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The aim of this paper is to define new families of combinatorial numbers and
polynomials associated with Peters polynomials. These families are also a
modification of the special numbers and polynomials in [11]. Some funda-
mental properties of these polynomials and numbers are given. Moreover, a
combinatorial identity, which calculates the Fibonacci numbers with the aid
of binomial coefficients and which was proved by Lucas in 1876, is proved
by different method with the help of these combinatorial numbers. Conse-
quently, by using the same method, we give a new recurrence formula for
the Fibonacci numbers and Lucas numbers. Finally, relations between these
combinatorial numbers and polynomials with their generating functions and
other well-known special polynomials and numbers are given.

1. INTRODUCTION

The motivation of this paper is given as follows: using generating functions
and their functional equation of new families of combinatorial numbers and poly-
nomials, we give a new approach in order to prove and evaluate combinatorial
sums involving Stirling numbers, Apostol type numbers and also some new formu-
las including Lucas formula for the Fibonacci numbers. By using this approach,
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we give some formulas and relations for the family of combinatorial numbers and
polynomials including Apostol-Bernoulli polynomials and numbers, Apostol-Euler
polynomials and numbers and Apostol-Genocchi polynomials and numbers, Peters
numbers and polynomials and Stirling numbers.

In this paper, the following definitions, notations, and other well-known pre-
liminaries are needed. Throughout this paper, we use N = {1, 2, 3, . . .}, N0 =
{0, 1, 2, 3, . . .} and also Z denotes the set of integers, R denotes the set of real num-
bers and C denotes the set of complex numbers. The principal value log z is the
logarithm whose imaginary part lies in the interval (−π, π] and(

λ
v

)
=
λ(λ− 1) · · · (λ− v + 1)

v!
=

(λ)v
v!

,

where v ∈ N, λ ∈ C (cf. [1]-[16]).

1.1.Generating functions for some special numbers and polynomials

The Fibonacci numbers fn and Lucas numbers Ln are defined by means of
the following generating functions, respectively:

(1) Ff (t) =
t

1− t− t2
=

∞∑
n=0

fnt
n

where f0 = 0 and f1 = f2 = 1 (cf. [2], [4], [7, p. 229]), and

(2) FL(t) =
2− t

1− t− t2
=

∞∑
n=0

Lnt
n

where L0 = 2 and L1 = 1 (cf. [2], [4], [7, p. 229]).

The Apostol-Bernoulli polynomials, The Apostol-Euler polynomials, and the
Apostol-Genocchi polynomials are given by means of the following generating func-
tions, respectively:

(3) FB (t, x;λ) =
text

λet − 1
=

∞∑
n=0

Bn (x;λ)
tn

n!
,

(4) FE (t, x;λ) =
2ext

λet + 1
=

∞∑
n=0

En (x;λ)
tn

n!
,

and

(5) FG (t, x;λ) = tFE (t, x;λ) =

∞∑
n=0

Gn (x;λ)
tn

n!
,
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(cf. [2], [11], [12], [13], [14]). Substituting x = 0 into (3), (4) and (5), the following
well-known families of numbers including the Apostol-Bernoulli numbers, Apostol-
Euler numbers and Apostol-Genocchi numbers are obtained, respectively: Bn (λ) =
Bn (0;λ), En (λ) = En (0;λ), and Gn (λ) = Gn (0;λ). On the other hand, setting
λ = 1 in (3), (4) and (5), the following well-known families of polynomials including
the Bernoulli polynomials, the Euler polynomials and the Genocchi polynomials
are obtained, respectively: Bn (x) = Bn (x; 1), En (x) = En (x; 1), and Gn (x) =
Gn (x; 1). Substituting x = 0 into the above relations, the Bernoulli numbers, the
Euler numbers and the Genocchi numbers are obtained, respectively: Bn = Bn (0),
En = En (0), and Gn = Gn (0) (cf. [2], [11], [12], [13], [14]).

