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In this paper, we firstly introduce the polylogarithms and incomplete gamma
function. Then, we claim that there is a relation between polylogarithms and
a generalization of incomplete gamma function. Secondly, we give a formula
related to polylogarithms. Also,we obtain a relation between incomplete
gamma function and the derivatives of polylogarithms. Finally, we find a
generating function for the values of incomplete gamma function.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Throughout this article, we use the following standard notations:

N denotes the set of natural numbers, R denotes the set of real numbers and
C denotes the set of complex numbers. Also,

N0 = {0, 1, 2, 3, · · · } = N ∪ {0}

and the n-th derivative of any function f at z0 is denoted by f (n)(z0).

The polylogarithm (or de Jonquiére’s function) Lis(z) (cf. [9]) is defined by

Lis(z) =

∞∑
n=1

zn

ns
= zΦ(z, s, 1)
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(s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1).

where Φ(z, s, w) is the Hurwitz-Lerch zeta function (cf. [2], [5]) defined by

Φ(z, s, w) =

∞∑
n=0

zn

(n+ w)s

(s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1)

for w ∈ C\{0,−1,−2,−3, · · · }.
The integral representation of Hurwitz-Lerch zeta function is as follows (cf.

[5]):

(1.1) Φ(z, s, w) =
(−1)s−1

Γ(s)

1∫
0

(log t)s−1tw−1

1− zt
dt

or

(1.2) Φ(z, s, w) =
1

Γ(s)

∞∫
0

ts−1e−wt

1− ze−t
dt.

Let N ∈ N0. For w = 1 and s = N + 1, by using equation (1.1), we obtain

LiN+1(z) = zΦ(z,N + 1, 1)

= z
(−1)N

N !

1∫
0

(log t)N

1− zt
dt.(1.3)

By choosing z = 1 in (1.3), the polylogarithms can be reduced to Riemann
zeta function ζ(N + 1) (cf. [4]) given by

ζ(N + 1) =

∞∑
n=1

1

nN+1

where N > 0.

Recently, many authors have investigated the poly-Bernoulli polynomials

B
(k)
n (x) (cf. [6], [7], [8]), by using the properties of polylogarithms. A. Bayad

and Y. Hamahata gave a generating function of B
(k)
n (x) as follows (cf. [1]):

Lik(1− e−t)
1− e−t

ext =

∞∑
n=0

B(k)
n (x)

tn

n!

for every integer k.
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Also, Kaneko defined B
(k)
n for every integer k by generating function (cf. [12])

Lik(1− e−t)
1− e−t

=

∞∑
n=0

B(k)
n

tn

n!

where B
(k)
n = B

(k)
n (0). In [12], an explicit formula for B

(k)
n was given by

B(k)
n = (−1)n

n∑
m=0

(−1)mm!

{
n
m

}
(m+ 1)k

where

{
n
m

}
is the Stirling number of the second kind (cf. [13]) defined by

1

m!
(et − 1)m =

∞∑
n=0

{
n
m

}
tn

n!
.

Polylogarithms also appear in generating function of generalized harmonic
numbers Hn,r (cf. [10]) defined by

Hn,r =

n∑
k=1

1

kr

where r ∈ C.

From [1] and [12], we note that the polylogarithms are associated with poly-
Bernoulli polynomials, specially poly-Bernoulli numbers and the Stirling number
of the second kind.

Also, we introduce the incomplete gamma function Γ(s, x) (cf. [10]):

(1.4) Γ(s, x) =

∞∫
x

ts−1e−tdt

where Re(s) > 0 and x ∈ R.

By choosing x = 0 in (1.4), we obtain the classical Euler gamma function (cf.
[10]) given by

Γ(s) =

∞∫
0

ts−1e−tdt.

Polylogarithms and incomplete gamma function are useful functions in Ana-
lytic Number Theory and Mathematical Physics.
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2. A GENERALIZATION OF INCOMPLETE GAMMA FUNCTION

In this section we introduce a generalization of incomplete gamma function
Γµ,z(s, x). Then, by using the integral representation of polylogarithms LiN+1(z),
we obtain a relation between polylogarithms and a general case of incomplete
gamma function.

Recently, some authors have studied on generalizations of incomplete gamma
function Γ(α, x;β) for Re(α) > 0 and β ∈ C.

In [11], Chaudhry and Zubair studied on the generalized incomplete gamma
function given by the following integral:

(1.5) Γ(α, x;β) =

∞∫
x

tα−1e−t−βt
−1

dt.

In [3], Miller derived several reduction formulas for specializations of a certain
generalized incomplete gamma function Γ(α, x;β) and its associated Kampé De
Fériet function.

It is possible to define a generalization of different type from equation (1.5).
Let µ ∈ R. Then, we define

Γµ,z(N + 1, x) =

∞∫
x

tNe−µt

1− ze−µt
dt.

