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ON THE α-SPECTRAL RADIUS OF GRAPHS

Haiyan Guo and Bo Zhou∗

For 0 ≤ α ≤ 1, Nikiforov proposed to study the spectral properties of the
family of matrices Aα(G) = αD(G) + (1−α)A(G) of a graph G, where D(G)
is the degree diagonal matrix and A(G) is the adjacency matrix of G. The
α-spectral radius of G is the largest eigenvalue of Aα(G). For a graph with
two pendant paths at a vertex or at two adjacent vertices, we prove results
concerning the behavior of the α-spectral radius under relocation of a pendant
edge in a pendant path. We give upper bounds for the α-spectral radius for
unicyclic graphs G with maximum degree ∆ ≥ 2, connected irregular graphs
with given maximum degree and some other graph parameters, and graphs
with given domination number, respectively. We determine the unique tree
with the second largest α-spectral radius among trees, and the unique tree
with the largest α-spectral radius among trees with given diameter. We also
determine the unique graphs so that the difference between the maximum
degree and the α-spectral radius is maximum among trees, unicyclic graphs
and non-bipartite graphs, respectively.

1. INTRODUCTION

We consider simple and undirected graphs. Let G be a graph with vertex set
V (G) and edge set E(G). For a vertex u of G, denote by dG(u) or simply du the
degree of u in G. Let A(G) be the adjacency matrix and D(G) the diagonal matrix
of the degrees of G. The signless Laplacian matrix of G is known as Q(G) =
D(G) + A(G). The spectral properties of the adjacency matrix and the signless
Laplacian matrix of a graph have been investigated for a long time, see, e.g., [9,10].
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For any real α ∈ [0, 1], Nikiforov [25] proposed to study the spectral properties of
the family of matrices Aα(G) defined as the convex linear combination:

Aα(G) = αD(G) + (1− α)A(G).

Obviously, A(G) = A0(G) and Q(G) = 2A1/2(G). For any real α ∈ [0, 1], Aα(G) is
a symmetric nonnegative matrix, and thus its eigenvalues are all real. We call the
largest eigenvalue of Aα(G) the α-spectral radius of G, denoted by ρα(G). Among
other results, Nikiforov [25] showed that the r-partite Turán graph is the unique
graph with the largest α-spectral radius for 0 ≤ α < 1− 1

r among Kr+1-free graphs
on n vertices with r ≥ 2, where Ks is a complete graph with s vertices. For a tree
T with maximum degree ∆ ≥ 2, Nikiforov et al. [26] found an interesting bound for
its α-spectral radius: ρα(T ) < α∆ + 2(1−α)

√
∆− 1 when 0 ≤ α < 1. This implies

some previous results in [16,32]. They also showed in [26] that for 0 ≤ α ≤ 1, if T is
a tree on n vertices, then ρα(Pn) ≤ ρα(T ) ≤ ρα(Sn) with left (right, respectively)
equality if and only if T ∼= Pn (T ∼= Sn, respectively), where Sn and Pn are the
star and the path on n vertices, respectively. Very recently, Nikiforov and Rojo [27]
determined the unique graph with the largest α-spectral radius among connected
graphs on n vertices with diameter (at least) k.

For u, v ∈ V (G), the distance between u and v in G, denoted by dG(u, v), is
the length of a shortest path from u to v in G. The diameter of G is the maximum
distance between all vertex pairs of G.

A dominating set of G is a vertex subset S of G such that each vertex of
V (G) \ S is adjacent to at least one vertex of S. The domination number of G,
denoted by γ(G), is the minimum cardinality of dominating sets of G.

In this article, we study the α-spectral radius of graphs. For a graph with
two pendant paths at a vertex or at two adjacent vertices, we prove two results
concerning the behavior of the α-spectral radius under relocation of a pendant edge
in a pendant path, which were conjectured in [27]. We show that the upper bound
for the α-spectral radius of trees with maximum degree ∆ ≥ 2 in [26] holds also for
unicyclic graphs, and we give upper bounds for the α-spectral radius of connected
irregular graphs with fixed maximum degree and some other graph parameters, and
of graphs with fixed domination number, respectively. We determine the unique
tree with the second largest α-spectral radius among trees, and the unique tree with
the largest α-spectral radius among trees with given diameter. We also determine
the unique graphs so that the difference between the maximum degree and the α-
spectral radius is maximum among trees, unicyclic graphs and non-bipartite graphs,
respectively.

2. PRELIMINARIES

For a graph G with u ∈ V (G), NG(u) denotes the set of vertices that are
adjacent to u in G. For undefined notation and terminology for graphs, the readers
are referred to [5].
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Let G be a graph with V (G) = {v1, . . . , vn}. A vector x = (xv1 , . . . , xvn)> ∈
Rn can be considered as a function defined on V (G) which maps vertex vi to xvi ,
i.e., x(vi) = xvi for i = 1, . . . , n. Then

x>Aα(G)x = α
∑

u∈V (G)

dG(u)x2
u + 2(1− α)

∑
uv∈E(G)

xuxv.

Moreover, λ is an eigenvalue of Aα(G) if and only if x 6= 0 and we have the following
eigenequation at u for each u ∈ V (G):

λxu = αduxu + (1− α)
∑

v∈NG(u)

xv.

If 0 ≤ α < 1 and G is connected, then Aα(G) is irreducible, and by the
well known Perron-Frobenius theorem, it has a unique unit positive x eigenvector
corresponding to ρα(G). We call such a vector x the Perron vector of Aα(G),
see [25].

For a graph G on n vertices and a unit nonnegative vector x of dimension n,
we have ρα(G) ≥ x>Aα(G)x with equality if G is connected if and only if x is the
Perron vector of Aα(G).

If G is connected, and H is a proper subgraph of G, then by [23, Corollary
2.2, p. 38], ρα(H) < ρα(G) for 0 ≤ α < 1.

The following lemma is somewhat similar to [25, Proposition 15].

Lemma 2.1. [27] Let G be a connected graph with u, v ∈ V (G). Suppose that
v1, . . . , vs ∈ (NG(v) \NG(u)) \ {u}, where 1 ≤ s ≤ dG(v). Let G′ = G− {vvi : 1 ≤
i ≤ s}+ {uvi : 1 ≤ i ≤ s}. Let 0 ≤ α < 1 and let x be the Perron vector of Aα(G).
If xu ≥ xv, then ρα(G) < ρα(G′).

Corollary 2.1. Let G be a connected graph and e = uv a cut edge of G. Suppose
that G−{e} consists of two nontrivial components G1 and G2 with u ∈ V (G1) and
v ∈ V (G2). Let G′ be a graph obtained from G by identifying u of G1 with v of
G2, and adding a pendant edge to this common vertex. Then ρα(G) < ρα(G′) for
0 ≤ α < 1.

Proof. Let x be the Perron vector of Aα(G). We may assume that xu ≥ xv. Let
NG2

(v) = {v1, . . . , vs}, where s = dG(v) − 1 ≥ 1. Let G∗ = G − {vvi : 1 ≤ i ≤
s} + {uvi : 1 ≤ i ≤ s}. Obviously, G∗ ∼= G′. By Lemma 2.1, ρα(G) < ρα(G∗) =
ρα(G′).

The following lemma is an extended version of Theorem 6.4.2 in [11, p. 145].

Lemma 2.2. Let G be a connected graph with edges u1u2 and v1v2, where u1, u2, v1

and v2 are four distinct vertices of G, and u1v2, v1u2 /∈ E(G). Let x be the Perron
vector of Aα(G), where 0 ≤ α < 1. Let G′ = G − {u1u2, v1v2} + {u1v2, v1u2}. If
xu1 ≥ xv1 , xu2 ≤ xv2 and one inequality is strict, then ρα(G) < ρα(G′).
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Proof. Note that

ρα(G′)− ρα(G) ≥ x>Aα(G′)x− x>Aα(G)x

= 2(1− α)
∑

uv∈E(G′)

xuxv − 2(1− α)
∑

uv∈E(G)

xuxv

= 2(1− α)(xv1xu2
+ xu1

xv2 − xu1
xu2
− xv1xv2)

= 2(1− α)(xu1
− xv1)(xv2 − xu2

)

≥ 0.

