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ANOTHER TWO FAMILIES OF INTEGER–VALUED
POLYNOMIALS ASSOCIATED WITH FINITE

TRIGONOMETRIC SUMS

D- urd-e Cvijović

As a sequel to our recent paper, its general approach was here extended to

finite alternating trigonometric sums giving rise to polynomials which were

systematically examined in full detail as well as in a unified manner using

simple arguments. Two new general families of integer–valued polynomials

(along with four other families derived from them, also integer–valued, in-

cluding two already known) were deduced. Also, these polynomials enable

closed-form summation of a great deal of general families of finite sums.

1. INTRODUCTION

A polynomial Pn(x) := anx
n + an−1x

n−1 + . . . + a1x + a0, n ∈ N :=
{1, 2, 3, . . . , }, where the coefficients ak, k ∈ N0 := N ∪ {0}, are, in general, ra-
tional numbers, is called integer–valued (numerical or integral–valued) if it takes
an integer value whenever x is an integer. These polynomials have been studied
considerably ever since (see, for instance, [10, pp. 129–133] and [4]; see also [7] for a
recent interesting result) and the most known example is the sequence of binomial
coefficients {

(
x
n

)
}∞n= 0 with

(
x
0

)
= 1 and

(
x
n

)
= x(x− 1)(x− 2) · · · (x− n+ 1)/n!.

Observe that, by making use of the Lagrange interpolation formula, Byrne
and Smith [3, Theorem 2] derived for the first time the integer–valued polynomial
sequence associated with the cotangent sum

∑q
p=1 cot2n [(2p− 1)π/(4 q)] whose co-

efficients could be determined recursively from certain relations. Two additional
the integer–valued polynomials associated with

∑q
p=1 cot2n [(2p− 1)π/(2(2q + 1))]
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and
∑q
p=1 csc2n [(2p− 1)π/(2(2q + 1))] were explicitly defined by Hassan (see, re-

spectively, Theorem 4.3 and Eq. (3.18) together with Remark 4.5 (2) in [8, pp.
822 and 817]) utilizing a sampling theorem associated with second–order discrete
eigenvalue problem.

Recently, in an attempt to examine in a more detail various integral–valued
polynomials arising in summation of some finite trigonometric sums [1–3, 8], Cvi-
jović [5, Theorem 1] deduced two new very general families of integer–valued poly-
nomials with rational coefficients, {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0. In addition, six
other polynomial families were derived from them, also integer–valued, including
three previously studied [3,8]. These polynomial sequences are associated with and
provide easy closed-form summations of numerous families of finite trigonometric
sums (for more details about this topic see, for instance, [6, 9] and relevant refer-
ences therein) in a compact and simple form [5, Corollary 2], the most important
instances being [5, Theorem 2]:

q∑
p=1

cot2n
(

(2p− 1)π

2 q

)
= A2n(q) and

q∑
p=1

csc2n
(

(2p− 1)π

2 q

)
= B2n(q) (n, q ∈ N).

Note, however, that, instead technical and specialized (numerical analysis) meth-
ods, by making use of simpler and more familiar arguments commonly used in work
with polynomials in general, Cvijović [5] established the existence and properties
of {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 (and their special cases) in a systematic and
unified manner as well as in a general context.

Herein, as a sequel to our recent work on integer–valued polynomials, it was
aimed to extend the paper’s general approach [5] to finite alternating trigonometric
sums giving rise to such polynomials. In doing so, by avoiding specialized meth-
ods, examples being the Lagrange and Hermite interpolation, the main intention
was to provide, in a general context as well as in systematic and unified manner,
more straightforward proofs for some already known and to (possibly) generate and
prove new results using simple and more familiar arguments commonly applied in
characterisation of polynomial sequences. In addition, it was also intended to fully
examine closed–form summation of certain associated finite sums.

2. STATEMENT OF MAIN RESULTS

Observe that, throughout the text, as usual, we set an empty sum to be zero.
Our main results are as follows.

Theorem 1. Define two sequences of real functions in x, {A2n+1(x)}∞n= 0 and
{B2n+1(x)}∞n= 0, by generating relations

GA (x, t) =

∞∑
n= 0

A2n+1(x) t2n+1 and GB(x, t) =

∞∑
n= 0

B2n+1(x) t2n+1,
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where

GA (x, t) =
2 tx

1 + t2
sec [2x arctan t]

and

GB(x, t) =
(2x+ 1) t√

1− t2
sec [(2x+ 1) arcsin t] .

