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q-BINOMIAL FORMULAE OF DIXON’S

TYPE AND THE FIBONOMIAL SUMS

Wenchang Chu and Emrah Kılıç∗

Cubic sums of the Gaussian q-binomial coefficients with certain weight func-

tions will be evaluated in this paper. To realize this, we will derive two

remarkable formulae by means of the Carlitz–Sears transformation on termi-

nating well–poised q-series. As consequences, several summation formulae on

Fibonomial coefficients are presented by specializing the value of base q in

our q-series identities.

1. INTRODUCTION

Throughout this paper we use the following notations: the q-Pochhammer
symbol (x; q)n = (1− x)(1− xq) . . . (1− xqn−1) and the Gaussian q-binomial coef-
ficients [

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

When x = q, we sometimes use the notation (q)n instead of (q; q)n. We
conveniently adopt the notation that

[
n
k

]
q

= 0 if k < 0 or k > n. With the q-shifted

factorial given by [n]! =
∏n
i=1

1−qi
1−q = (q; q)n/(1 − q)n, the q-analogue of Dixon’s

identity [1, 6] can be reproduced as∑
k

(−1)kq
k
2 (3k+1)

[
a+ b

a+ k

]
q

[
b+ c

b+ k

]
q

[
c+ a

c+ k

]
q

=
[a+ b+ c]!

[a]![b]![c]!
.
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Here and forth, the q-binomial sum “
∑
k” is finite even though the summation

index k runs formally from −∞ to ∞, because the summation limits (lower and
upper) will be determined automatically by the q-binomial coefficients involved.

Define the {Un, Vn} sequences by linear recurrences for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

With α, β =
(
p±

√
p2 + 4

)
/2, they admit the expressions in the Binet forms

Un =
αn − βn

α− β
and Vn = αn + βn.

For n ≥ k ≥ 1, we define further the generalized Fibonomial coefficient{
n

k

}
U

=
U1U2 . . . Un

(U1U2 . . . Uk)(U1U2 . . . Un−k)
with

{
n

0

}
U

=

{
n

n

}
U

= 1.

When p = 1, they reduce to the usual Fibonomial coefficient, denoted by
{
n
k

}
F

.
For more details about the Fibonomial and generalized Fibonomial coefficients,
see [4, 5, 12,14,15].

Our approach will essentially be based on the following connection between
the generalized Fibonomial and Gaussian q-binomial coefficients{

n

k

}
U

= αk(n−k)

[
n

k

]
q

with q = β/α or α = i/
√
q.

It will employed to transform summation formulae on Gaussian q-binomial
coefficients with certain weight functions into those on generalized Fibonomial co-
efficients with certain generalized Fibonacci and Lucas numbers as coefficients.
Therefore, we categorize such sums in the current literature according to the num-
ber of Gaussian q-binomial coefficients (or Fibonomial coefficients) in these sums:

• We can refer to [7–9, 12] where the authors compute certain sums including
only one coefficient.

• In [9,11] the authors compute various sums including products of two coeffi-
cients.

• For the sums including products of three coefficients, which are sometimes
called “q-Dixon-like formula”, we refer to [10].

Now we recall one result from each group. Recently the authors of [7,9] proved
sum identities including certain generalized Fibonomial sums and their squares with
or without generalized Fibonacci and Lucas numbers. We recall such a result: if n
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and m are both nonnegative integers, then from [7], we have, besides three similar
formulæ, that

2n∑
k=0

{
2n

k

}
U

U(2m−1)k = Tn,m

m∑
k=1

{
2m− 1

2k − 1

}
U

U(4k−2)n,

where

Tn,m =


n−m∏
k=0

V2k, if n ≥ m;

m−n−1∏
k=1

V −1
2k , if n < m.

From [9], we have that for any positive integer n,

2n∑
k=0

i±k
{

2n

k

}
U

= i±n
n∏
k=1

V2k−1 and

2n∑
k=0

{
2n

k

}2

U

=

n∏
k=1

V2kU2(2k−1)

U2k
.

