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A CHAIN OF MEAN VALUE INEQUALITIES

Horst Alzer and Man Kam Kwong∗

Let

G = G(x, y) =
√
xy, L = L(x, y) =

x− y

log(x)− log(y)
,

I = I(x, y) =
1

e

(xx

yy

)1/(x−y)

, A = A(x, y) =
x + y

2
,

be the geometric, logarithmic, identric, and arithmetic means of x and y. We
prove that the inequalities

L(G2, A2) < G(L2, I2) < A(L2, I2) < I(G2, A2)

are valid for all x, y > 0 with x 6= y. This refines a result of Seiffert [12].

1. Introduction and statement of the result

We study the geometric, logarithmic, identric, and arithmetic means of two
positive real numbers x and y with x 6= y. These mean values are defined by

(1) G = G(x, y) =
√
xy, L = L(x, y) =

x− y
log(x)− log(y)

,

(2) I = I(x, y) =
1

e

(xx
yy

)1/(x−y)

, A = A(x, y) =
x+ y

2
.

They are members of Stolarsky’s one-parameter mean value family

Sr = Sr(x, y) =
( xr − yr
r(x− y)

)1/(r−1)

(r 6= 0, 1; x 6= y);
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see Stolarsky [13]. Indeed, we have

S−1 = G, S0 = lim
r→0

Sr = L, S1 = lim
r→1

Sr = I, S2 = A.

Since r 7→ Sr(x, y) is strictly increasing on R, we obtain

(3) G < L < I < A.

The means given in (1.1) and (1.2) have interesting applications in statistics,
physics, economics, meteorology, and other fields. Numerous researchers studied
intensively the properties of these and other mean values. In particular, many in-
equalities for means can be found in the literature. For detailed information on
this subject we refer to the monographs of Bullen, Mitrinović and Vasić [2], Sándor
[10], the studies of Kouba [3], Neuman and Sándor [7], Sándor [8, 9], and the
references cited therein.

Our work was inspired by an interesting note published by Seiffert [12] in
1995. Among others, he proved

(4) L <
√
L(G2, A2) <

√
I(G2, A2) < I.

Neuman and Sándor [6] offered the following remarkable refinement of (1.4):

L < L(G,A) <
√
L(G2, A2) < I(G,A) <

√
G2 + 4GA+A2

6
(5)

<
G+A

2
<

√
G2 +GA+A2

3
(6)

<
√
I(G2, A2) < I.

The elegant inequality
G+A

2
L < L(G2, A2)

was given by Sándor and Bhayo [11]. It leads to an improvement of the left-hand
side of (1.4). Moreover, they obtained a double-inequality involving I(G2, A2),
namely,

(7)
e

4
I2 < I(G2, A2) < I2.

The constant factors e/4 and 1 are sharp.

The aim of this paper is to refine the second inequality in (1.4) as follows.

Theorem. For all positive real numbers x and y with x 6= y we have

(8) L(G2, A2) < G(L2, I2) < A(L2, I2) < I(G2, A2).
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We note that the lower bounds for I(G2, A2) as given in (1.6) and (1.7)
cannot be compared. Indeed, the expression A(L2, I2) − (e/4)I2 attains positive
and negative values.

A short calculation reveals that the first inequality in (1.7) is equivalent to

(9)
L(G,A)

L
<

I

A(G,A)
.

This is a counterpart of the left-hand side of (1.5) written as

1 <
L(G,A)

L
.

Using (1.3) and (1.8) leads to the double-inequality

GA < L(G,A)A(G,A) < LI

which improves the well-known inequality GA < LI given by Alzer [1].

In the next section, we present a proof of our Theorem. The difficult part
consists of proving the right-hand side of (1.7). We show that A(L2, I2) < I(G2, A2)
is equivalent to an inequality involving the hyperbolic functions cosh, sinh, and
coth. To settle this inequality we need numerous algebraic computations which
have been carried out by using the computer software MAPLE 13. In this context,
we mention the interesting papers by Makragić [4] and Malešević and Makragić [5],
who presented a method of proving inequalities of the form

n∑
j=1

ajx
pj coshqj (x) sinhrj (x) > 0.