The Stirling numbers of the first kind and the second kind are given by means
of the following generating functions, respectively:

(6) FS1
(t, k) =

(log (1 + t))
k

k!
=

∞∑
n=0

s (n, k)
tn

n!

and

(7) FS2 (t, k) =
(et − 1)

k

k!
=

∞∑
n=0

S (n, k)
tn

n!
,

so that the Stirling numbers of the second kind satisfy the following explicit formula:

(8) S (n, k) =
1

k!

k∑
j=0

(
k
j

)
(−1)

k−j
jn,

(cf. [2], [10], [13], [14], [15]).

The Peters polynomials, which are a member of the family of the Sheffer
polynomials, are defined by means of the following generating function:

(9) FP (t, x;λ, µ) =
(1 + t)

x(
1 + (1 + t)

λ
)µ =

∞∑
n=0

sn (x;λ, µ)
tn

n!

(cf. [5], [6], [8], [10]). Substituting x = 0 into (9), these polynomials are reduced
to the Peters numbers: sn (λ, µ) = sn (0;λ, µ). Substituting µ = 1 into (9), these
polynomials are reduced to the Boole polynomials: ξn(x;λ) = sn(x;λ, 1) (cf. [5],
[10]) and also substituting x = 0 and µ = 1 into (9), these polynomials are reduced
to the Boole numbers: ξn(λ) = sn(0;λ, 1) (cf. [5]) and also Chn = ξn(1) =
sn(0; 1, 1) denotes the Changhee numbers (cf. [6]).

In [11], by using p-adic q-integral on p-adic integers, we constructed the
following special polynomials Yn (x;λ), which are a member of the family of the
Peters polynomials, as follows:

(10) FY (t, x;λ) =
(1 + λt)

x

λ2t+ λ− 1
=

∞∑
n=0

Yn (x;λ)
tn

n!
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in which if we take x = 0, then we have the numbers Yn (λ) = Yn (0;λ) (cf. [11]).

In [12], we defined the following generating function for the combinatorial
numbers, y1(n, k;λ):

(11) Fy1(t, k;λ) =
1

k!

(
λet + 1

)k
=

∞∑
n=0

y1(n, k;λ)
tn

n!
,

where k ∈ N0 and λ ∈ C (cf. [12, p. 10, Eq-(10)]). When λ = 1, we get the
combinatorial numbers

B(n, k) = y1(n, k; 1)

(cf. [12, p. 10, Eq-(10)], [3]).

2. New family of combinatorial numbers and polynomials

In this section, we construct the following generating function for combi-
natorial polynomials Yn,2 (x, λ), which are a member of the family of the Peters
polynomials, as follows:

(12) FY2 (t, x;λ) =
2 (1 + λt)

x

λ2t+ 2 (λ− 1)
=

∞∑
n=0

Yn,2 (x;λ)
tn

n!

in which if we set x = 0, then we have combinatorial numbers Yn,2 (λ) = Yn,2 (0;λ).

We set

(13) FY2
(t, x;λ) = (1 + λt)

x
GY2

(t;λ) ,

where

(14) GY2
(t;λ) =

2

λ2t+ 2 (λ− 1)
=

∞∑
n=0

Yn,2 (λ)
tn

n!

Combining equation (13) with (12) and (14) yields

∞∑
n=0

Yn,2 (x;λ)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
λn−jYj,2 (λ) (x)n−j

tn

n!

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
following theorem:

Theorem 1.

(15) Yn,2 (x;λ) =

n∑
j=0

(
n
j

)
λn−jYj,2 (λ) (x)n−j .
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By (13), we have

∞∑
n=0

Yn,2 (x;λ)
tn

n!
=

∞∑
n=0

xnFS1
(λt, n)

∞∑
n=0

Yn,2 (λ)
tn

n!
.