Recently Kılıç and Prodinger [8] computed the following Gaussian q-binomial
sums with a parametric rational weight function: For any positive integer w, any
nonzero real number a, nonnegative integer n, integers t and r such that t+ n ≥ 0
and r ≥ −1,

n∑
j=0

[
n

j

]
q

(−1)jq(
j+1
2 )+jt

(aqj ; qw)r+1

= (q; q)n

{
r∑
j=0

(−1)ja−tqw(j+1
2 )−twj

(qw; qw)j (qw; qw)r−j (aqwj ; q)n+1

−(−1)r
t−r−1∑
j=0

[
n+ j

n

]
q

[
t− 1− j

r

]
qw
qw(r+1

2 )+(j−t)rwaj−t

}
.

For the sums including certain triples of Fibonomial coefficients, with or
without extra Fibonacci numbers, Kılıç and Prodinger [10] investigated them sys-
tematically, discussed their proofs and recorded a long list of summation formulæ
as corollaries. We recall one of them as an example. For nonnegative integer n:

2n∑
k=0

(−1)k
[
2n

k

]2

q

[
2n+ 1

k

]
q

q
k
2 (3k−6n−3)(1 + q2k)

= 2(−1)nq−
n
2 (3n+1)

[
2n

n

]
q

[
3n+ 1

n

]
q

.

As corollaries of previous identities, by specializing the value of q, the authors
showed that each identity corresponds to two identities which have slightly different
forms. In fact, the last identity corresponds to the following two identities:

4n∑
k=0

(−1)(
k+1
2 )
{

4n

k

}2

U

{
4n+ 1

k

}
U

V2k = 2(−1)n
{

4n

2n

}
U

{
6n+ 1

2n

}
U

,

4n+2∑
k=0

(−1)(
k
2)
{

4n+ 2

k

}2

U

{
4n+ 3

k

}
U

V2k = 2(−1)n+1

{
4n+ 2

2n+ 1

}
U

{
6n+ 4

2n+ 1

}
U

.
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As mentioned above, the authors [10] consider some sum formulæ including
certain triple Gaussian q-binomial or Fibonomial coefficients, where one of them at
least has different upper index, that is, upper indices of these coefficients are not
same.

In this paper, we shall investigate cubic sums of Gaussian q-binomial coeffi-
cients and their applications to sums of Fibonomial coefficients. By means of the
Carlitz–Sears transformation, we shall first prove two main theorems about the
q-binomial sums of Dixon’s type and apply them to derive several closed formu-
lae. Then these q-binomial identities will be transformed into Fibonomial sums as
consequences.

2. EVALUATION OF Q-BINOMIAL SUMS OF DIXON’S TYPE

In the theory of basic hypergeometric series (briefly as q-series), there are
numerous useful summation and transformation formulae. We record here the
following transformation due to Carlitz and Sears (cf. Gasper–Rahman [3, III-14],
where the reader may also refer for the q-series notation).

Lemma 1 (Carlitz [2] and Sears [13]: a = q−m).

3φ2

[
a, b, d

qa/b, qa/d

∣∣∣ q; qax
bd

]
=

(ax; q)∞
(x; q)∞

× 5φ4

[
qa/bd,

√
a, −

√
a,
√
qa, −√qa

ax, q/x, qa/b, qa/d

∣∣∣ q; q] .
Performing the replacement k → i − n on the summation index k, we can

express the q-binomial sum as the following well–poised series∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 xk =

2n∑
i=0

(−1)n−i
[
2n

i

]3

q

q
(n−i)(1+3n−3i)

2 xi−n

= q3(n
2)+2n

(−1

x

)n
× 3φ2

[
q−2n, q−2n, q−2n

q, q

∣∣∣q; q1+3nx

]
.

Now applying Lemma 1, we can rewrite the last 3φ2-series as

3φ2

[
q−2n, q−2n, q−2n

q, q

∣∣∣q; q1+3nx

]
=

(q−nx; q)∞
(qnx; q)∞

5φ4

[
q1+2n, q−n, −q−n, q

1
2−n, −q 1

2−n

q, q, q−nx, q1−n/x

∣∣∣q; q] .
Then we can reformulate the 5φ4-series, by its reversal, as

5φ4

[
q1+2n, q−n, −q−n, q

1
2−n, −q 1

2−n

q, q, q−nx, q1−n/x

∣∣∣q; q]
=

qn(q1+2n; q)n)(q−2n; q)2n

(q; q)3
n(q−nx; q)n(q1−n/x; q)n

5φ4

[
q−n, q−n, q−n, x, q/x

−q, q
1
2 , −q 1

2 , q−3n

∣∣∣q; q] .
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By combining the last and simplifying the quotient of q-shifted factorials

qn
(q−nx; q)∞
(qnx; q)∞

(q1+2n; q)n(q−2n; q)2n

(q; q)3
n(q−nx; q)n(q1−n/x; q)n

= q−2n−3(n
2) (q; q)3n

(q; q)3
n

(−x)n.

