7f) tan (<2p—1)7r)
4q 4q

2xt
Gor(2,8)| ey = 1 —&:—rtQ sec (2z arctant)

z=2q,6=0

=3y

=y

p=1 tan n =0
oo 2q
_ _1\p-1 2n+1 (2]9 - 1)7T 2n+1
= Z Z( 1)*7" cot e tan 0
n =0 p=1 q
- Z 52{277,«&»1(1') t2 et
n =0

Analogously, set ¢ = sin 6 and use Lemma 1 (b) (which is valid for odd positive
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integers) to obtain summation involving the integer—valued polynomials %a,,+1(x):

(2at+1)t

Ga(z,t)|,_, = ———==sec ((2z + 1) arcsint)
a V1—t2 e=gq
" 2 xsin(z %) cos 6 cos x0
= sin
0089(008(2 xd) + cos(2 x@)) S—z rmagin
2g+1 : p
_ Z (71)1771 sin 0 cos (2q+1)
=1 sin? 6§ — 0052< s, )
2q+1 0o 2n
sm9 sin 6
S s (L)
=1 cos 2q+1 n=0 \COS 2q+1
%) 2qg+1 P
= —1)P~tgec? ( ) sin?"*t1 ¢
7;) ( p; -y 2q+1
_ Z %2n+1( )t2n+1
n =0

4. CONCLUDING REMARKS

Two new very general families of integer—valued polynomials with rational
coefficients which are associated with finite alternating trigonometric summation,
ont1(x) and PBani1(x), were introduced. As illustrative examples for reference,
we list a few of them, respectively generated by

1 d2n+1
JZ{2n+1(517) = (2n T 1)| dg2n+1 Gﬁ(l’,t) o (TL € NO)

and . Lt
Poni1(7) = (2n + 1)! de2ntl Galo,1) o (n € No)

or by means of the corresponding formula given in Theorem 1. In general, o, 11 ()
is of degree 2n + 1 in x, 9%, 11(0) = 0 and these first several polynomials are

)
3
s(x) =4z" — 2z,
5
As(z) =L a° — —m +2$,
_ 488 .7 _ 140 .5 | 3923 _
r(x) =5 5 ® 4 =T —2x
1108 |9 _ 488 5 _ 3272 3
(x) = g5 @ f—x + B2 - 225% 4 22
_ 404168 12188 19 | 42044 7 _ 20108 .5 | 2068 ;3 _
i (r) = Tir5 z! 80 £t %5 T 567 "+ 175 o’ —2z.
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Likewise, %2 n+1(x) are of degree 2n + 1, Aa,,41(0) = 1 and first examples are

P (33) =2x+1,

By (x) = 4a® + 62° + 4z + 1,

Bs(x) = D2 + 202" +200° + La? + Ly 41,

Br(x) = 288 o7 4 1708 ;6 4 2012,5 | 602, 4+% 3+% P4 32p41

Bo(x) = 1108 29 4 554 4B 4 18928 7 | 1208 46 | 3476 45 4 G0t
+2§411?)6m+1024x+ﬁm+1

B (x) = 41044117658 Rt 212&2?4 o104 1202872 0 | 98978 |8 | 1413016 ;7 4 551012 6
A R 1 A L

In addition, four more example sets for @, ,(z), B3t . (x), B5, .1 (2)
and B3*(x) are readily available, since @ ,y1(x) and Hap,y1(x) include these
integer—valued polynomials as special cases. Observe that four of these six polyno-
mial sequences were not previously studied, @ ,41(z), Pani1(x), Bs1 i1 (2) and
5mt1(x). The considered polynomials enable closed-form summation of a great
deal of general families of finite sums involving odd-powered trigonometric func-

tions.

In conclusion, it is noteworthy that, thanks to considering integral—valued
polynomials arising in finite summation of various trigonometric sums by making
use of simple and familiar arguments commonly used in work with polynomials in
general, instead of applying rather specialized methods of previous works in this
topic, more straightforward proofs for some already known and a number of new
results were provided in a general context as well as in a systematic and unified
manner.
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