Thus ρα(G′) ≥ ρα(G). Suppose that ρα(G′) = ρα(G). Then x is the Perron vector
of Aα(G′). We may assume that xu2

< xv2 . From the eigenequations of G′ and G
at u1, we have

ρα(G′)xu1 = αdu1xu1 + (1− α)
∑

wu1∈E(G′)

xw

= αdu1
xu1

+ (1− α)

 ∑
wu1∈E(G)

xw − xu2
+ xv2


> αdu1xu1 + (1− α)

∑
wu1∈E(G)

xw

= ρα(G)xu1 ,

which is impossible. It follows that ρα(G′) > ρα(G).

The following lemmas follows easily because as a quadratic function in t,

at2 + b(t− c)2 for a, b > 0 achieves its minimum value abc2

a+b when t = bc
a+b .

Lemma 2.3. [29] If a, b > 0, then at2 + b(t− c)2 ≥ abc2

a+b with equality if and only

if t = bc
a+b .

3. TWO CONJECTURES ON THE α-SPECTRAL RADIUS

Nikiforov and Rojo [27] proposed two conjectures (Conjectures 18 and 19)
concerning the behavior of the α-spectral radius under relocation of a pendant
edge in a pendant path.

For positive integer p and a graph G with u ∈ V (G), let G(u; p) be the graph
obtained from G by attaching a pendant path of length p at u. That is, G(u; p)
is obtained by adding an edge connecting u and a terminal vertex of a path on p
vertices. Let G(u, 0) = G, and in this case a pendant path of length 0 is understood
the trivial path consisting of a single vertex u.

For nonnegative integers p, q and a graph G, let Gu(p, q) or simply Gp,q
be the graph H(u; q) with H = G(u; p). Nikiforov and Rojo [27] conjectured
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that ρα(Gp,q) > ρα(Gp+1,q−1) for a nontrivial connected graph G and integers
p and q with p ≥ q ≥ 2, and mentioned that they can show it is true when
ρα(Gp+1,q−1) ≥ 9

4 . We show that it is really true.

Theorem 3.1. Let G be a connected graph with |E(G)| ≥ 1 and u ∈ V (G). For
integers p ≥ q ≥ 1 and 0 ≤ α < 1, ρα(Gu(p, q)) > ρα(Gu(p+ 1, q − 1)).

Proof. Let uu1 . . . up+1 and uv1 . . . vq−1 be the two pendant paths in Gu(p+ 1, q−
1) at u of lengths p + 1 and q − 1, respectively. Let x be the Perron vector of
Aα(Gu(p+1, q−1)). Let v0 = u. Suppose that ρα(Gu(p, q)) ≤ ρα(Gu(p+1, q−1)).

Claim. xup−i > xvq−i−1 for all i = 0, 1, . . . , q − 1.

We prove the claim by induction on i. If xvq−1
≥ xup

, then for H = Gu(p+
1, q − 1) − upup+1 + vq−1up+1, we have H ∼= Gu(p, q), and thus by Lemma 2.1,
ρα(Gu(p, q)) = ρα(H) > ρα(Gu(p + 1, q − 1)), a contradiction. Thus xup > xvq−1 .
This proves the claim for i = 0. If q = 1, then i = 0 and the claim follows. Suppose
that q ≥ 2, and xup−i

> xvq−i−1
where 0 ≤ i ≤ q − 2. If xvq−(i+1)−1

≥ xup−(i+1)
,

then for

H ′ = Gu(p+ 1, q − 1)− {up−(i+1)up−i, vq−(i+1)−1vq−i−1}
+{up−ivq−(i+1)−1, up−(i+1)vq−i−1},

we have H ′ ∼= Gu(p, q) and thus by Lemma 2.2 that ρα(Gu(p, q)) = ρα(H ′) >
ρα(Gu(p+ 1, q − 1)), a contradiction. Thus xup−(i+1)

> xvq−(i+1)−1
. Therefore, the

claim follows.

By the claim for i = q−1, we have xup−(q−1)
> xu. SinceGu(p+1, q−1)−{uw :

w ∈ NG(u)} + {up−(q−1)w : w ∈ NG(u)} ∼= Gu(p, q), we have by Lemma 2.1 that
ρα(Gu(p, q)) > ρα(Gu(p+ 1, q − 1)), a contradiction.

Therefore ρα(Gu(p, q)) > ρα(Gu(p+ 1, q − 1)).

Let G be a connected graph with uv ∈ E(G). For nonnegative integers p
and q, let Gu,v(p, q) be the graph H(v; q) with H = G(u; p). It was conjectured
in [27] that if the degrees of u and v are at least two in G, then for p ≥ q ≥ 2 and
0 ≤ α < 1, ρα(Gu,v(p, q)) > ρα(Gu,v(p + 1, q − 1)). Now we show that this is also
indeed true.

Theorem 3.2. Let G be a connected graph, and let u and v be adjacent vertices
of G of degree at least 2. For p ≥ q ≥ 1 and 0 ≤ α < 1, ρα(Gu,v(p, q)) >
ρα(Gu,v(p+ 1, q − 1)).

Proof. Let uu1 . . . up+1 and vv1 . . . vq−1 be the two pendant paths at u and v in
Gu,v(p+1, q−1), respectively. Let x be the Perron vector of Aα(Gu,v(p+1, q−1)).
Let u0 = u, v0 = v. Suppose that ρα(Gu,v(p, q)) ≤ ρα(Gu,v(p+ 1, q − 1)).

By argument as in the proof of Theorem 3.1, we have xup−i
> xvq−i−1

for all
i = 0, 1, . . . , q − 1. Thus xup−(q−1)

> xv. Let G′ = Gu,v(p + 1, q − 1) − {vw : w ∈
NG(v) \ {u}}+ {up−(q−1)w : w ∈ NG(v) \ {u}}. By Lemma 2.1, we have ρα(G′) >
ρα(Gu(p + 1, q − 1)). If p = q, then G′ ∼= Gu,v(p, q) and thus ρα(Gu,v(p, q)) >
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ρα(Gu,v(p + 1, q − 1)), a contradiction. Thus p > q. Let x′ be the Perron vector
of Aα(G′). Note that x′up−(q−1)

> x′v; Otherwise, we have by Lemma 2.1 that

ρα(G′) < ρα(Gu(p+ 1, q − 1)), a contradiction.

If x′up−q
≥ x′u, then since G′ − {uw : w ∈ NG(u) \ {v}} + {up−qw : w ∈

NG(u) \ {v}} ∼= Gu,v(p, q), we have by Lemma 2.1 that ρα(Gu,v(p, q)) > ρα(G′) >
ρα(Gu,v(p+1, q−1)), a contradiction. Thus we may assume that x′up−q

< x′u. Since
G′−{uv, up−qup−(q−1)}+ {uup−(q−1), vup−q} ∼= Gu,v(p, q), we have by Lemma 2.2
that ρα(Gu,v(p, q)) > ρα(G′) > ρα(Gu,v(p+ 1, q − 1)), also a contradiction.

Therefore, ρα(Gu,v(p, q)) > ρα(Gu,v(p+ 1, q − 1)).

4. BOUNDS FOR THE α-SPECTRAL RADIUS

Let B = (bij) be an n×n nonnegative matrix with row sums r1, . . . , rn, where
r1 ≥ · · · ≥ rn. Let M be the largest diagonal entry and N the largest non-diagonal
entry of B, where N > 0. Let ρ(B) be the spectral radius of B. It is proved in [14]
that for 1 ≤ ` ≤ n,

ρ(B) ≤
r` +M −N +

√
(r` −M +N)2 + 4N

∑`−1
i=1(ri − r`)

2

with equality when B is irreducible if and only if either r1 = · · · = rn or for some
2 ≤ t ≤ `, bii = M for 1 ≤ i ≤ t− 1, bik = N for 1 ≤ i ≤ n and 1 ≤ k ≤ t− 1 with
k 6= i, and rt = · · · = rn. For a graph G and 0 ≤ α < 1, we have ρα(G) = ρ(Aα(G))
and applying this result in [14] to Aα(G), we have the following result.