We establish the following theorem.

Theorem 2. ∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 xk =
(q; q)3n

(q; q)3
n

×5φ4

[
q−n, q−n, q−n, x, q/x

−q, q
1
2 , −q 1

2 , q−3n

∣∣∣q; q] .
Theorem 3.∑

k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 xk =
(1− x)(q; q)3n+1

(1− q)(q; q)3
n

× 5φ4

[
q−n, q−n, q−n, qx, q/x

−q, q
3
2 , −q 3

2 , q−1−3n

∣∣∣q; q] .
Proof. Making the replacement k → 1 + n− i on the summation index k, we

can express the q-binomial sum as the following well–poised series

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 xk =

2n+1∑
i=0

(−1)1+n−i
[
2n+ 1

i

]3

q

q3(1+n−i
2 )x1+n−i

= q3(n+1
2 )(−x)n+1 × 3φ2

[
q−1−2n, q−1−2n, q−1−2n

q, q

∣∣∣q; q3+3n/x

]
.

The last 3φ2-series can be expressed, according to Lemma 1, as

3φ2

[
q−1−2n, q−1−2n, q−1−2n

q, q

∣∣∣q; q3+3n/x

]
=

(q−n/x; q)∞
(q1+n/x; q)∞

5φ4

[
q2+2n, q−n, −q−n, q−

1
2−n, −q− 1

2−n

q, q, q−nx, q−n/x

∣∣∣q; q] .
Taking into account of the reversal series, we have also

5φ4

[
q2+2n, q−n, −q−n, q−

1
2−n, −q− 1

2−n

q, q, q−nx, q−n/x

∣∣∣q; q]
=qn

(q2+2n; q)n(q−1−2n; q)2n

(q; q)3
n(q−nx; q)n(q−n/x; q)n

×5φ4

[
q−n, q−n, q−n, qx, q/x

−q, q
3
2 , −q 3

2 , q−1−3n

∣∣∣q; q] .
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Finally, summing up and then simplifying the quotient

qn
(q−n/x; q)∞
(q1+n/x; q)∞

(q2+2n; q)n(q−1−2n; q)2n

(q; q)3
n(q−nx; q)n(q−nx; q)n

=q−3(n+1
2 )
(−1

x

)n+1 (1− x)(q; q)3n+1

(1− q)(q; q)3
n

.

We prove the formula stated in Theorem 3.

By specifying x to powers of the base q in Theorems 2 and 3, we get imme-
diately the following elegant formulae.

Example 1 (Theorems 2 and 3: x = 1).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 =
(q; q)3n

(q; q)3
n

,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 = 0.

Example 2 (Theorems 2 and 3: x = q).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k+1)

2 =
(q; q)3n

(q; q)3
n

,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
k(3k−1)

2 =
(q; q)3n+1

(q; q)3
n

.

Example 3 (Theorems 2 and 3: x = q−1).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
3k(k−1)

2 =
(q; q)3n

(q; q)3
n

× 3qn(1− qn)

1− q3n
,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
k(3k−5)

2 = − (q; q)3n+1

q(q; q)3
n

.

Example 4 (Theorems 2 and 3: x = q2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
3k(k+1)

2 =
(q; q)3n

(q; q)3
n

× 3qn(1− qn)

1− q3n
,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
k(3k+1)

2 =
(q; q)3n+1

(q; q)3
n

× A(q)− q3n+2A(q−1)

1− q3n+1
,

where A(q) = 1 + 3qn+1.
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Example 5 (Theorems 2 and 3: x = q−2).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−5)

2 =
(q; q)3n

(q; q)3
n

× B(q)− q5n+1B(q−1)

(1 + qn + q2n)(q3n − q)
,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
k(3k−7)

2 =
(q; q)3n+1

(q; q)3
n

× A(q)− q3n+2A(q−1)

q2(q3n+1 − 1)
,

where A(q) = 1 + 3qn+1 and B(q) = 1− 2qn − 2q2n + 6q3n.