Then, we have that {A2n+1(x)}∞n= 0 and {B2n+1(x)}∞n= 0 are sequences of
integer–valued polynomials with rational coefficients defined explicitly by

(1)

A2n+1(x) = (−1)n 2x

2n∑
k=0

1

2k

k∑
l=0

(−1)l
(
k

l

)
n∑

m=0

(
2 (2 l + 1)x

2m

)(
(2 l + 1)x+ n−m

n−m

)

and by

(2) B2n+1(x) = (−1)n (2x+ 1)

2n∑
k=0

22n−k
k∑
l=0

(−1)l
(
k

l

)(
(2x+ 1) l + x+ n

2n

)
.

Also, {A ∗2n+1(x)}∞n= 0, {B∗+2n+1(x)}∞n= 0, {B∗−2n+1(x)}∞n= 0 and {B∗∗2n(x)}∞n= 0 with the

polynomials given as A ∗2n+1(x) = A2n+1(x)/2, B∗+2n+1(x) = (B2n+1(x) + 1) /2,

B∗−2n+1(x) = (B2n+1(x)− 1) /2 and B2n+1(x) = (−1)n(2x + 1)B∗∗2n(x) are se-
quences of integer–valued polynomials.

Theorem 2. Let {A2n+1(x)}∞n= 0 and {B2n+1(x)}∞n= 0 be the sequences of integer–
valued polynomials defined as in Theorem 1.

Then, for any non–negative integer n and any positive integer q, we have that

2 q∑
p=1

(−1)p−1 cot2n+1

(
(2p− 1)π

4 q

)
= A2n+1(q)

and
2 q+1∑
p= 1

(−1)p−1 sec2n+1

(
p π

2 q + 1

)
= B2n+1(q).

Remark 1. Among six sequences of integer–valued polynomials given by Theorem
1, only {A ∗2n+1(x)}∞n= 0 and {B∗∗2n(x)}∞n= 0 were studied previously.

Byrne and Smith [3, Theorem 1], evaluating the alternating cotangent sum
(3) in closed form, established the polynomials A ∗2n+1(x) with coefficients specified
by recursive relations, which was also used in the summation (up to a multiplicative
constant) of the finite sum (4) [8, Eqs. 3.13 and 4.21]. Note, however, that A ∗2n+1(x)
are here defined explicitly (divide the formula (1) by 2) and that they are special
case of more general A2n+1(x).
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Hassan showed that the sums (5) [8, Eqs. 3.21 and 4.23] and (6) [8, Eq. 3.48]
are integer–valued and summed them up by means of the following polynomials [8,
Lemma 4.1]

2nPn(x) =
2n

n!

∂n

∂λn
1

P (x, λ)

∣∣∣∣
λ= 1

with P (x) =
1

2

[
cos
(
(x+ 1) θ

)
+ cos

(
x θ
)]
,

where λ = cos θ, which, in essence, are our B∗∗2n(x) (equal to the double sum in (2))
[cf. (5) and (6) with [8, Remark 4.2 and Eq. 4.23]; 2r−2 in [8, Eq. 4.23] should be
2r−1].

Corollary 1. In terms of the integer–valued polynomials introduced by Theorem 1,
for non–negative integers n and positive integers q, the following summations hold

A ∗2n+1(q) =
1

2
A2n+1(q) =

q∑
p=1

(−1)p−1 cot2n+1

(
(2p− 1)π

4 q

)
(3)

= (−1)q−1
q∑

p=1

(−1)p−1 tan2n+1

(
(2p− 1)π

4 q

)
,(4)

1

2

(
B2n+1(q)− (−1)q

)
=

q∑
p=1

(−1)p−1 csc2n+1

(
(2p− 1)π

2 (2 q + 1)

)
(5)

= (−1)q
q∑

p=1

sec2n+1

(
2 pπ

2 q + 1

)
= (−1)q−1

q∑
p=1

sec2n+1

(
(2p− 1)π

2 q + 1

)

= (−1)q−1
q∑

p=1

(−1)p−1 sec2n+1

(
p π

2 q + 1

)
=

1

2

(
(−1)n(2 q + 1) B∗∗2n(q)− (−1)q

)
.(6)

3. PROOF OF THE RESULTS

To establish the main results, for a better clarity of the proofs, we need several
auxiliary (mainly known) results collected as two lemmas and proved in detail for
the sake of a self-contained presentation. Observe that the summation in Lemma
1 (b) could not be found in the literature, and it may be of some independent
interest.