Let G be a graph on n ≥ 2 vertices with degree sequence d1, . . . , dn, where
d1 ≥ · · · ≥ dn. Then for 0 ≤ α < 1 and 1 ≤ ` ≤ n,

ρα(G) ≤
d` + αd1 − (1− α) +

√
(d` − αd1 + 1− α)2 + 4(1− α)

∑`−1
i=1(di − d`)

2

with equality when G is connected if and only if either G is regular or G is a graph
with d1 = · · · = dt−1 = n− 1 > dt = · · · = dn for some 2 ≤ t ≤ `.

4.1 A bound for the α-spectral radius of trees and unicyclic
graphs using maximum degree

By calculating the Aα-spectra of certain Bethe trees, Nikiforov et al. [26]
showed that, for 0 ≤ α ≤ 1, ρα(T ) < α∆ + 2(1 − α)

√
∆− 1 for a tree T with

maximum degree ∆ ≥ 2. We extend this result to trees and unicyclic graphs.

Theorem 4.3. Let G be a tree or unicyclic graph with maximum degree ∆ ≥ 2.
For 0 ≤ α ≤ 1, we have

ρα(G) ≤ α∆ + 2(1− α)
√

∆− 1

with equality for 0 ≤ α < 1 if and only if G is a cycle.



437 Haiyan Guo and Bo Zhou

Proof. If α = 1, then Aα(G) = D(G), and thus ρα(G) = ∆ = α∆+2(1−α)
√

∆− 1.

Suppose that 0 ≤ α < 1.

If G is a tree, then we may add an edge between two vertices of degree
one to form a unicyclic graph G′ with maximum degree ∆, and for 0 ≤ α < 1,
by [23, Corollary 2.2, p. 38], we have ρα(G) < ρα(G′). Thus we may assume
that G is a unicyclic graph. Let x be the Perron vector of Aα(G). Let C be
the unique cycle of G and let k be its length. We label the vertices of G so
that V (G) = {v1, . . . , vn} and V (C) = {v1, . . . , vk}. For w ∈ V (G), let dG(w,C)
denote the minimum distance between w and vertices of C. We orient the edges
of C as arcs (v1, v2), . . . , (vk−1, vk), (vk, v1) and an edge uv outside C as (u, v) if
dG(u,C) > dG(v, C). Now, for any i = 1, . . . , n, there is a unique arc from vi to
some other vertex v′i. Consider the multiple set {x2

v′1
, . . . , x2

v′n
}. For i = 1, . . . , n,

the number of times of x2
vi appearing in this multiple set is equal to the number of

arcs to vi under the above orientation, which is dG(vi)− 1. Thus

n∑
i=1

x2
v′i

=

n∑
i=1

(dG(vi)− 1)x2
vi .

Therefore

ρα(G) = x>Aα(G)x

= α
∑

u∈V (G)

dG(u)x2
u + 2(1− α)

∑
uv∈E(G)

xuxv

≤ α
∑

u∈V (G)

∆x2
u + 2(1− α)

∑
uv∈E(G)

xuxv(4.1)

= α∆ + 2(1− α)

n∑
i=1

xvixv′i

≤ α∆ + 2(1− α)

√√√√ n∑
i=1

x2
vi

n∑
i=1

x2
v′i

(4.2)

= α∆ + 2(1− α)

√√√√ n∑
i=1

x2
v′i

= α∆ + 2(1− α)

√√√√ n∑
i=1

(dG(vi)− 1)x2
vi

≤ α∆ + 2(1− α)

√√√√ n∑
i=1

(∆− 1)x2
vi(4.3)

= α∆ + 2(1− α)
√

∆− 1.

In the above, inequalities (4.1) and (4.3) follow from the fact that dG(u) ≤ ∆ for
any u ∈ V (G) and (4.2) follows from the Cauchy-Schwarz inequality.
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If ρα(G) = α∆ + 2(1− α)
√

∆− 1, then (4.3) is an equality, implying that G
is ∆-regular, and thus ∆ = 2 and G = C. Conversely, if G is a cycle, then ∆ = 2
and ρα(G) = 2 = α∆ + 2(1− α)

√
∆− 1.

Let G be a unicyclic graph with maximum degree ∆ ≥ 2. By setting α = 0, 1
2

in the previous theorem respectively, we have ρ0(G) ≤ 2
√

∆− 1 and ρ1/2(G) ≤
1
2 (∆ + 2

√
∆− 1) with either equality if and only if G is a cycle. The bound for

ρ0(G) has been known in [20], and actually, we use techniques borrowed from
there. Let µ(G) be the largest eigenvalue of the Laplacian matrix of a graph G.
Note that µ(G) ≤ 2ρ1/2(G) with equality if and only if G is bipartite [3]. Thus

µ(G) ≤ ∆ + 2
√

∆− 1 with equality if and only if G is an even cycle, see [20].

4.2 Bounds for the α-spectral radius of irregular graphs

If G is a graph with maximum degree ∆ and 0 ≤ α ≤ 1, then ρα(G) ≤ ∆
with equality if and only if α = 1 or G has a component that is regular of degree
∆, see [26, Proposition 11].

For a connected irregular graph G with n vertices, maximum degree ∆ and
diameter D, Cioabǎ [7] proved a conjecture in [8] stated as

ρ0(G) < ∆− 1

Dn
,

and Ning et al. [24] showed that

2ρ1/2(G) < 2∆− 1(
D − 1

4

)
n
.

We follow the techniques in [7, 24] to prove the following result.

Theorem 4.4. Let G be a connected irregular graph on n vertices with maximum
degree ∆ and diameter D. For 0 ≤ α < 1, we have

ρα(G) < ∆− 2(1− α)

(2D − α)n
.

Proof. Let x be the Perron vector of Aα(G). Let xz = max{xi : i ∈ V (G)}. Then
xz >

1√
n

.

If dz < ∆, then from the eigenequation at z, we have

ρα(G)xz = αdzxz + (1− α)
∑

j∈NG(z)

xj

≤ αdzxz + (1− α)
∑

j∈NG(z)

xz

≤ α(∆− 1)xz + (1− α)(∆− 1)xz
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= (∆− 1)xz,

and thus ρα(G) ≤ ∆− 1 < ∆− 2(1−α)
(2D−α)n .

Assume that dz = ∆. Let V1 = {v ∈ V (G) : dv < ∆}. Obviously, V1 6= ∅.
Suppose that there is a vertex u ∈ V1 such that dG(u, z) ≤ D − 1. Let

P = v0v1 . . . vp be a shortest path from u to z, where v0 = u and vp = z. Then

∆− ρα(G) = ∆
∑

i∈V (G)

x2
i − x>Aαx

=
∑

i∈V (G)

(∆− di)x2
i + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
u + (1− α)

p−1∑
j=0

(
xvj − xvj+1

)2
.

By the Cauchy-Schwarz inequality and Lemma 2.3, we have

∆− ρα(G) ≥ x2
u +

(1− α)(xu − xz)2

p

≥ 1− α
p+ 1− α

x2
z

≥ 1− α
D − α

x2
z

>
2(1− α)

(2D − α)n
,

as desired.

Now assume that for every vertex v ∈ V1, d(v, z) = D. We consider the cases
|V1| ≥ 2 and |V1| = 1 separately.