For two integers σ ≤ τ , define the Laurent polynomial by

p(y) :=

τ∑
λ=σ

Ωλy
λ.

Then according to Theorems 2 and 3, we have the following corollaries.

Corollary 4.∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

×
τ∑

λ=σ

Ωλ · 5φ4

[
q−n, q−n, q−n, qλ, q1−λ

−q, q
1
2 , −q 1

2 , q−3n

∣∣∣q; q] .
Corollary 5.∑

k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) =
(q; q)3n+1

(1− q)(q; q)3
n

×
τ∑

λ=σ

(1− qλ)Ωλ5φ4

[
q−n, q−n, q−n, q1+λ, q1−λ

−q, q
3
2 , −q 3

2 , q−1−3n

∣∣∣q; q] .
Performing the replacements k → −k and k → 1 − k, respectively, on sum-

mation indices, we get the following reciprocal relations∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 +kλ =
∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k+1)

2 −kλ,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 +kλ =
∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 −kλ+λ.

They lead directly to the two general annihilated q-binomial sums:∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2

{
p(qk)− qkp(q−k)

}
= 0,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2

{
p(qk) + p(q1−k)

}
= 0.
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The two formulae displayed in Corollaries 4 and 5 are remarkably useful in
evaluating the q-binomial sums of Dixon’s type weighted by Laurent polynomial
factors, because the sums on the right hand side contain a limited number of terms
independent of n. By appropriately devised Mathematica commands, we are able
to deduce a number of closed formulae. A selection of those “nice” ones are given
below as examples, where the specific polynomials are highlighted in the headers.

Example 6 (p(y) = 1 + y).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = 2
(q; q)3n

(q; q)3
n

,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) =
(q; q)3n+1

(q; q)3
n

.

Example 7 (p(y) = 1− y).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = 0,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) = − (q; q)3n+1

(q; q)3
n

.

Example 8 (p(y) = 1 + y−1).

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) = − (q; q)3n+1

q(q; q)3
n

.

Example 9 (p(y) = 1− y−1).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× (1− qn)3

1− q3n
,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) =
(q; q)3n+1

q(q; q)3
n

.

Example 10 (p(y) = (1 + y)2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

×
3
(
1− q2n

)
(1 + qn)

1− q3n
.

Example 11 (p(y) = (1− y)2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = − (q; q)3n

(q; q)3
n

× (1− qn)3

1− q3n
.
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Example 12 (p(y) = y−1(1 + y)2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

×
3(1 + qn)

(
1− q2n

)
(1− q3n)

.

Example 13 (p(y) = y−1(1− y)2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = − (q; q)3n

(q; q)3
n

(1− qn)3

(1− q3n)
.

Example 14 (p(y) = y(1 + y−1)2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

×
3
(
1− q2n

)
(1 + qn)

(1− q3n)
.

Example 15 (p(y) = y(1− y−1)2).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = − (q; q)3n

(q; q)3
n

× (1− qn)3

(1− q3n)
.

Example 16 (p(y) = y−1(1 + y)3).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

×
6(1 + qn)

(
1− q2n

)
(1− q3n)

.

Example 17 (p(y) = y−1(1− y)3).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = 0.

Example 18 (p(y) = y2(1 + y−1)3).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

×
6(1 + qn)

(
1− q2n

)
1− q3n

.

Example 19 (p(y) = y2(1− y−1)3).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = 0.

Example 20 (p(y) = (1± qny)).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = (1± qn)
(q; q)3n

(q; q)3
n

.
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Example 21 (p(y) = (1− qny)2).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× (1− qn)2(1− q2n)

(1− q3n)
.

Example 22 (p(y) = y−1(1− qny)2).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = qn
(q; q)3n

(q; q)3
n

× (1− qn)2(1− q2n)

(1− q3n)
.

Example 23 (p(y) = y(1 + qn/y)2).∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) = (1− q2n−1)
(q; q)3n+1

(q; q)3
n

.

Example 24 (p(y) = y(1− qn/y)2).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× (1− qn)2(1− q2n)

(1− q3n)
,

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) = (1− q2n−1)
(q; q)3n+1

(q; q)3
n

.