Lemma 1. Let θ and δ be real numbers and let n be a positive integer. Then, the
following summations holds true:
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a)

n−1∑
k=0

(−1)k
sin
(
δ + (2 k+1)π

2n

)
cos
(
δ + (2 k+1)π

2n

)
cos2 θ − cos2

(
δ + (2 k+1)π

2n

) =
2n cosnθ cosnδ

cos(2nθ) + cos(2nδ)
(n is even);

b)

n−1∑
k=0

(−1)k
cos
(
δ + kπ

n

)
sin2 θ − cos2

(
δ + kπ

n

) =
2n sin

(
nπ

2

)
cosnθ cosnδ

cos θ
(

cos(2nθ) + cos(2nδ)
) (n is odd).

Proof of Lemma 1. It is necessary to begin by deriving the next two summation
formulae (see, for instance, [13, Eqs. (1.0.2a) and (1.0.2b)],

(7)
n(1− x2n)

x2n − 2xn cosnδ + 1
=

n−1∑
k= 0

1− x2

x2 − 2x cos
(
δ + 2 k π

n

)
+ 1

and

(8)
nxn sinnδ

x2n − 2xn cosnδ + 1
=

n−1∑
k= 0

x sin
(
δ + 2 k π

n

)
x2 − 2x cos

(
δ + 2 k π

n

)
+ 1

.

Let wn = e
2πı
n , n ∈ N, be a primitive root of unity. Then, the factorisation

1 − zn =
∏n−1
k= 0

(
1 − z wkn

)
of a polynomial Pn(z) = 1 − zn leads to the partial

fraction decomposition of n/(1− zn)

(9)
n

1− zn
=

n−1∑
k= 0

1

1− z wkn
.

Upon setting z = x eıδ in (9) followed by taking real and imaginary parts, one
obtains respectively

(10)
n
(
1− xn cosnδ

)
x2n − 2xn cosnδ + 1

=

n−1∑
k= 0

1− x cos
(
δ + 2 k π

n

)
x2 − 2x cos

(
δ + 2 k π

n

)
+ 1

and the summation (8). Replace x by 1/x in (10), so that (10) yields

(11)
nxn

(
xn − cosnδ

)
x2n − 2xn cosnδ + 1

=

n−1∑
k= 0

x2 − x cos
(
δ + 2 k π

n

)
x2 − 2x cos

(
δ + 2 k π

n

)
+ 1

.

At last, the desired formula (7) results upon subtracting (11) from (10).

In order to establish Part (a) (cf. [13, Eq. (3.0.1a)]), first note that the
summation

(12)

n−1∑
k= 0

sin
(
δ + kπ

n

)
cos
(
δ + kπ

n

)
cos2 θ − cos2

(
δ + kπ

n

) =
n sin(2nδ)

cos(2nθ)− cos(2nδ)
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follows at once from (8) on putting x = e2 ıθ and cos2 θ = (1 + x)2/(4x) in the
expression LHS = RHS with

LHS :=
nxn sin(2nδ)

x2n − 2xn cos(2nδ) + 1
=

n sin(2nδ)

xn + x−n − 2 cos(2nδ)

and

RHS :=

n−1∑
k= 0

x sin
(
2 δ + 2 k π

n

)
x2 − 2x cos

(
2 δ + 2 k π

n

)
+ 1

=

n−1∑
k= 0

x 2 sin
(
δ + k π

n

)
cos
(
δ + k π

n

)
(1 + x)2 − 2x

[
1 + cos

(
2 (δ + k π

n )
)]