Suppose first that |V1| ≥ 2. Let u, v ∈ V1, and P = v0v1 . . . vD be a shortest
path from u to z, where v0 = u and vD = z. Let Q be a shortest path from v to z.
Let ` = min{j : vj ∈ V (Q)}. Then ` ∈ {1, . . . , D} and ` = dG(u, v`) = dG(v, v`).
Let Qv,v` be the sub-path of Q from v to v`. If ` 6= D, i.e., ` ≤ D − 1, then by the
Cauchy-Schwarz inequality and Lemma 2.3, we have

∆− ρα(G) =
∑

i∈V (G)

(∆− di)x2
i + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
u + x2

v + (1− α)

`−1∑
j=0

(
xvj − xvj+1

)2
+

∑
kj∈E(Qv,v`

)

(xk − xj)2 +

D−1∑
j=`

(
xvj − xvj+1

)2
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≥

(
x2
u +

(1− α) (xu − xv`)
2

`

)
+

(
x2
v +

(1− α) (xv − xv`)
2

`

)

+
(1− α) (xv` − xz)

2

D − `

≥ 2(1− α)

`+ 1− α
x2
v`

+
(1− α) (xv` − xz)

2

D − `

≥ 2(1− α)

2D − `+ 1− α
x2
z

≥ 2(1− α)

2D − α
x2
z

>
2(1− α)

(2D − α)n
.

If ` = D, i.e., v` = z, then as above and noting that D > 1, we have

∆− ρα(G) =
∑

i∈V (G)

(∆− di)x2
i + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
u + x2

v + (1− α)

D−1∑
j=0

(
xvj − xvj+1

)2
+

∑
ij∈E(Q)

(xi − xj)2


≥

(
x2
u +

(1− α)(xu − xz)2

D

)
+

(
x2
v +

(1− α)(xv − xz)2

D

)
≥ 2(1− α)

D + 1− α
x2
z

>
2(1− α)

(2D − α)n
.

Thus, the result follows when |V1| ≥ 2.

Now assume that |V1| = 1. Let w be a vertex of G such that xw = min{xi :
i ∈ V (G)}. Since

∆xw > ρα(G)xw = αdwxw + (1− α)
∑

j∈NG(w)

xj ≥ dwxw,

we have dw < ∆, implying that V1 = {w}.
Since ρα(G)xi = αdixi + (1− α)

∑
j∈NG(i) xj for i ∈ V (G), we have

ρα(G)
∑

i∈V (G)

xi = α
∑

i∈V (G)

dixi + (1− α)
∑

i∈V (G)

∑
j∈NG(i)

xj

=
∑

i∈V (G)

dixi = ∆
∑
i 6=w

xi + dwxw,
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i.e., (∆− ρα(G))
∑
i∈V (G) xi = (∆− dw)xw, from which we get

∆− ρα(G) =
(∆− dw)xw∑

i∈V (G) xi
>

xw
nxz

.

Let γ = xz

xw
. If γ ≤ 2D−α

2(1−α) , then

∆− ρα(G) >
1

nγ
≥ 2(1− α)

(2D − α)n
,

as desired.

In the following, we assume that γ > 2D−α
2(1−α) .

Since dG(w, z) = D, we can choose a vertex z′ ∈ NG(z) such that dG(w, z′) =
D− 1. Let v0 . . . vD−1 be a shortest path from w to z′ with v0 = w and vD−1 = z′.
Then as above, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
w + (1− α)

D−2∑
j=0

(
xvj − xvj+1

)2
≥ x2

w +
(1− α)(xw − xz′)2

D − 1

≥ 1− α
D − α

x2
z′ .

If xz′ >
1√
n

, then

∆− ρα(G) >
1− α

(D − α)n
≥ 2(1− α)

(2D − α)n
,

as desired.

Thus, we assume that there is a vertex z′ ∈ NG(z) such that xz′ ≤ 1√
n

. Then

ρα(G)xz = α∆xz + (1− α)
∑

i∈NG(z)

xi ≤ (∆− 1 + α)xz + (1− α)
1√
n
,

which implies ∆− ρα(G) ≥ (1− α)
(

1− 1
xz
√
n

)
.

If (1 − α)
(

1− 1
xz
√
n

)
> 2(1−α)

(2D−α)n , then we are done. Thus, we assume that

(1− α)(1− 1
xz
√
n

) ≤ 2(1−α)
(2D−α)n , i.e.,

xz ≤
(2D − α)

√
n

(2D − α)n− 2
.
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This, together with the fact that (n− 1)x2
z + x2

w ≥
∑
i∈V (G) x

2
i = 1, implies that

γ2 =

(
xz
xw

)2

≤ 1
1
x2
z
− (n− 1)

≤ (2D − α)2n

(2D − α)(2D − α− 4)n+ 4
.

If D ≥ 3, then (2D − α)(2D − α− 4)n+ 4 ≥ (α2 − 8α+ 12)n+ 4 > 4n, and
thus

γ2 <
(2D − α)2n

4n
≤ (2D − α)2

4(1− α)2
< γ2,

which is a contradiction. Thus, it follows that D = 2.

By Lemma 2.3 and the fact that x2
z >

1
n , we have x2

w + (1− α)(xw − xz)2 ≥
1−α
2−αx

2
z >

2(1−α)
(2D−α)n .

Suppose that there are two paths, say wuz and wvz, from w to z. Note that
(xw − t)2 + (t− xz)2 ≥ 1

2 (xw − xz)2. As earlier, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2

+(xw − xv)2 + (xv − xz)2
)

≥ x2
w + (1− α)

(
(xw − xz)2

2
+

(xw − xz)2

2

)
= x2

w + (1− α)(xw − xz)2

>
2(1− α)

(2D − α)n
,

as desired.

Thus, we assume that there is a unique path, say wuz, from w to z. Let
N1 = NG(z) \ {u} and let N2 the set of vertices of distance 2 from z except w.
Then V (G) \ {z, u, w} = N1 ∪N2, and for every vertex v ∈ N1, dG(v, w) = 2. We
consider three cases.

Case 1. u is adjacent to at least two vertices in N1.

We choose v, v′ ∈ N1 ∩ NG(u). Since du = dz = ∆, there is a vertex in
N1 \ {v, v′}, say v1, such that uv1 /∈ E(G). Note that dG(v1, w) = 2. Then there is
a path, say v1v2w, connecting v1 and w, where v2 ∈ N2. Then as earlier, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2

+(xu − xv)2 + (xv − xz)2 + (xu − xv′)2 + (xv′ − xz)2

+(xw − xv2)2 + (xv2 − xv1)2 + (xv1 − xz)2
)

≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2
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+
(xu − xz)2

2
+

(xu − xz)2

2
+

(xw − xz)2

3

)
= x2

w + (1− α)

(
(xw − xu)2 + 2(xu − xz)2 +

(xw − xz)2

3

)
.

By Lemma 2.3,

∆− ρα(G) ≥ x2
w + (1− α)(xw − xz)2 >

2(1− α)

(2D − α)n
,

as desired.

Case 2. u is adjacent to exactly one vertex in N1.

Let v be the unique vertex in N1 ∩ NG(u). Since du = dz = ∆, there is
a vertex in N1 \ {v}, say v1, such that uv1 /∈ E(G). Note that dG(v1, w) = 2.
Then there is a path, say v1v2w, connecting v1 and w where v2 ∈ N2. Since
w, u, z, v, v1, v2 ∈ V (G), we have n ≥ 6. If n = 6, then ∆ = dz = 3, dw = 2, and
thus 2|E(G)| = 5∆ + dw = 17, a contradiction. Thus n ≥ 7.

Case 2.1. ∆ ≥ 4.

Since |N1| = dz − 1 = ∆ − 1 ≥ 3, we may choose s ∈ N1 \ {v, v1}. Since
D = 2, there is a path, say ss′w, connecting s and w, where s′ ∈ N2.

If s′ = v2, then as above, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2 + (xw − xv2)2

+(xv2 − xv1)2 + (xv1 − xz)2

+(xv2 − xs)2 + (xs − xz)2
)

≥ x2
w + (1− α)

(
(xw − xz)2

2
+ (xw − xv2)2 +

(xv2 − xz)2

2
· 2
)

≥ x2
w + (1− α)(xw − xz)2

>
2(1− α)

(2D − α)n
,

as desired.