Combining the above equation with (6), we obtain

∞∑
m=0

Ym,2 (x;λ)
tm

m!
=

∞∑
m=0

m∑
k=0

k∑
n=0

(
m
k

)
xnλks(k, n)Ym−k,2 (λ)

tm

m!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
following theorem:

Theorem 2.

(16) Ym,2 (x;λ) =

m∑
k=0

k∑
n=0

(
m
k

)
λks(k, n)Ym−k,2 (λ)xn.

Theorem 3.

(17)

n∑
j=0

(
n
j

)
λn−jYj,2 (λ) (x+ y)n−j =

n∑
j=0

(
n
j

)
λn−jYj,2 (x;λ) (y)n−j .

Proof. We set the following functional equation:

(18) FY2
(t, x+ y;λ) = (1 + λt)

y
FY2

(t, x;λ)

Combining the above equation with (12), after some elementary calculations, we
get

∞∑
n=0

Yn,2 (x+ y;λ)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
(y)n−j λ

n−jYj,2 (x;λ)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
following relation:

(19) Yn,2 (x+ y;λ) =

n∑
j=0

(
n
j

)
(y)n−j λ

n−jYj,2 (x;λ) .

Similarly, by using (15), we obtain

(20) Yn,2 (x+ y;λ) =

n∑
j=0

(
n
j

)
(x+ y)n−j λ

n−jYj,2 (λ) .

Combining (19) with (20), we get the desired result.
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By applying geometric series representation of the function GY2 (t;λ) in (14),
we obtain

∞∑
n=0

Yn,2 (λ)
tn

n!
=

1

λ− 1

∞∑
n=0

(−1)
n λ2n

(2λ− 2)
n t
n.

From the above equation, we deduce the following theorem:

Lemma 1. Let n ∈ N0. Then we have

(21) Yn,2 (λ) = 2 (−1)
n
n!

λ2n

(2λ− 2)
n+1

Substituting (21) into (15), we get a explicit formula for the polynomials
Yn,2 (x;λ) by the following theorem:

Theorem 4. Let n ∈ N0. Then we have

(22) Yn,2 (x;λ) = 2

n∑
j=0

(−1)
j
j!

(
n
j

)
λn+j

(2λ− 2)
j+1

(x)n−j .

2.1. Recurrence relations

Here, recurrence relations for the numbers Yn,2 (λ) and the polynomials Yn,2 (x, λ)
are given.

By using (14), we obtain

2 = λ2
∞∑
n=0

Yn,2 (λ)
tn+1

n!
+ (2λ− 2)

∞∑
n=0

Yn,2 (λ)
tn

n!

Making some elementary calculations in the above equation, we deduce a recurrence
relation for the numbers Yn,2 (λ) by the following theorem:

Theorem 5. Let Y0,2 (λ) = 1
λ−1 . For n ∈ N, we have

(23) Yn,2 (λ) =
nλ2

2− 2λ
Yn−1,2 (λ)

Theorem 6. Let n ∈ N. Then we have

2λn (x)n = λ2nYn−1,2 (x, 2) + (2λ− 2)Yn,2 (x, 2) .

Proof. Using (12), we have

2 (1 + λt)
x

= λ2
∞∑
n=0

Yn,2 (x;λ)
tn+1

n!
+ (2λ− 2)

∞∑
n=0

Yn,2 (x;λ)
tn

n!
.
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Thus, we get

(24)

∞∑
n=0

2 (x)n λ
n t
n

n!
=

∞∑
n=0

(
λ2nYn−1,2 (x;λ) + (2λ− 2)Yn,2 (x;λ)

) tn
n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
desired result.

2.2. Relation between the numbers Yn,2 (λ) and others well-known
special numbers

Here, relations between the numbers Yn,2 (λ) and other well-known numbers
are given. By using the polynomials Yn,2 (x;λ), the well-known explicit formu-
las for Apostol type numbers including Apostol-Bernoulli numbers, Apostol-Euler
numbers and Apostol-Genocchi numbers are given.