2. Proof of the theorem

In view of the arithmetic mean - geometric mean inequality, it is enough
to prove the first and the third inequality. We may assume that x > y > 0.
Let t = (1/2) log(x/y) > 0. Since the mean values given in (1.1) and (1.2) are
homogeneous of degree 1, we obtain

L
(
G2(x, y), A2(x, y)

)
= xyL

(
G2(et, e−t), A2(et, e−t)

)
,

G
(
L2(x, y), I2(x, y)

)
= xyG

(
L2(et, e−t), I2(et, e−t)

)
,

A
(
L2(x, y), I2(x, y)

)
= xyA

(
L2(et, e−t), I2(et, e−t)

)
,

I
(
G2(x, y), A2(x, y)

)
= xyI

(
G2(et, e−t), A2(et, e−t)

)
.

This implies that it suffices to prove

(10) L
(
G2(et, e−t), A2(et, e−t)

)
< G

(
L2(et, e−t), I2(et, e−t)

)
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and

(11) A
(
L2(et, e−t), I2(et, e−t)

)
< I
(
G2(et, e−t), A2(et, e−t)

)
.

We have
G(et, e−t) = 1, A(et, e−t) = cosh(t),

L(et, e−t) =
sinh(t)

t
, I(et, e−t) = exp

(
−1 + t coth(t)

)
.

It follows that (2.1) and (2.2) can be written as

(12)
cosh2(t)− 1

2 log
(
cosh(t)

) < sinh(t)

t
exp
(
−1 + t coth(t)

)
and

(13)
1

2

[( sinh(t)

t

)2

+ exp
(
−2 + 2t coth(t)

)]
<

1

e
(cosh(t))2+2/(cosh2(t)−1),

respectively.

Proof of (2.3): Let t > 0. We define

u(t) = log
( cosh2(t)− 1

2 log
(
cosh(t)

)), u(0) = lim
t→0

u(t) = 0,

and

v(t) = log
( sinh(t)

t
exp
(
−1 + t coth(t)

))
, v(0) = lim

t→0
v(t) = 0.

Differentiation yields

t cosh(t) sinh2(t) log
(

cosh(t)
)(

t2+sinh2(t)
)

cosh(t)

(
v′(t)− u′(t)

)
= t sinh3(t)(

t2+sinh2(t)
)

cosh(t)
− log

(
cosh(t)

)
= p(t), say,

and

− cosh2(t)
(
t2+sinh2(t)

)2
t sinh(t) p′(t) = −3t2 sinh(t)− (1 + 2t2) sinh3(t)

+
(
t3 + 3t sinh2(t)

)
cosh(t) = q(t), say.

Since

− 1

t sinh(t)
q′(t) =

5

2
− t2 − 5

2
cosh(2t) + 3t sinh(2t) =

1

2

∞∑
k=2

(6k − 5)
(2t)2k

(2k)!
> 0,

we obtain q′(t) < 0 and q(t) < q(0) = 0. It follows that p′(t) > 0 and p(t) >
lims→0 p(s) = 0. This implies v′(t)−u′(t) > 0. Thus, v(t)−u(t) > v(0)−u(0) = 0.
This leads to (2.3).
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Proof of (2.4): Let t > 0 and

U(t) = log
(1

2

[( sinh(t)

t

)2

+ exp
(
−2 + 2t coth(t)

)])
, U(0) = lim

t→0
U(t) = 0,

V (t) = log
(1

e

(
cosh(t)

)2+2/(cosh2(t)−1)
)
, V (0) = lim

t→0
V (t) = 0.

To prove that V ′(t) > U ′(t) we define

P (t, x) =
(
sinh4(t) + t4x

)
sinh(t)− 2t cosh(t)

(
sinh2(t) + t2x

)
log
(
cosh(t)

)
.

Then,

(14) t sinh3(t)
(
sinh2(t) + t2φ(t)

)(
V ′(t)− U ′(t)

)
= 2P (t, φ(t)),

where
φ(t) = exp

(
−2 + 2t coth(t)

)
.

Next, we provide a lower bound for P (t, φ(t)). Partial differentiation yields

∂

∂x
P (t, x) = t3 cosh(t)σ(t)

with
σ(t) = t tanh(t)− 2 log

(
cosh(t)

)
.

Since

σ(0) = 0 and σ′(t) =
2t− sinh(2t)

2 cosh2(t)
< 0,

we conclude that x 7→ P (t, x) is strictly decreasing on R. Using

φ(t) = I2(et, e−t) < A2(et, e−t) = cosh2(t)

gives

(15) P (t, φ(t)) > P (t, cosh2(t)).