If s′ 6= v2, then as above, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2

+ (xw − xv2)2 + (xv2 − xv1)2 + (xv1 − xz)2

+ (xw − xs′)2 + (xs′ − xs)2 + (xs − xz)2
)

≥ x2
w + (1− α)

(
(xw − xz)2

2
+

2(xw − xz)2

3

)
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≥ x2
w +

7(1− α)(xw − xz)2

6

> x2
w + (1− α)(xw − xz)2

>
2(1− α)

(2D − α)n
,

as desired.

Case 2.2. ∆ = 3.

Suppose that n ≥ 8. Then there are two vertices, say s1, s2 ∈ V (G) \
{w, u, z, v, v1, v2}. Since D = 2, du = 3 and dw = 2, we have dG(s1, w) =
dG(s2, w) = 2, and thus s1 and s2 can only be adjacent to v2, which is impossible
because dv2 = 3. Thus n = 7. Let s be the vertex different from w, u, z, v, v1, v2.
Then E(G) = {wu, uz, uv, vz, wv2, v2v1, v1z, v2s, sv, sv1}, see Fig. 1. Note that

Fig. 1: The only possible graph G in Case 2.2.

there is an automorphism σ such that σ(s) = z. By [25, Proposition 16], xs = xz.
Thus as above, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2

+(xw − xv2)2 + (xv2 − xs)2
)

≥ x2
w + (1− α)(xw − xz)2

>
2(1− α)

(2D − α)n
,

as desired.

Case 3. u is not adjacent to any vertex in N1.

Since dw < ∆, there are two vertices, say v1 and v2 in N1, such that some
vertex v∗ in N2 is adjacent to w, v1 and v2. Thus, we have

∆− ρα(G) = x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2
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≥ x2
w + (1− α)

(
(xw − xu)2 + (xu − xz)2 + (xw − xv∗)2

+(xv∗ − xv1)2 + (xv1 − xz)2 + (xv∗ − xv2)2 + (xv2 − xz)2
)

≥ x2
w + (1− α)

(
(xw − xz)2

2
+ (xw − xv∗)2 +

(xv∗ − xz)2

2
· 2
)

≥ x2
w + (1− α)(ww − xz)2

>
2(1− α)

(2D − α)n
,

as desired.

Now by combining the above three cases, we complete the proof.

Besides those considerations in [7, 24], the proof of Theorem 4.4 needs more
detailed analysis in the case of diameter two.

By the Perron-Frobenius Theorem, if λα(G) is the least eigenvalue Aα(G),
then ρα(G) ≥ −λα(G). Thus, for a connected irregular graph G on n vertices with
maximum degree ∆ and diameter D,

∆ + λα(G) >
2(1− α)

(2D − α)n
.

Recall that Alon and Sudakov [2] proved that for a connected graph G on n vertices
with maximum degree ∆ and diameterD, if it is not bipartite (but possibly regular),
then

∆ + λ0(G) >
1

(D + 1)n
.

For a connected irregular graph G on n vertices with maximum degree ∆,
minimum degree δ, average d and diameter D, Shi [29] showed that

ρ0(G) < ∆− 1

(n− δ)D −
(
D
2

)
+ 1

∆−d

and

µ(G) < 2∆− 1

(n− δ)D −
(
D
2

)
+ 1

2(∆−d)

,

where µ(G) is the the largest eigenvalue of the Laplacian matrix of G. For a
connected graph G, since µ(G) ≤ 2ρ1/2(G), upper bounds for 2ρ1/2(G) result in
upper bounds for µ(G).

We remark that the argument in [29] applies easily to prove the following
result. For completeness, however, we include a proof here.

Theorem 4.5. Let G be a connected irregular graph on n vertices with maximum
degree ∆, minimum degree δ, average degree d and diameter D. For 0 ≤ α < 1, we
have

ρα(G) < ∆− 1

D(n−δ)
1−α − (D

2)
1−α + 1

∆−d
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Proof. Let x be the Perron vector of Aα(G). Let xz = max{xi : i ∈ V (G)} and
xw = min{xi : i ∈ V (G)}. Let v0 . . . vp be a shortest path connecting w and z,
where v0 = w and vp = z. Now for ` = 1, . . . , p, by the Cauchy-Schwarz inequality,

∑
ij∈E(G)

(xi − xj)2 ≥
`−1∑
j=0

(
xvj − xvj+1

)2 ≥ (xw − xv`)
2

`
.

Thus, for ` = 1, . . . , p, we have by Lemma 2.3 that

∆− ρα(G) =
∑

u∈V (G)

(∆− du)x2
u + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥(n∆− 2m)x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥(n∆− 2m)x2
w + (1− α)

(xw − xv`)
2

`

≥
(1− α)(n∆− 2m)x2

v`

`(n∆− 2m) + 1− α
.

(4.4)

It is known that D + ∆ ≤ n + 1. Since δ < ∆, we have D + δ ≤ n. Since
1 ≤ p ≤ D and δ ≤ dw ≤ ∆, we have

p(n− dw)−
(
p

2

)
≤ p(n− δ)−

(
p

2

)
≤ D(n− δ)−

(
D

2

)
.

Let

β =
1

p(n−dw)−(p
2)

1−α + 1
∆−d

.

Then it suffices to show that ∆− ρα(G) > β.

If x2
w >

β
n∆−2m , then ∆− ρα(G) ≥ (n∆− 2m)x2

w > β.

If x2
v`

> `(n∆−2m)+1−α
(1−α)(n∆−2m) β for some ` = 1, . . . , p, then from (4.4) we have

∆− ρα(G) > β.

If
∑
v∈NG(w) x

2
v >

dw(1−α)+n∆−2m
(1−α)(n∆−2m) β, then by Lemma 2.3,

∆− ρα(G) ≥ (n∆− 2m)x2
w + (1− α)

∑
v∈NG(w)

(xv − xw)2

≥
∑

v∈NG(w)

(
(n∆− 2m)x2

w

dw
+ (1− α)(xv − xw)2

)

≥
∑

v∈NG(w)

(1− α)(n∆− 2m)

dw(1− α) + (n∆− 2m)
x2
v > β.
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Thus, we can assume that x2
w ≤

β
n∆−2m ,

∑
v∈NG(w) x

2
v ≤

dw(1−α)+n∆−2m
(1−α)(n∆−2m) β

and x2
v`
≤ `(n∆−2m)+1−α

(1−α)(n∆−2m) β for ` = 1, . . . , p. Then

(n− p− dw + 1)x2
z ≥ 1− x2

w −
p−1∑
`=2

x2
v`
−

∑
v∈NG(w)

x2
v

≥ 1− β

n∆− 2m
−
∑p−1
`=2 (`(n∆− 2m) + 1− α)

(1− α)(n∆− 2m)
β

−dw(1− α) + n∆− 2m

(1− α)(n∆− 2m)
β

= 1−

(
dw + p− 1

n∆− 2m
+

(
p
2

)
1− α

)
β

with equality only if x2
w = β

n∆−2m . From (4.4), we have

∆− ρα(G) ≥
(1− α)(n∆− 2m)

(
1−

(
dw+p−1
n∆−2m +

(p
2)

1−α

)
β

)
(p(n∆− 2m) + 1− α)(n− p− dw + 1)

= β.

Suppose that ∆−ρα(G) = β. Then by Lemma 2.3, we have xw = 1−α
p(n∆−2m)+1−αxvp .

Note that we also have x2
w = β

n∆−2m . Thus(
p(n∆− 2m) + 1− α

1− α

)2
β

n∆− 2m
= x2

vp ≤
p(n∆− 2m) + 1− α
(n∆− 2m)(1− α)

β,

implying that p(n∆− 2m) ≤ 0, a contradiction. Therefore ∆− ρα(G) > β.