In this section, we claim that Γµ,z(s, x) is associated with polylogarithms.
Firstly, we give the following key theorem for our claim:

Theorem 1. Let b > a > 0 and N ∈ N0. Then, we have

log b∫
log a

tNet

1− zet
dt =

1

z

N∑
k=0

(
N
k

)
(−1)kk!

{
(log b)N−kLik+1(bz)− (log a)N−kLik+1(az)

}
.

Proof. From equation (1.3), we get

1∫
0

(log t)N

1− zt
dt = N !(−1)N

LiN+1(z)

z
.

We have

(1.6)

b∫
a

(log t)N

1− zt
dt =

b−a∫
0

(log(u+ a))N

1− za− zu
du,

by substituting t = u+ a.
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Then we have

(1.7)

b−a∫
0

(log(u+ a))N

1− za− zu
dt =

1∫
0

(log((b− a)v + a))N

1− za− z(b− a)v
(b− a)dv,

by substituting u = (b− a)v into the right side of equation (1.7).

From (1.6) and (1.7), we arrive

(1.8)

b∫
a

(log t)N

1− zt
dt =

1∫
0

(log((b− a)v + a))N

1− za− z(b− a)v
(b− a)dv.

On the other hand,

b∫
0

(log t)N

1− zt
dt =

1∫
0

(log b+ log u)N

1− bzu
bdu,

by substituting t = bu.

By using binomial expansion,

b∫
0

(log t)N

1− zt
dt =

1∫
0

(log b+ log u)N

1− bzu
bdu

= b

1∫
0

1

1− bzu

{
N∑
k=0

(
N
k

)
(log b)N−k(log u)k

}
du

= b

N∑
k=0

(
N
k

)
(log b)N−k


1∫

0

(log u)k

1− bzu
du


= b

N∑
k=0

(
N
k

)
(log b)N−kk!(−1)k

Lik+1(bz)

bz

=
1

z

N∑
k=0

(
N
k

)
(log b)N−kk!(−1)kLik+1(bz).(1.9)

Similarly,

(1.10)

a∫
0

(log t)N

1− zt
dt =

1

z

N∑
k=0

(
N
k

)
(log a)N−kk!(−1)kLik+1(az).

Suppose that b > a > 0. Then, we set

b∫
a

(log t)N

1− zt
dt =

b∫
0

(log t)N

1− zt
dt−

a∫
0

(log t)N

1− zt
dt.
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From (1.9) and (1.10), we have
(1.11)
b∫
a

(log t)N

1− zt
dt =

1

z

N∑
k=0

(
N
k

)
k!(−1)k

{
(log b)N−kLik+1(bz)− (log a)N−kLik+1(az)

}
.

By using (1.8) and (1.11), we obtain

1∫
0

(log((b−a)v+a))N

1−za−z(b−a)v dv

= 1
(b−a)z

N∑
k=0

(
N
k

)
k!(−1)k

{
(log b)N−kLik+1(bz)− (log a)N−kLik+1(az)

}
.

By substituting log((b− a)v+ a) = t into the left side of the above equation,
we get

(1.12)

1∫
0

(log((b− a)v + a))N

1− za− z(b− a)v
dv =

log b∫
log a

tN

1− za− z(et − a)

et

(b− a)
dt.

By using the equation (1.12), we arrive at the desired result.

Remark 1. By choosing a = 1 in Theorem 1, we have
(1.13)
log b∫
0

tNet

1− zet
dt =

1

z

{
−LiN+1(z)(−1)NN ! +

N∑
k=0

(
N
k

)
(−1)kk!(log b)N−kLik+1(bz)

}
.

By substituting t = −u into the left side of equation (1.13), we have

(1.14)

log b∫
0

tNet

1− zet
dt = (−1)N+1

− log b∫
0

uNe−u

1− ze−u
du = (−1)N

0∫
− log b

uNe−u

1− ze−u
du.

For b > 1,

(1.15)

∞∫
− log b

uNe−u

1− ze−u
du =

0∫
− log b

uNe−u

1− ze−u
du+

∞∫
0

uNe−u

1− ze−u
du

where

(1.16)

∞∫
0

uNe−u

1− ze−u
du = N !Φ(z,N + 1, 1) = N !

LiN+1(z)

z
.
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for s = N + 1 and w = 1 in equation (1.2).

From (1.14), (1.15) and (1.16), we have

∞∫
− log b

tNe−t

1− ze−t
dt =

(−1)N
log b∫
0

tNet

1− zet
dt

+N !
LiN+1(z)

z

or
∞∫

− log b

tNe−t

1− ze−t
dt =

(−1)N

z

N∑
k=0

(
N
k

)
(−1)kk!(log b)N−kLik+1(bz)

by using equation (1.13).