Note that, by (10) and (14), the relation between the numbers Yn (λ) and the
numbers Yn,2 (λ) is given as follows:

Yn,2 (λ) =
1

2n+1
Yn (λ) .

Substituting x = 0, λ = µ = 1 and t = θ2u
θ−1 into (9), we obtain

sn (0; 1, 1) =
(θ − 1)

n+1

2θ2n
Yn,2 (θ) .

Theorem 7. Let n ∈ N. Then we have

(25) Bn
(
x;

λ

2− λ

)
=

2− λ
2

n

n−1∑
m=0

λ−mS (n− 1,m)Ym,2 (x;λ) .

Proof. Substituting λt = eu− 1 into (12), we get the following functional equation:

FY2

(
eu − 1

λ
, x;λ

)
=

2

u (2− λ)
FB

(
u, x;

λ

2− λ

)
Combining the above equation with (3), (12) and (7), after some elementary cal-
culations, we get

2

2− λ

∞∑
n=0

Bn
(
x;

λ

2− λ

)
un

n!
=

∞∑
m=0

λ−mYm,2 (x;λ)

∞∑
n=0

S (n,m)
un+1

n!
.

Since S (n,m) = 0 if m > n, we obtain

2

2− λ

∞∑
n=0

Bn
(
x;

λ

2− λ

)
un

n!
=

∞∑
n=0

n

n−1∑
m=0

λ−mYm,2 (x;λ)S (n− 1,m)
un

n!
.
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Comparing the coefficients of un

n! on both sides of the above equation, we get the
desired result.

Substituting x = 0 into (25) and the final equation combining with (21) and
(8), we get the following explicit formula for the Apostol-Bernoulli numbers.

Corollary 1. Let n ∈ N. Then we have

Bn
(

λ

2− λ

)
=

2− λ
2λ− 2

n

n−1∑
m=0

m∑
j=0

(−1)j
(
m
j

)
jn−1

(
λ

2λ− 2

)m
.

Theorem 8. Let n ∈ N0. Then we have

(26) En
(
x;

λ

λ− 2

)
= (λ− 2)

n∑
m=0

λ−mYm,2 (x;λ)S (n,m) .

Proof. Substituting λt = eu− 1 into (12), we get the following functional equation:

(λ− 2)FY2

(
eu − 1

λ
, x;λ

)
= FE

(
u, x;

λ

λ− 2

)
Combining the above equation with (4), (12), and (7), after some elementary cal-
culations, we obtain

∞∑
n=0

En
(
x;

λ

λ− 2

)
un

n!
= (λ− 2)

∞∑
n=0

n∑
m=0

λ−mYm,2 (x;λ)S (n,m)
un

n!

since S (n,m) = 0 if m > n. Comparing the coefficients of un

n! on both sides of the
above equation, we get the desired result.

Substituting x = 0 into (26) and the final equation combining with (21) and
(8), we get the following explicit formula for the Apostol-Euler numbers.

Corollary 2. Let n ∈ N0. Then we have

En
(

λ

λ− 2

)
=

n∑
m=0

m∑
j=0

(−1)j
(
m
j

)
jn
(
λ

2

)m
λ− 2

(λ− 1)
m+1 .

Theorem 9.

(27) Gn
(
x;

λ

λ− 2

)
= (λ− 2)n

n−1∑
m=0

λ−mYm,2 (x;λ)S (n− 1,m) .

Proof. Substituting λt = eu− 1 into (12), we get the following functional equation:

(λ− 2)uFY2

(
eu − 1

λ
, x;λ

)
= FG

(
u, x;

λ

λ− 2

)
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Combining the above equation with (5) and (12), and (7), after some elementary
calculations, we get

∞∑
n=0

Gn
(
x;

λ

λ− 2

)
un

n!
= (λ− 2)

∞∑
n=0

n

n−1∑
m=0

λ−mYm,2 (x;λ)S (n− 1,m)
un

n!
.

since S (n,m) = 0 if m > n. Comparing the coefficients of un

n! on both sides of the
above equation, we get the desired result.