Example 25 (p(y) = (1− qny)3).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× (1− qn)3(1− q2n)3

(1− q3n)(1− q3n−1)
.

Example 26 (p(y) = y−1(1 + qny)3).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× 6qn(1− q4n)

(1− q3n)
.

Example 27 (p(y) = y−1(1− qny)3).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = 0.

Example 28 (p(y) = y(1− qn/y)3).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× (1− qn)3(1− q2n)3

(1− q3n)(1− q3n−1)
.

Example 29 (p(y) = y2(1 + qn/y)3).∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) =
(q; q)3n

(q; q)3
n

× 6qn(1− q4n)

(1− q3n)
.
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Example 30 (p(y) = y2(1− qn/y)3).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = 0.

Example 31 (p(y) = y(1± q2n/y2)).

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) =
(
1∓ q2n−1

) (q; q)3n+1

(q; q)3
n

.

Example 32 (p(y) = (1± q2n+1y)).

∑
k

(−1)k
[

2n

n+ k

]3

q

q
k(3k−1)

2 p(qk) = (1± q2n+1)
(q; q)3n

(q; q)3
n

.

Example 33 (p(y) = y(1± q2n+1/y)2).

∑
k

(−1)k
[
2n+ 1

n+ k

]3

q

q
3k(k−1)

2 p(qk) = (1− q4n+1)
(q; q)3n+1

(q; q)3
n

.

More identities could be derived similarly. However, we shall not enlarge this
list of examples due to the space limitation.

3. APPLICATIONS TO FIBONOMIAL SUMS IDENTITIES

As described in the introduction, we give, in this section, some applications
to the generalized Fibonomial sums identities by specializing the value of q = β/α,
in the examples established in the last section. For each consequent identity, the
corresponding example used to derive it will be specified. Furthermore, we point
out that all identities displayed below hold for all the nonnegative integers n with
∆ = p2 + 4.

1. Examples 6 and 7:

∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

Vk = 2

{
3n

n

}
U

{
2n

n

}
U

,

∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

Uk = 0.

2. Example 16: δij = 1 for i = j and δij = 0 for i 6= j otherwise.

∑
k

(−1)(
k+1
2 )
{

2n

n+ k

}3

U

V 3
k = 2(3− δ0n)

VnU2n

U3n

{
3n

n

}
U

{
2n

n

}
U

.
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3. Example: 20: ∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

Vn+k = Vn

{
3n

n

}
U

{
2n

n

}
U

,

∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

Un+k = Un

{
3n

n

}
U

{
2n

n

}
U

.

4. Example 23:∑
k

(−1)(
k
2)
{

2n+ 1

n+ k

}3

U

V 2
n−k = −∆U2n−1U3n+1

{
3n

n

}
U

{
2n

n

}
U

.

5. Example 24:∑
k

(−1)(
k
2)
{

2n+ 1

n+ k

}3

U

U2
n−k = U3n+1U2n−1

{
3n

n

}
U

{
2n

n

}
U

.

6. Example 29:∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

V 3
n−k = 6 (−1)

n U4n

U3n

{
3n

n

}
U

{
2n

n

}
U

.

7. Example 31:∑
k

(−1)(
k
2)
{

2n+ 1

n+ k

}3

U

U2n−2k = V2n+1U3n+1

{
3n

n

}
U

{
2n

n

}
U

,

∑
k

(−1)(
k
2)
{

2n+ 1

n+ k

}3

U

V2n−2k = −∆U2n−1U3n+1

{
3n

n

}
U

{
2n

n

}
U

.

8. Example 32:∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

V2n+1+k = V2n+1

{
3n

n

}
U

{
2n

n

}
U

,

∑
k

(−1)(
k
2)
{

2n

n+ k

}3

U

U2n+1+k = U2n+1

{
3n

n

}
U

{
2n

n

}
U

.

9. Example 33:∑
k

(−1)(
k
2)
{

2n+ 1

n+ k

}3

U

U2
2n+1−k = U4n+1U3n+1

{
3n

n

}
U

{
2n

n

}
U

,

∑
k

(−1)(
k
2)
{

2n+ 1

n+ k

}3

U

V 2
2n+1−k = ∆U4n+1U3n+1

{
3n

n

}
U

{
2n

n

}
U

.
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