For b→ e−b, we get the following equation:

(1.17)

∞∫
b

tNe−t

1− ze−t
dt =

N !

z

N∑
k=0

bN−k

(N − k)!
Lik+1(e−bz).

where b ∈ R.

Remark 2. While z → 0 in equation (1.17), we arrive

Γ(N + 1, b) =

∞∫
b

tNe−tdt = e−bN !

N∑
k=0

bk

k!

where

lim
z→0

Lik+1(e−bz)

z
= e−b.

By substituting b = µc into equation (1.17), we get

(1.18)

∞∫
µc

tNe−t

1− ze−t
dt =

N !

z

N∑
k=0

(µc)N−k

(N − k)!
Lik+1(e−µcz).

By substituting t = µv into the left side of equation (1.18), we arrive at the
following corollary:

Corollary 1. Let c, µ ∈ R and N ∈ N0. Then, we have

Γµ,z(N + 1, c) =

∞∫
c

vNe−µv

1− ze−µv
dv =

N !

µN+1z

N∑
k=0

(µc)N−k

(N − k)!
Lik+1(e−µcz).

Remark 3. By choosing µ = 1 in Corollary 1, we have

lim
z→0

Γ1,z(N + 1, c) = Γ(N + 1, c).

Therefore, we note that Γµ,z(N + 1, c) is a generalization of the incomplete gamma
function Γ(N + 1, c).
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3. MAIN RESULTS

In this section, we firstly give a formula for the polylogarithms. Secondly,
we obtain a relation between incomplete gamma function and the derivatives of
polylogarithms. Finally, we find the generating function for the values of incomplete
gamma function.

From equation (1.3), we get

(1.19)

1∫
0

(log t)N

1−Mzt
dt =

LiN+1(Mz)

Mz
(−1)NN !

By substituting u = Mt into the left side of equation (1.19), we get

1∫
0

(log t)N

1−Mzt
dt =

1

M

M∫
0

(log u− logM)N

1− zu
du

Denote such a partition P , that is P = {0, 1, 2, · · · ,M}. For k ∈ N0, we
integrate on [k, k + 1]:

(1.20)

M∫
0

(log u− logM)N

1− zu
du =

M−1∑
k=0

k+1∫
k

(log u− logM)N

1− zu
du.

By substituting u = v+k into the left side of equation (1.20) for each integral,
we have

k+1∫
k

(log u− logM)N

1− zu
du =

1∫
0

(log(v + k)− logM)N

1− kz − zv
dv.

Then, we arrive

1∫
0

(log t)N

1−Mzt
dt =

1

M

M−1∑
k=0

1∫
0

(log(v + k)− logM)N

1− kz − zv
dv.

By using binomial expansion,

1∫
0

(log(v + k)− logM)N

1− kz − zv
dv(1.21)

=

1∫
0

1

1− kz − zv


N∑
j=0

(
N
j

)
(− logM)N−j(log(v + k))j

 dv

=

N∑
j=0

(
N
j

)
(− logM)N−j


1∫

0

(log(v + k))j

1− kz − zv
dv

(1.22)
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Also, by substituting log(v+ k) = t into the right side of equation (1.22), we
have

1∫
0

(log(v + k))j

1− kz − zv
dv =

log(k+1)∫
log k

tjet

1− zet
dt.

Hence,

LiN+1(Mz)

Mz
(−1)NN ! =

1∫
0

(log t)N

1−Mzt
dt

=
1

M

M−1∑
k=0

N∑
j=0

(
N
j

)
(− logM)N−j


log(k+1)∫
log k

tjet

1− zet
dt


=

1

M

N∑
j=0

(
N
j

)
(− logM)N−j


0∫

−∞

tjet

1− zet
dt


+

1

M

M−1∑
k=1

N∑
j=0

(
N
j

)
(− logM)N−j


log(k+1)∫
log k

tjet

1− zet
dt

 .(1.23)

where

0∫
−∞

tjet

1− zet
dt = (−1)j

∞∫
0

tje−t

1− ze−t
dt

= (−1)jj!Φ(z, j + 1, 1)

= (−1)jj!
Lij+1(z)

z
.

By using Theorem 1 for b = k + 1 and a = k, the equation (1.23) can be
written as

LiN+1(Mz)

Mz
(−1)NN ! − 1

Mz

N∑
j=0

(
N
j

)
(− logM)N−j(−1)jj!Lij+1(z) =

1

Mz

M−1∑
k=1

N∑
j=0

(
N
j

)
(− logM)N−j

j∑
r=0

(
j
r

)
(−1)rr!

{
(log(k + 1))j−rLir+1(kz + z)

−(log k)j−rLir+1(kz)

}
.