For a k-connected irregular graph G on n ≥ 3 vertices with m edges and
maximum degree ∆, Chen and Hou [6] (see also Shiu et al. [30]) showed that

ρ0(G) < ∆− (n∆− 2m)k2

(n∆− 2m)(n2 − (∆− k + 2)(n− k)) + nk2
,

and Shiu et al. [30] showed that

2ρ1/2(G) < 2∆− (n∆− 2m)k2

2(n∆− 2m)(n2 − (∆− k + 2)(n− k)) + nk2
.

The argument in [6,30] leads easily to the following result. For completeness,
however, we include a proof here.

Theorem 4.6. Let G be a k-connected irregular graph on n vertices with m edges,
maximum degree ∆. For 0 ≤ α < 1, we have

ρα(G) < ∆− (1− α)(n∆− 2m)k2

(n∆− 2m)(n2 − (∆− k + 2)(n− k)) + (1− α)nk2
.
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Proof. Let

β =
(1− α)(n∆− 2m)k2

(n∆− 2m)(n2 − (∆− k + 2)(n− k)) + (1− α)nk2
.

Note that n2 − (∆− k + 2)(n− k) ≥ nk > k2. Then β < 1.

Let x be the Perron vector of Aα(G). Let xz = max{xi : i ∈ V (G)}. Then
xz >

1√
n

.

If dz < ∆, then as in the proof of Theorem 4.4, we have ρα(G) ≤ ∆ − 1 <
∆− β.

Assume that dz = ∆. Let w be a vertex of G such that xw = min{xi : i ∈
V (G)}. From the eigenequation at w, we have dw < ∆. As G is k-connected, by
Menger’s Theorem, we can choose k vertex-disjoint paths, say Q1, . . . , Qk, connect-
ing w and z in G so that

∑k
s=1 |V (Qs)| is as small as possible. Then

⋃k
s=1 V (Qs)

contains exactly k vertices in NG(z), implying that
∣∣∣⋃ks=1 V (Qs)

∣∣∣ ≤ n − (∆ − k),

and thus
∑k
s=1(|V (Qs)| − 1) =

∣∣∣⋃ks=1 V (Qs)
∣∣∣+ 2(k − 1)− k ≤ n−∆ + 2k − 2. By

the Cauchy-Schwarz inequality,

∑
ij∈E(G)

(xi − xj)2 ≥
k∑
s=1

∑
ij∈E(Qs)

(xi − xj)2

≥
k∑
s=1

1

|V (Qs)| − 1

 ∑
ij∈E(Qs)

(xi − xj)

2

= (xw − xz)2
k∑
s=1

1

|V (Qs)| − 1

≥ (xw − xz)2 k2∑k
s=1(|V (Qs)| − 1)

≥ k2

n−∆ + 2k − 2
(xw − xz)2.

Therefore, we have

∆− ρα(G) =
∑

u∈V (G)

(∆− du)x2
u + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ (n∆− 2m)x2
w + (1− α)

∑
ij∈E(G)

(xi − xj)2

≥ (n∆− 2m)x2
w +

(1− α)k2

n−∆ + 2k − 2
(xw − xz)2.

Note that xw 6= xz as G is irregular.

If x2
w ≥

β
n∆−2m , then ∆− ρα(G) > (n∆− 2m)x2

w ≥ β, as desired.
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Assume that x2
w <

β
n∆−2m . By Lemma 2.3,

(4.5) ∆− ρα(G) ≥ (1− α)(n∆− 2m)k2

(n∆− 2m)(n−∆ + 2k − 2) + (1− α)k2
x2
z.

If k = 1, then (n− 1)x2
z ≥ 1−x2

w > 1− β
n∆−2m , and thus from (4.5), we have

∆− ρα(G) >
(1− α)(n∆− 2m)

(n∆− 2m)(n−∆) + 1− α
· 1

n− 1
·
(

1− β

n∆− 2m

)

= β ·
(n∆− 2m)

(
n2

n−1 − (∆ + 1)
)

+ 1− α

(n∆− 2m)(n−∆) + 1− α
> β,

as desired.

Now assume that k ≥ 2. Since dw ≥ k, we may choose k − 1 vertices, say
v1, . . . , vk−1, in NG(w) different from z. Then as above, we have

∆− ρα(G) ≥ (n∆− 2m)x2
w + (1− α)

k−1∑
i=1

(xvi − xw)2

=

k−1∑
i=1

(
n∆− 2m

k − 1
x2
w + (1− α)(xvi − xw)2

)

≥
k−1∑
i=1

(1− α)(n∆− 2m)

n∆− 2m+ (1− α)(k − 1)
x2
vi

=
(1− α)(n∆− 2m)

n∆− 2m+ (1− α)(k − 1)

k−1∑
i=1

x2
vi .

If
∑k−1
i=1 x

2
vi >

n∆−2m+(1−α)(k−1)
(1−α)(n∆−2m) β, then ∆− ρα(G) > β, as desired.

Assume that
∑k−1
i=1 x

2
vi ≤

n∆−2m+(1−α)(k−1)
(1−α)(n∆−2m) β. Recall that x2

w < β
n∆−2m .

Then

(n− k)x2
z ≥ 1− x2

w −
k−1∑
i=1

x2
vi > 1− n∆− 2m+ (1− α)k

(1− α)(n∆− 2m)
β.

Therefore, from (4.5), we have

∆− ρα(G) ≥ (1− α)(n∆− 2m)k2

(n∆− 2m)(n−∆ + 2k − 2) + (1− α)k2
x2
z

>
(1− α)(n∆− 2m)k2

(n∆− 2m)(n−∆ + 2k − 2) + (1− α)k2

· 1

n− k

(
1− n∆− 2m+ (1− α)k

(1− α)(n∆− 2m)
β

)
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= β,

as desired.

By direct check, the upper bound in Theorem 4.4 is less than or equal to the
upper bound in Theorem 4.5 if and only if

(∆− d) (2Dδ +D(D − 1)− αn) ≤ 2(1− α),

the upper bound in Theorem 4.4 is less than or equal to the upper bound in
Theorem 4.6 if and only if

2n2 +
2(1− α)nk2

n∆− 2m
≥ n(2D − α)k2 + 2(∆− k + 2)(n− k),

and the upper bound in Theorem 4.5 is less than or equal to the upper bound in
Theorem 4.6 if and only if

k2D(2n− 2δ −D + 1) ≤ 2n2 − 2(∆− k + 2)(n− k).

4.3 A bound for the α-spectral radius of graphs with fixed
domination number

For a graph G with u ∈ V (G), let Ru = V (G) \ NG(u). The following
result concerning the domination number unifies the results in [33, 34] on spectral
radius and signless Laplacian spectral radius of a graph. We note that the bound
is independent of the parameter α. By G we denote the complement of G.

Theorem 4.7. Let G be a graph with n vertices and domination number γ, where
1 ≤ γ ≤ n− 1. For 0 ≤ α < 1, we have ρα(G) ≤ n− γ with equality if and only if

G ∼= Kn−γ+1∪(γ−1)K1 or when γ ≥ 2 and n−γ is even, G ∼= n−γ+2
2 K2∪(γ−2)K1.

Proof. Let ∆ be the maximum degree of G. For u ∈ V (G) with dG(u) = ∆, it is
easily seen that Ru is a dominating set of G, and thus γ ≤ |Ru| = n−∆, implying
that ∆(G) ≤ n− γ with equality if and only if Ru is a minimum dominating set of
G. Thus ρα(G) ≤ ∆ ≤ n− γ.

Suppose that ρα(G) = n− γ. Then ∆ = n− γ. Obviously, ρα(G) = ρα(G1)
for some nontrivial component G1 of G. Let ∆1 be the maximum degree of G1.
Note that ρα(G) = ρα(G1) ≤ ∆1 ≤ ∆ = n − γ. Thus G1 is regular, ∆1 = n − γ,
and Ru is a minimum dominating set of G for some u ∈ V (G1). Thus, Ru is an
independent set of G, and if G is not connected, then any component different from
G1 is trivial. If γ = 1, then G ∼= Kn. Suppose that γ ≥ 2.