Substituting x = 0 into (27) and the final equation combining with (21), we
get the following explicit formula for the Apostol-Genocchi numbers.

Corollary 3. Let n ∈ N. Then we have

Gn
(

λ

λ− 2

)
= n

n−1∑
m=0

m∑
j=0

(−1)j
(
m
j

)
jn−1

(
λ

2

)m
λ− 2

(λ− 1)
m+1 .

Substituting t = 2λ−2
λ2 (eu − 1) into (14), after some elementary calculations,

we obtain

∞∑
m=0

n∑
n=0

Yn,2 (λ)

(
2λ− 2

λ2

)n
S(m,n)

um

m!
=

1

λ− 1

∞∑
m=0

(−1)m
um

m!
.

Comparing the coefficients of um

m! on both sides of the above equation, we get the
following Theorem:

Theorem 10.
m∑
n=0

Yn,2 (λ)S (m,n)

(
2λ− 2

λ2

)n
=

(−1)m

λ− 1
.

We now give relations between the polynomials Yn,2 (x;λ) and the Peters
polynomials.

Theorem 11. Let n ∈ N. Then we have

sn (x;λ, µ) =
n

2

n−1∑
j=0

(
n− 1

j

)
θj+2−nsj (λ, µ)Yn−1−j,2 (x, θ)

+ (θ − 1)

n∑
j=0

(
n

j

)
θj−nsj (λ, µ)Yn−j,2 (x, θ) .

Proof. Replacing t by θt in equation (9) and combining this equation with (12)
yields the following functional equation:

FP (θt, x;λ, µ) =

(
θ2

2
t+ θ − 1

)
FY2

(t, x; θ)FP (θt, 0;λ, µ) .
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From the above equation, we get

∞∑
n=0

sn (x;λ, µ) θn
tn

n!
=

θ2

2

∞∑
n=0

n

n−1∑
j=0

(
n− 1

j

)
θjsj (λ, µ)Yn−1−j,2 (x, θ)

tn

n!

+ (θ − 1)

∞∑
n=0

n∑
j=0

(
n

j

)
θjsj (λ, µ)Yn−j,2 (x, θ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
desired result.

Lemma 2. Let µ ∈ N. Then we have

(28) (x)n =

n∑
v=0

µ∑
j=0

(
µ

j

)(
n

v

)
(λj)v sn−v (x;λ, µ) .

Proof. For µ ∈ N, we can modify (9) as follows:

(1 + t)
x

= FP (t, x;λ, µ)

µ∑
j=0

(
µ

j

)
(1 + t)

λj
.

Under the assumption |t| < 1 and with the help of binomial theorem, the above
equation yields to the following relation:

∞∑
n=0

(x)n
tn

n!
=

µ∑
j=0

(
µ

j

) ∞∑
n=0

(
n∑
v=0

(
n

v

)
sn−v (x;λ, µ) (λj)v

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
desired result.

Theorem 12. Let µ ∈ Z+. Then we have

(x)n =
n∑
v=0

v∑
k=0

(
n

v

)
λkB (k, µ) s (v, k) sn−v (x;λ, µ) .

Proof. Substituting (x)n=

n∑
k=0

s (n, k)xk (cf. [10]) into the right-hand side of (28),

after some elementary calculations, we obtain

(x)n =

n∑
v=0

v∑
k=0

(
n

v

)
λksn−v (x;λ, µ) s (v, k)

µ∑
j=0

(
µ

j

)
jk.