To prove that P (t, cosh2(t)) > 0 we define

(16) Q(t) =
P (t, cosh2(t))

2t cosh(t)
(
sinh2(t) + t2 cosh2(t)

) .
Then,

(17) 2t2 cosh2(t)
(
sinh2(t) + t2 cosh2(t)

)2
Q′(t) = R(t)

with

R(t) = −t sinh8(t)− cosh(t) sinh7(t) + (3t− 3t3) cosh2(t) sinh6(t)



495 Horst Alzer and Man Kam Kwong

−
[
3t2 cosh3(t) + 2t2 cosh(t)

]
sinh5(t) +

[
5t3 cosh4(t) + t5 cosh2(t)

]
sinh4(t)

−t4 cosh3(t) sinh3(t)− (t5 + t7) cosh4(t) sinh2(t)− t6 cosh5(t) sinh(t) + t7 cosh6(t).

We show that R is positive on (0,∞). Let

(18) F1(t) = 256e8tR(t).

Then, we obtain

F1(t) = 2t3 + 3t2 + 2t+ 1 + (4t6 + 4t4 + 12t3 + 2t2 − 4t− 6)e2t

+(16t7 + 16t6 − 16t5 − 32t3 − 38t2 − 16t+ 14)e4t

+(64t7 + 20t6 − 12t4 − 12t3 + 58t2 + 68t− 14)e6t

+(96t7 + 32t5 + 60t3 − 100t)e8t + (64t7 − 20t6 + 12t4 − 12t3 − 58t2 + 68t+ 14)e10t

+(16t7 − 16t6 − 16t5 − 32t3 + 38t2 − 16t− 14)e12t

+(−4t6 − 4t4 + 12t3 − 2t2 − 4t+ 6)e14t + (2t3 − 3t2 + 2t− 1)e16t

(19) =

8∑
k=0

Sk(t) exp(2kt),

where each Sk(t) is a polynomial in t. Differentiating F1 four times we conclude
that S0(t) vanishes in the summation, while the remaining terms keep the format,

F
(4)
1 (t) =

8∑
k=1

S̃k(t) exp(2kt).

When compared with (2.10), the length of the summation is reduced by 1, from 9 to
8. When this process is repeated, we will, after 8 iterations, arrive at a summation
of only 1 term. Therefore, we introduce the following functions:

F2(t) =
1

32
e−2tF

(4)
1 (t), F3(t) =

1

128
e−2tF

(7)
2 (t),

F4(t) =
1

3
e−2tF

(8)
3 (t), F5(t) =

1

301989888
e−2tF

(8)
4 (t),

F6(t) =
1

256
e−2tF

(8)
5 (t), F7(t) =

1

26542080
e−2tF

(8)
6 (t),

(20) F8(t) = e−2tF
(8)
7 (t),

(21) F9(t) = e−2tF
(8)
8 (t).
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By direct computation we find

F
(k)
1 (0) = 0 (k = 0, 1, 2, 3), F

(k)
2 (0) = 0 (k = 0, ..., 6),

F
(k)
3 (0) = 0 (k = 0, 1, 2, 3), F

(k)
3 (0) > 0 (k = 4, 5, 6, 7),

F
(k)
4 (0) > 0 (k = 0, ..., 7), F

(k)
5 (0) > 0 (k = 0, ..., 7), F

(k)
6 (0) > 0 (k = 0, ..., 7),

(22) F
(k)
7 (0) > 0 (k = 0, ..., 7),

(23) F
(k)
8 (0) = 0 (k = 0, ..., 7),

and we obtain the representation

1

104
F9(t) = 1113928758834531139584000t3 + 33584952078861113858457600t2

+327667879818179667264798720t+ 1034000620942787244913065984.

From (2.12) and (2.14) we conclude that F8(t) > 0. Applying (2.11) and
(2.13) reveals that F7(t) > 0. Successively, we get that F6(t), ..., F1(t) are positive.
From (2.9) we obtain that R(t) > 0. Using (2.8) gives Q(t) > lims→0Q(s) =
0, so that (2.6) and (2.7) yield P (t, φ(t)) > 0. Finally, we use (2.5) to obtain
V (t)− U(t) > V (0)− U(0) = 0. This implies (2.4).

Acknowledgement. We thank Professor B. Malešević and the referee for helpful
comments.
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