=
1

2

n−1∑
k= 0

sin
(
δ + k π

n

)
cos
(
δ + k π

n

)
(1 + x)2/(4x)− cos2

(
δ + k π

n

) .
Next, after replacing δ with δ + π/(2n), the summation formula (12) becomes

(13)

n−1∑
k= 0

sin
(
δ + (2 k+1)π

2n

)
cos
(
δ + (2 k+1)π

2n

)
cos2 θ − cos2

(
δ + (2 k+1)π

2n

) = − n sin(2nδ)

cos(2nθ) + cos(2nδ)
,

while (13) could be further rearranged to give

(14)

n−1∑
n= 0

k is even

2 sin
(
δ + (2 k+1)π

2n

)
cos
(
δ + (2 k+1)π

2n

)
cos2 θ − cos2

(
δ + (2 k+1)π

2n

) =
n cosnδ

sinnδ + cosnθ
.

Subtracting (13) from (14) results finally in the proposed summation in Part (a).

To prove Part (b), we need the following easily derivable summation

(15)

n−1∑
k= 0

sin θ cos θ

cos2 θ − cos2
(
δ + kπ

n

) =
n sin(2nθ)

cos(2nθ)− cos(2nδ)
(n ∈ N).

Indeed, the deduction of (15) is enabled by (7) on putting x = e2 ıθ and cos2 θ =
(1 + x)2/(4x) in LHS = RHS, with

LHS :=
n(1− x2n)(1 + x)2(

x2n − 2xn cos(2nδ) + 1
) (

1− x2
) = − n(xn − x−n)

xn + x−n − 2 cos(2nδ)

1 + x

1− x

and

RHS :=

n−1∑
k= 0

(1 + x)2

1 + x2 − 2x cos
(
2 δ + 2 kπ

n

) =

n−1∑
k= 0

(1 + x)2/(4x)

(1 + x)2/(4x)− cos2
(
δ + k π

n

) .
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On the other hand, (7) can be also rewritten as

n(1− x2n)(1 + x2)

(1 + x2n − 2xn cosnδ)(1− x2)
=

n−1∑
k= 0

(1 + x2)/(2x)

(1 + x2)/(2x)− cos
(
δ + 2 k π

n

) ,
which, through substitutions x = eıθ and (1 + x2)/(2x) = cos θ, results in

(16)
n sinnθ cot θ

cosnθ − cosnδ
=

n−1∑
k=0

cos θ

cos θ − cos
(
δ + 2 kπ

n

) =

n−1∑
k=0

cos θ

cos θ − (−1)k cos
(
δ + kπ

n

)
when n is an odd natural number. Now, the difference between (16) and (15) times
cos θ gives

n−1∑
k= 0

(−1)k
cos
(
δ + kπ

n

)
cos2 θ − cos2

(
δ + kπ

n

) =
2n sinnθ cosnδ

sin θ
(

cos(2nθ)− cos(2nδ)
) (n is odd).

Finally, the sought formula given in Part (b) follows from the last equation after
replacing θ with θ + π/2.

Lemma 2. We have that:

a) The formal power series expansion of the secant function is given by

sec θ =

∞∑
k= 0

2−k
k∑

l= 0

(−1)l
(
k

l

)
eı(2 l+1)θ;

b) If t = tan θ, then

Re
(
eαıθ

)
=

∞∑
k= 0

(−1)k
(
α

2 k

)
t2 k

(
√

1 + t2)α
;

c) If t = sin θ, then

Re
(
eαıθ

)
=

∞∑
k= 0

(−1)k
(
α

2 k

)
t2 k(

√
1− t2)α−2 k.

Proof of Lemma 2. The required formal power series follows without difficulty

sec θ =
eıθ

1− (1− e2 ıθ)/2
= eıθ

∞∑
k= 0

2−k
(
1− e2 ıθ

)k
= eıθ

∞∑
k= 0

2−k
k∑

l= 0

(−1)l
(
k

l

)
eı2 lθ.

To obtain Re
(
eαıθ

)
with t = tan θ, recall that tan θ = ı(e2ıθ − 1)/(e2ıθ + 1), then

e2 ıθ =
1− ıt
1 + ıt

=
(1− ıt)2

1 + t2
, hence eıθ =

1− ıt√
1 + t2

,
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and the sought follows by the expansion of 1 − ıt. Likewise, eıθ = ıt +
√

1− t2
comes from t = sin θ and 2 ı sin θ = eıθ − e−ıθ, thus the series of ıt+

√
1− t2 gives

Re
(
eαıθ

)
.