Suppose that dG1
(u) ≤ |V (G1)| − 3 for some u ∈ V (G1). Then there exists

v, w ∈ V (G1) such that uv, uw 6∈ E(G1). Since G1 is (n− γ)-regular and Ru is an
independent set of G, v and w are both adjacent to each vertex of NG1

(u), implying
that, for a vertex z ∈ NG1(u), (Ru \ {v, w}) ∪ {z} is a dominating set of G with
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cardinality γ − 1, a contradiction. Thus dG1(u) = |V (G1)| − 1 or |V (G1)| − 2. If
dG1(u) = |V (G1)|− 1, then since G1 is (n−γ)-regular, we have G1

∼= Kn−γ+1, and
thus G ∼= Kn−γ+1 ∪ (γ − 1)K1. Suppose that dG1

(u) = |V (G1)| − 2. Then there is
unique vertex, say v, in V (G1)\{u} that is not adjacent to u, and NG1

(u) = NG1
(v).

For any w ∈ NG1
(u), since w is adjacent to both u and v, there is a unique vertex in

NG1
(u) \ {w} that is not adjacent to w in G1. Thus n− γ is even, G1

∼= n−γ+2
2 K2,

and thus G ∼= n−γ+2
2 K2 ∪ (γ − 2)K1.

If G ∼= Kn−γ+1 ∪ (γ − 1)K1, or if γ ≥ 2, n − γ is even and G ∼= n−γ+2
2 K2 ∪

(γ − 2)K1, then G has a unique nontrivial regular component of degree n− γ, and
thus ρα(G) = n− γ.

5. TREES WITH LARGE α-SPECTRAL RADIUS

If T is a tree on n vertices, then, for 0 ≤ α < 1, we have by Corollary 2.1
that ρα(T ) ≤ ρα(Sn) with equality if and only if T ∼= Sn, see [26].

For n ≥ 4 and 1 ≤ a ≤
⌊
n−2

2

⌋
, let Dn,a be the tree obtained from vertex-

disjoint Sa+1 with center u and Sn−a−1 with center v by adding an edge uv.

Theorem 5.8. Let T be a tree on n ≥ 4 vertices. Suppose that T � Sn. Then for
0 ≤ α < 1, ρα(T ) ≤ ρα(Dn,1) with equality if and only if T ∼= Dn,1.

Proof. The statement is trivial for n = 4. Suppose that n ≥ 5. Let T be a tree
with the largest α-spectral radius among trees on n vertices except the star Sn.

Let d be the diameter of T . Since T � Sn, we have d ≥ 3. Suppose that
d ≥ 4. Let v0v1 . . . vd be a diametral path of T . Let N1 = NT (vd−1) \ {vd−2}
Let T ′ = T − {vd−1v : v ∈ N1} + {vd−2v : v ∈ N1}. Obviously, T ′ � Sn. By
Corollary 2.1, we have ρα(T ) < ρα(T ′), a contradiction. Thus d = 3 and T ∼= Dn,a,
where 1 ≤ a ≤

⌊
n−2

2

⌋
. By Lemma 2.1, we have a = 1 and T ∼= Dn,1.

For 3 ≤ d ≤ n− 1, let Tn,d be the tree obtained from a path v0v1 · · · vd with
length d by attaching n− 1− d pendant edges at vertex vb d2 c

.

Theorem 5.9. Let T be a tree with n vertices and diameter d ≥ 3. For 0 ≤ α < 1,
ρα(T ) ≤ ρα(Tn,d) with equality if and only if T ∼= Tn,d.

Proof. Let T be a tree with the largest α-spectral radius among trees with n vertices
and diameter d. Let P = v0 . . . vd be a diametral path of T . For any u ∈ V (T ), let
dT (u, P ) = min{dT (u, vi) : i = 0, . . . , d}.

Suppose that uv is an edge outside P that is not a pendant edge. Assume
that dT (u, P ) < dT (v, P ). Let w be the vertex on P with dT (u, P ) = dT (u,w). Let
T ∗ = T − {vz : vz ∈ E(T ), z 6= u} + {wz : vz ∈ E(T ), z 6= u} if xw ≥ xv, and
T ∗ = T − {wz : wz ∈ E(T ) \ {e}} + {vz : zw ∈ E(T ) \ {e}} otherwise, where e is
the edge incident with w in the path connecting w and v. Obviously, T ∗ is a tree



On the α-spectral radius of graphs 452

with n vertices and diameter d. By Lemma 2.1, ρα(T ∗) > ρα(T ), a contradiction.
Every edge outside P is a pendant edge at some vertex of P except v0 and vd.

Suppose that there are two vertices, say u and v, on P with degree greater
than two. We may assume that xu ≥ xv. Let T ∗ = T −{vz : vz ∈ E(T ) \E(P )}+
{uz : vz ∈ E(T )\E(P )}. By Lemma 2.1, we have ρα(T ∗) > ρα(T ), a contradiction.
It follows that there is at most one vertex on P with degree greater than two.

Therefore T is obtainable from P by attaching n− d− 1 pendant edges at a
vertex different from v0 and vd. By Theorem 3.1, we have T ∼= Tn,d.

It is known that Tn,d is the unique tree with maximum 0-spectral radius
among trees with n vertices and diameter d ≥ 3, see [17,31].

6. THE DIFFERENCE BETWEEN MAXIMUM DEGREE AND THE
α-SPECTRAL RADIUS

Recall that for a graph G with maximum degree ∆ and 0 ≤ α < 1, ρα(G) ≤ ∆
with equality if and only if G has a component that is regular of degree ∆. Let
γα(G) = ∆− ρα(G). We may view γα(G) as a measure of irregularity of the graph
G. The case when α = 0 has been studied in [28].

Theorem 6.10. Let G be a graph on n ≥ 2 vertices. For 0 ≤ α < 1, we have

γα(G) ≤ n− 1− αn

2
−
√
α2n2 + 4(1− 2α)(n− 1)

2

with equality if and only if G ∼= Sn.

Proof. Let ∆ be the maximum degree of G. Then S∆+1 is a subgraph of G. By [23,
Corollary 2.2, p. 38],

ρα(G) ≥ ρα(S∆+1)

with equality when G is connected if and only if G ∼= S∆+1. From [25], we have

ρα(S∆+1) =
α(∆ + 1) +

√
α2(∆ + 1)2 + 4(1− 2α)∆

2
.

Thus

γα(G) ≤ f(∆),

where

f(t) = t− α(t+ 1)

2
−
√
α2(t+ 1)2 + 4(1− 2α)t

2
.

Note that

f ′(t) = 1− α

2
− α2(t+ 1) + 2(1− 2α)

2
√
α2(t+ 1)2 + 4(1− 2α)t

.
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It can be seen that f ′(t) > 0 if and only if g(t) > 0, where

g(t) = α2t2 + 2(α2 − 4α+ 2)t− α2 + 3α− 1.

Since 0 ≤ α < 1, we have − 2(α2−4α+2)
2α2 < 1. Thus g(t) is strictly increasing for

t ≥ 1. Now it follows that for t ≥ 1,

g(t) ≥ g(1) = (α− 1)(2α− 3) > 0,

or equivalently, f ′(t) > 0. Thus f(t) is strictly increasing for t ≥ 1. Therefore

γα(G) ≤ f(∆) ≤ f(n− 1) = n− 1− αn

2
−
√
α2n2 + 4(1− 2α)(n− 1)

2

with equalities if and only if ∆ = n−1 (implying that G is connected) and ρα(G) =
ρα(S∆+1), or equivalently, G ∼= Sn.

For connected graph G, if there is an automorphism σ such that σ(u) = v,
then xu = xv, where x is the Perron vector of Aα(G) with 0 ≤ α < 1, see [25,
Proposition 16].