Combining the above equation with (11) yields the assertion of theorem.
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3. Combinatorial identities including the numbers Yn,2 (λ), Fibonacci
and Lucas numbers

In this section, we prove two very interesting and novel combinatorial iden-
tities containing the Fibonacci numbers and the Lucas numbers. The first of these
formulas is the well-known formula as the Lucas formula proven by Lucas in 1876.
We give a proof of this formula with the help of the generating function for the num-
bers Yn,2 (λ) given in the equation (14). On the other hand, we prove the second
formula, which includes a relation between the Lucas numbers and the Fibonacci
numbers, with similar method.

Some infinite series representations involving the numbers Yn (λ) were stud-
ied in [15]. Infinite series representations involving the numbers Yn,2 (λ) and the

Fibonacci numbers are given as follows: Assume that
∣∣∣ λ2

λ−1

∣∣∣ < 1. Then we have

(29)

∞∑
n=0

Yn,2 (λ)
2n

n!
= − 1

λ
Ff (λ)

and on the other hand, if we assume that
∣∣λ−1
λ2

∣∣ < 1, then we have

∞∑
n=0

n!2−n

Yn,2 (λ)
= λFf (λ)− λ2Ff (λ) .

Theorem 13. Let n ∈ N. Then we have

(30) fn =

[n−1
2 ]∑

k=0

(
n− k − 1
n− 2k − 1

)
,

where [x] denotes the greatest integer function.

In order to prove Theorem 13, we need the following Lemma.

Lemma 3 (cf. [9, p. 57, Lemma 11, Eq-(7)]).

(31)

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

[n
2 ]∑

k=0

A(k, n− 2k),

where [x] denotes the greatest integer function.

Proof of Theorem 13. By substituting (21) into (29), we obtain

(32)

∞∑
n=0

Yn,2 (λ)
2n

n!
= −

∞∑
n=0

∞∑
m=0

(
n+ 1 +m− 1

m

)
λ2n+m.
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Combining (32) with (31), we get

∞∑
n=0

Yn,2 (λ)
2n

n!
= −

∞∑
n=0

[n
2 ]∑

k=0

(
n− k
n− 2k

)
λn

Combining the above equation with (29) and (1) yields the following relation:

∞∑
n=0

[n
2 ]∑

k=0

(
n− k
n− 2k

)
λn+1 =

∞∑
n=0

fnλ
n

Since f0 = 0, comparing the coefficients of λn on both sides of the above equation,
we arrive at the desired result.

Remark 1. There are many different proof of the Lucas Formula

fn+1 =

[n
2 ]∑

k=0

(
n− k
k

)
where n ∈ N ([4, p. 50], [7, p. 155, Theorem 12.4. (Lucas Formula, 1876)], [16]).
We give few examples for proof of the Lucas Formula. With the help of Pascal’s
triangle, Koshy [7, p. 155, Theorem 12.4. (Lucas Formula, 1876)] gave proof of
Lucas formula, which discovered by Lucas in 1876. On the other hand, in [16],

using the following sum of binomial coefficients for n ∈ N0,
∑
m≥0

(
m

n−m

)
, Wilf

proved Lucas Formula.

Theorem 14. Let n ∈ N0. Then we have

(33) Ln = 2fn+1 − fn

Proof. Multiplying both sides of equation (29) by (λ− 2), we get infinite series
representation involving the numbers Yn,2 (λ) and the Lucas numbers:

(λ− 2)

∞∑
n=0

Yn,2 (λ)
2n

n!
= FL (λ) .

Combining the above equation with (32) and (2), we obtain

− (λ− 2)

∞∑
n=0

∞∑
m=0

(
n+ 1 +m− 1

m

)
λ2n+m =

∞∑
n=0

Lnλ
n.

Applying (31) to the above equation yields

(λ− 2)

− ∞∑
n=0

[n
2 ]∑
j=0

(
n− j
n− 2j

)
λn

 =

∞∑
n=0

Lnλ
n.
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Combining the above equation with (30), we get

∞∑
n=0

(2fn+1 − fn)λn =

∞∑
n=0

Lnλ
n.

Comparing the coefficients of λn on both sides of the above equation, we arrive at
the desired result.
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