Proof of Corollary 1. Knowing that Theorem 2 holds (see its proof below), the
proposed summations are readily derivable by simple arguments and by making
use of elementary series identities. For instance, to show that

S1 :=

q∑
p= 1

(−1)p−1 cot2n−1
[
(2 p− 1)π/(4 q)

]
= A2n−1(q)/2,

it suffices to note that A2n−1(q) = S1 + S2 where

S2 :=

2 q∑
p= q+1

(−1)p−1 cot2n−1
[
(2 p− 1)π/(4 q)

]
amounts to

S2 =

q∑
p= 1

(−1)2 q−p cot2n−1

([
2 (2 q + 1− p)− 1

]
π

4 q

)
= S1.

Proof of Theorem 1. This theorem gives explicit definitions of the polynomials
A2n+1(x) and B2n+1(x) and to deduce them we need Lemma 2.

To derive the proposed formula for A2n+1(x) in (1), set t = tan θ and combine
Parts (a) and (b) of Lemma 2. Then we have

GA (x, t) =
2 tx

1 + t2
sec
[
2x arctan t

]
=

2 tx

1 + t2

∞∑
k=0

2−k
k∑

l=0

(−1)l
(
k

l

)
Re
(
eı2 (2 l+1) xθ)

= x

∞∑
k=0

21−k
k∑

l=0

(−1)l
(
k

l

)
Xm, l(x, t)(17)

where Xm, l(x, t) can be further rearranged as follows

Xm, l(x, t) =

∞∑
m=0

(−1)m
(

2(2 l + 1)x

2m

)
t2m+1(

1 + t2
)(2 l+1)x+1

=

∞∑
m=0

(−1)mt2m+1

(
2(2 l + 1)x

2m

)
∞∑
n=0

(−1)nt2n
(

(2 l + 1)x+ n

n

)

=

∞∑
n=0

∞∑
m=0

(−1)m+nt2m+1+2n

(
2(2 l + 1)x

2m

)(
(2 l + 1)x+ n

n

)

=

∞∑
n=0

n∑
m=0

(−1)(n−m)+mt2m+1+2 (n−m)

(
2(2 l + 1)x

2m

)(
(2 l + 1)x+ n−m

n−m

)

=

∞∑
n=0

(−1)nt2n+1
n∑

m=0

(
2(2 l + 1)x

2m

)(
(2 l + 1)x+ n−m

n−m

)
(18)
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by making use of the familiar summation 1/(1 − t)α+1 =
∑∞
n=0

(
α+n
n

)
tn [11, Eq.

5.2.11.16, p. 710] as well as the identity
∑∞
n=0

∑∞
k=0Ak, n =

∑∞
n=0

∑n
k=0Ak, n−k

[12, Eq. (1), p. 56]. Next, in view of both equations, (17) and (18), coefficients
with odd powers of t in the expansion of GA (x, t) with respect to t are:

(−1)n x

∞∑
k=0

21−k
k∑

l=0

(−1)l
(
k

l

)
n∑

m=0

(
2(2 l + 1)x

2m

)(
(2 l + 1)x+ n−m

n−m

)
.

The inner double sum (with respect to l and m) in the last expression is the kth
difference operation on a polynomial with degree 2n, therefore it will vanish if
k > 2n. Hence, the upper limit for k is 2n, which leads to the explicit formula for
the polynomial sequence {A2n+1(x)}∞n= 0 given in (1).

To deduce the formula for the polynomials B2n+1(x) in (2) we apply Parts
(a) and (c) of Lemma 2 and set t = sin θ.