For n ≥ 3, let Sn+ e be the unicyclic graph obtained from the star by adding
an edge to connect two vertices of degree one.

Let x be the Perron vector of Aα(Sn + e). Let x1 be the entry of x corre-
sponding to the vertex of degree n− 1. The entry of x corresponding to the either
vertex of degree 2 is equal, which is denoted by x2, the entry of each vertex of
degree 1 is equal, which is denoted by x3. Let ρ = ρα(Sn + e). Thus

(ρ− α(n− 1))x1 = 2(1− α)x2 + (n− 3)(1− α)x3,

(ρ− 1− α)x2 = (1− α)x1,

(ρ− α)x3 = (1− α)x1.

Therefore h(ρ) = 0 with

h(t) = t3 − (α(n+ 1) + 1)t2 + ((α2 + 3α− 1)(n− 1) + α(α+ 1))t

+(1− 2α)(α+ 1)(n− 1)− 2(1− α)2.

It follows that ρα((Sn + e)) is the largest root of h(t) = 0.

Theorem 6.11. Let G be a unicyclic graph with n ≥ 4 vertices. For 0 ≤ α < 1,
we have

γα(G) ≤ γα(Sn + e)

with equality if and only if G ∼= Sn + e.

Proof. Let ∆ be the maximum degree of G. Let

t0 = 1 +
α(n− 1)

2
+

√
α2(n− 1)2 + 4(1− 2α)(n− 2)

2
.
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If ∆ ≤ n− 2, then by the argument as in the proof of Theorem 6.10, we have

γα(G) ≤ f(∆) ≤ f(n− 2) = n− 1− t0.

If ∆ = n− 1, then G ∼= Sn + e, and

γα(G) = n− 1− ρα(Sn + e),

where ρα(Sn + e) is the largest root of h(t) = 0.

Let t1 be the larger root of h′(t) = 0, i.e.,

t1 =
α(n+ 1) + 1 +

√
α2n2 − (α2 + 7α− 3)n+ α2 + 8α− 2

3
.

It may be checked that t0 > t1. Thus h(t) is strictly increasing for t ≥ t0.

Case 1. 0 ≤ α ≤ 1
2 .

Note that

h(t0) = α(1− α)(n− 2)
α(n− 1) +

√
α2(n− 1)2 + 4(1− 2α)(n− 2)

2

+(3n− 8)α2 + (14− 5n)α+ 2n− 6.

We view h(t0) as a function of n, denoted by H(n). Then

2H ′(n) = (2n− 3)α2(1− α) + α(1− α)
√
α2(n− 1)2 + 4(1− 2α)(n− 2)

+
α(1− α)(n− 2)(α2(n− 1) + 2(1− 2α))√

α2(n− 1)2 + 4(1− 2α)(n− 2)
+ 6α2 − 10α+ 4.

For n ≥ 4, since 0 ≤ α ≤ 1
2 , we have H ′(n) > 0, and thus H(n) is strictly increasing

for n ≥ 4. Therefore

h(t0) = H(n) ≥ H(4) = α(1− α)
√

9α2 + 8(1− 2α) + (1− α)(3α2 − 4α+ 2) > 0.

Case 2. 1
2 < α < 1.

Note that√
α2(n− 1)2 + 4(1− 2α)(n− 2) ≥ α(n− 3) +

2(1− α)2

α
.

Then

h(t0) ≥ α2(1− α)(n− 2)2 + ((1− α)3 + 3α2 − 5α+ 2)(n− 2)− 2(1− α)2.

Let H(n) be the expression in the right hand side of the above inequality, which is
a function of n. Then

H ′(n) = 2α2(1− α)n+ 3α3 + 2α2 − 8α+ 3,
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which is strictly increasing for n ≥ 4. It follows that

H ′(n) ≥ H ′(4) = (1− α)(5α2 − 5α+ 3) > 0.

Therefore
h(t0) ≥ H(n) ≥ H(4) = 2(1− α)(3α2 − 4α+ 2) > 0.

Now combining Cases 1 and 2, we have h(t0) > 0. Thus, for t ≥ t0, we have
h(t) > h(t0) > 0, implying that ρα(Sn + e) < t0. Now the result follows.

Theorem 6.12. Let G be a graph on n ≥ 4 vertices. If G is not bipartite, then for
0 ≤ α < 1, we have

γα(G) ≤ γα(Sn + e)

with equality if and only if G ∼= Sn + e.

Proof. Let ∆ be the maximum degree of G. If ∆ = n−1, then Sn+e is a subgraph
of G, and thus

γα(G) = n− 1− ρα(G) ≤ n− 1− ρα(Sn + e)

with equality if and only if G ∼= Sn + e. Now the result follows as in the proof of
Theorem 6.11.

7. COMMENTS

Because of the work of Nikiforov [25], we may study the (adjacency) spectral
properties and signless Laplacian spectral properties of a graph in a unified way.
Thus, we may also study those parameters based on the spectrum of Aα(G) of a
graph G for 0 ≤ α < 1. We give two such examples.

Let G be a graph with n vertices and m edges. Let λ1, . . . , λn be the eigen-
values of Aα(G), arranged in a non-increasing manner. Obviously, λ1 = ρα(G).

The first is the α-energy of G, which is defined as

Eα(G) =

n∑
i=1

∣∣∣∣λi − 2αm

n

∣∣∣∣ .
Note that E0(G) is the energy of G, which has been studied extensively [18, 21],
and E1/2(G) is half of the signless Laplacian energy of G, which has received some
attention in recent years [1]. Let Aα = Aα(G). Note that

∑n
i=1 λi = tr(Aα) = 2αm

and
∑n
i=1 λ

2
i = tr(A2

α) = 2(1 − α)2m + α2Z(G), where Z(G) =
∑
u∈V (G) d

2
u. By

the Cauchy-Schwarz inequality, we have

Eα(G) ≤

√√√√n

n∑
i=1

∣∣∣∣λi − 2αm

n

∣∣∣∣2
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=

√√√√n

n∑
i=1

λ2
i − 4α2m2

=
√

2(1− α)2mn+ α2(nZ(G)− 4m2) .

For E0(G), this is just McClelland’s upper bound in [22]. On the other hand,
it is easily seen that Eα(G) ≥ 2(λ1 − 2αm

n ). Note that λ1 ≥ ρ0(G) [25, Propo-

sition 18]. Lower bounds for ρ0(G), for example, λ1 ≥
√

Z(G)
n ≥ 2m

n , may be

used to derive lower bounds for Eα(G). Furthermore, let si = λi − 2αm
n for

i = 1, . . . , n. Then
∑n
i=1 si = 0, implying that

∑n
i=1 s

2
i ≤ 2

∑
1≤i<j≤n |si||sj |.

Thus Eα(G)2 =
∑n
i=1 s

2
i + 2

∑
1≤i<j≤n |si||sj | ≥ 2

∑n
i=1 s

2
i , i.e.,

Eα(G) ≥

√
2

(
2(1− α)2m+ α2

(
Z(G)− 4m2

n

))
.

The second one is the α-Estrada index of a graph G, defined as EEα(G) =∑n
i=1 e

λi . Obviously, EE0(G) is just the much studied Estrada index of G, see,
e.g., [12, 13, 15]. Note also that EE1/2(G) is somewhat different from the so called

signless Laplacian Estrada index [4,19], which is defined to be
∑n
i=1 e

2λi (with λi’s
being the eigenvalues of A1/2(G)). For a graph G with n vertices and m edges, it
is easily seen that

EEα(G) = n+ 2αm+
∑
k≥2

∑n
i=1 λ

k
i

k!
.

As in [35], we have
∑n
i=1 λ

k
i ≤

(∑n
i=1 λ

2
i

)k/2
=
(√

2(1− α)2m+ α2Z(G)
)k

for

k ≥ 2. Thus

EEα(G) ≤ n− 1 + 2αm−
√

2(1− α)2m+ α2Z(G) + e
√

2(1−α)2m+α2Z(G).
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