Consequently, we arrive at the following theorem:

Theorem 2. Let M,N ∈ N0. Then, we have

(−1)NN !LiN+1((M + 2)z)−
N∑

j=0

(
N
j

)
(− log(M + 2))N−j(−1)jj!Lij+1(z) =

M∑
k=0

N∑
j=0

j∑
r=0

(
N
j

)(
j
r

)
(− log(M + 2))N−j(−1)rr!

{
(log(k + 2))j−rLir+1((k + 2)z)
−(log(k + 1))j−rLir+1((k + 1)z)

}
.
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For our second main result, we use

(1.24)
e−µt

1− ze−µt
=

1

z

∞∑
n=1

zne−nµt.

From equation (1.24), we have

∞∫
c

tNze−µt

1− ze−µt
dt =

∞∫
c

tN

( ∞∑
n=1

zne−nµt

)
dt

=

∞∑
n=1

zn

 ∞∫
c

tNe−nµtdt

 .(1.25)

By substituting nµt = u, we get

(1.26)

∞∫
c

tNe−nµtdt =
1

(nµ)
N+1

∞∫
nµc

uNe−udu.

From equation (1.26), equation (1.25) becomes

∞∫
c

tNze−µt

1− ze−µt
dt =

1

µN+1

∞∑
n=1

zn

nN+1

 ∞∫
nµc

uNe−udu


=

1

µN+1

∞∑
n=1

Γ(N + 1, nµc)

nN+1
zn

Then, from Corollary 1, we deduce

∞∑
n=1

Γ(N + 1, nµc)

nN+1
zn = N !

N∑
k=0

(µc)N−k

(N − k)!
Lik+1(e−µcz)

or

(1.27)

∞∑
n=1

Γ(N + 1, nξ)

nN+1
zn = N !

N∑
k=0

ξN−k

(N − k)!
Lik+1(e−ξz)

for ξ = µc.

We define

fN,ξ(z) = N !

N∑
k=0

ξN−k

(N − k)!
Lik+1(e−ξz).

The n-th derivative of function fN,ξ:

dn

dzn
fN,ξ(z) = N !e−nξ

N∑
k=0

ξN−k

(N − k)!
Li

(n)
k+1(e−ξz).
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For z = 0,

f
(n)
N,ξ(0) = N !e−nξ

N∑
k=0

ξN−k

(N − k)!
Li

(n)
k+1(0).

In the left side of equation (1.27), by using the property of Taylor series, we
obtain

Γ(N + 1, nξ)

nN+1
=

f
(n)
N,ξ(0)

n!

=
N !

n!
e−nξ

N∑
k=0

ξN−k

(N − k)!
Li

(n)
k+1(0).

Consequently, we arrive at the following theorem:

Theorem 3. Let ξ ∈ R, N ∈ N0 and 1 ≤ n ∈ N. Then, we have

(1.28)
enξn!Γ(N + 1, nξ)

nN+1N !
=

N∑
k=0

ξN−k

(N − k)!
Li

(n)
k+1(0).

Remark 4. The n-th derivative of function Lik+1(z) is given as follows:

dn

dzn
Lik+1(z) =

∞∑
m=n

(m− 1)(m− 2)(m− 3) · · · (m− n+ 1)

mk
zm−n

=

∞∑
m=0

(m+ n− 1)(m+ n− 2)(m+ n− 3) · · · (m+ 1)

(m+ n)k
zm

=

∞∑
m=0

(m+ n− 1)!

(m+ n)km!
zm.

For z = 0, we arrive

(1.29) Li
(n)
k+1(0) =

(n− 1)!

nk
.

From (1.28) and (1.29), we get

enξΓ(N + 1, nξ)

nNN !
=

N∑
k=0

ξN−k

(N − k)!nk
.

We expand the series both side of the above equation for N ∈ N0:

enξ
∞∑
N=0

Γ(N + 1, nξ)
(t/n)

N

N !
=

∞∑
N=0

N∑
k=0

ξN−k

(N − k)!nk
tN

=

∞∑
N=0

N∑
k=0

(tξ)N−k

(N − k)!

(
t

n

)k
.
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By using Cauchy product for the right side of the above equation, we have

enξ
∞∑
N=0

Γ(N + 1, nξ)
(t/n)

N

N !
=

∞∑
N=0

N∑
k=0

(tξ)N−k

(N − k)!

(
t

n

)k
=

( ∞∑
N=0

(tξ)N

N !

)( ∞∑
N=0

(t/n)N

)

= etξ
1

1− t
n

where |t/n| < 1.

For t→ nt,
∞∑
N=0

Γ(N + 1, nξ)
tN

N !
=
e−nξ(1−t)

1− t

where |t| < 1.

Hence, we obtain the following corollary for nξ = x:

Corollary 2. Let x ∈ R and |t| < 1. Then, the values of incomplete gamma
function is given by the following generating function:

e−x(1−t)

1− t
=

∞∑
N=0

Γ(N + 1, x)
tN

N !
.
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