GB(x, t) =
(2x+ 1) t√

1− t2
sec
[
(2x+ 1) arcsin t

]
=

(2x+ 1) t√
1− t2

∞∑
k=0

2−k
k∑

l=0

(−1)l
(
k

l

)
Re
(
eı(2 l+1)(2 x+1)θ)

= (2x+ 1)

∞∑
k=0

2−k
k∑

l=0

(−1)l
(
k

l

)
Ym, l(x, t)(19)

with Ym, l(x, t) given by

Ym, l(x, t) =

∞∑
m=0

(−1)mt2m+1

(
(2 l + 1)(2x+ 1)

2m

)(√
1− t2

)2(2 l+1)x+2(l−m)

=

∞∑
m=0

(−1)mt2m+1

(
(2 l + 1)(2x+ 1)

2m

)
∞∑
n=0

(−1)nt2n
(

(2x+ 1) l + x−m
n

)

=

∞∑
n=0

(−1)nt2n+1
n∑

m=0

(
(2 l + 1)(2x+ 1)

2m

)(
(2x+ 1) l + x−m

n−m

)

=

∞∑
n=0

(−1)nt2n+122n

(
(2x+ 1) l + x+ n

2n

)
(20)

where, to obtain the second, third and last line, we utilized respectively the binomial
summation (1+x)α =

∑∞
n= 0

(
α
n

)
xn, the above–listed double series identity and the

following identity involving binomial coefficients
∑n
m= 0

(
2 a+1
2m

)(
a−m
n−m

)
= 22n

(
a+n
2n

)
[11, Eq. 4.2.5.81, p. 621]. Finally, the explicit formula for the polynomial sequence
{B2n+1(x)}∞n= 0 given by (2) follows by extracting coefficients with odd powers of
t in the expansion of GB(x, t) (i.e., (19) and (20) combined together) with respect
to t and using the above–detailed ”difference operation” argument.

To conclude the proof, it is known that A ∗2n+1(x) [3, Theorem 1] and B∗∗2n(x)
[8, Eq. 4.23] are integer–valued (see Remark 1). What remains is to demon-
strate that A2n+1(x) and B2n+1(x) as well as their two other special cases intro-
duced by Theorem 1 are all integer–valued. For A2n+1(x) and B2n+1(x) this is
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straightforward: recall the relationships A2n+1(x) = 2 A ∗2n+1(x) and B2n+1(x) =
(−1)n(2x + 1) B∗∗2n(x). Moreover, since B∗∗2n(x) is always an odd number for any
integer x [8, Eq. 4.23], it follows then that B2n+1(x) is such, hence B∗+2n+1(x) and

B∗−2n+1(x) are integer–valued too on account of their definitions.

Proof of Theorem 2. To prove this theorem the main ingredient in the proof is
Lemma 1.

The summation formula in Lemma 1 (a) (which is valid for even positive
integers) enables verification of the proposed summation involving the integer–
valued polynomials A2n+1(x). Indeed, bearing in mind that q is a positive integer
and that t = tan θ, we have

GA (x, t)|x= q =
2xt

1 + t2
sec
(
2x arctan t

)∣∣∣∣
x= q

=
sin θ sin θ 2x cosxθ cosxδ

cos(2xδ) + cos(2xθ)

∣∣∣∣
x=2 q,δ=0

=

2 q∑
p=1

(−1)p−1
sin θ cos θ sin

(
(2 p−1)π

4 q

)
cos
(

(2 p−1)π
4 q

)
cos2 θ − cos2

(
(2 p−1)π

4 q

)
=

2 q∑
p=1

(−1)p−1
sin θ cos θ sin

(
(2 p−1)π

4 q

)
cos
(

(2 p−1)π
4 q

)
sin2

(
(2 p−1)π

4 q

)
cos2 θ − cos2

(
(2 p−1)π

4 q

)
sin2 θ

=

2 q∑
p=1

(−1)p−1 tan θ

tan
(

(2 p−1)π
4 q

) tan2
(

(2 p−1)π
4 q

)
tan2

(
(2 p−1)π

4 q

)
− tan2 θ

=

2 q∑
p=1

(−1)p−1 tan θ

tan
(

(2 p−1)π
4 q

) ∞∑
n=0

(
tan θ

tan
(

(2 p−1)π
4 q

))2n

=

∞∑
n=0

(
2 q∑
p=1

(−1)p−1 cot2n+1
( (2 p− 1)π

4 q

))
tan2n+1 θ

=

∞∑
n=0

A2n+1(x) t2n+1.

Analogously, set t = sin θ and use Lemma 1 (b) (which is valid for odd positive
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integers) to obtain summation involving the integer–valued polynomials B2n+1(x):

GB(x, t)|x= q =
(2xt+ 1) t√

1− t2
sec
(
(2x+ 1) arcsin t

)∣∣∣∣
x= q

= sin θ
2x sin(xπ2 ) cosxθ cosxδ

cos θ
(

cos(2xδ) + cos(2xθ)
)
∣∣∣∣∣∣
δ=π

x , x=2 q+1

=

2 q+1∑
p= 1

(−1)p−1
sin θ cos

(
p π

2 q+1

)
sin2 θ − cos2

(
p π

2 q+1

)
=

2 q+1∑
p= 1

(−1)p−1 sin θ

cos
(

p π
2 q+1

) ∞∑
n=0

(
sin θ

cos
(

p π
2 q+1

))2n

=

∞∑
n=0

(
2 q+1∑
p= 1

(−1)p−1 sec2n+1
( p π

2 q + 1

))
sin2n+1 θ

=

∞∑
n=0

B2n+1(x) t2n+1.

4. CONCLUDING REMARKS

Two new very general families of integer–valued polynomials with rational
coefficients which are associated with finite alternating trigonometric summation,
A2n+1(x) and B2n+1(x), were introduced. As illustrative examples for reference,
we list a few of them, respectively generated by

A2n+1(x) =
1

(2n+ 1)!

d2n+1

dt2n+1
GA (x, t)

∣∣∣∣
t=0

(n ∈ N0)

and

B2n+1(x) =
1

(2n+ 1)!

d2n+1

dt2n+1
GB(x, t)

∣∣∣∣
t=0

(n ∈ N0)

or by means of the corresponding formula given in Theorem 1. In general, A2n+1(x)
is of degree 2n+ 1 in x, A2n+1(0) = 0 and these first several polynomials are

A1(x) = 2x,

A3(x) = 4x3 − 2x,

A5(x) = 20
3
x5 − 20

3
x3 + 2x,

A7(x) = 488
45
x7 − 140

9
x5 + 392

45
x3 − 2x

A9(x) = 1108
63

x9 − 488
15
x7 + 76

3
x5 − 3272

315
x3 + 2x

A11(x) = 404168
14175

x11 − 12188
189

x9 + 42944
675

x7 − 20108
567

x5 + 2068
175

x3 − 2x.
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Likewise, B2n+1(x) are of degree 2n+ 1, B2n+1(0) = 1 and first examples are

B1(x) = 2x+ 1,

B3(x) = 4x3 + 6x2 + 4x+ 1,

B5(x) = 20
3
x5 + 50

3
x4 + 20x3 + 40

3
x2 + 16

3
x+ 1,

B7(x) = 488
45
x7 + 1708

45
x6 + 2912

45
x5 + 602

9
x4 + 2072

45
x3 + 952

45
x2 + 32

5
x+ 1

B9(x) = 1108
63

x9 + 554
7
x8 + 18328

105
x7 + 1208

5
x6 + 3476

15
x5 + 160x4

+ 25456
315

x3 + 1024
35

x2 + 256
35
x+ 1

B11(x) = 404168
14175

x11 + 2222924
14175

x10 + 1202872
2835

x9 + 98978
135

x8 + 1413016
1575

x7 + 551012
675

x6

+ 1606088
2835

x5 + 856592
2835

x4 + 1749088
14175

x3 + 2816
75

x2 + 512
63
x+ 1.

In addition, four more example sets for A ∗2n+1(x), B∗+2n+1(x), B∗−2n+1(x)
and B∗∗2n(x) are readily available, since A2n+1(x) and B2n+1(x) include these
integer–valued polynomials as special cases. Observe that four of these six polyno-
mial sequences were not previously studied, A2n+1(x), B2n+1(x), B∗+2n+1(x) and

B∗−2n+1(x). The considered polynomials enable closed-form summation of a great
deal of general families of finite sums involving odd-powered trigonometric func-
tions.

In conclusion, it is noteworthy that, thanks to considering integral–valued
polynomials arising in finite summation of various trigonometric sums by making
use of simple and familiar arguments commonly used in work with polynomials in
general, instead of applying rather specialized methods of previous works in this
topic, more straightforward proofs for some already known and a number of new
results were provided in a general context as well as in a systematic and unified
manner.
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5. D. Cvijović: Two general families of integer—valued polynomials associated with finite
trigonometric sums. J. Math. Anal. Appl., 488 (2020), 124057 (13 pp).
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