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SOME SHARP CIRCULAR AND HYPERBOLIC

BOUNDS OF exp(−x2) WITH APPLICATIONS

Yogesh J. Bagul∗, Christophe Chesneau

This article is devoted to the determination of sharp lower and upper bounds

for exp(−x2) over the interval (−ε, ε). The bounds are of the type
[
a+f(x)
a+1

]α
,

where f(x) denotes either cosine or hyperbolic cosine. The results are then
used to obtain and refine some known Cusa-Huygens type inequalities. In
particular, a new simple proof of Cusa-Huygens type inequalities is presented
as an application. For other interesting applications of the main results,
sharp bounds of the truncated Gaussian sine integral and error functions are
established. They can be useful in probability theory.

1. INTRODUCTION

Bounds of the exponential function exp(−x2) can be useful in many areas
of mathematics where it appears, mainly to evaluate analytically or numerically
complex integrals involving it. Recent studies show that there is still a room of
improvements; sharp and tractable bounds for this function remain an actual chal-
lenge for any contemporary mathematician. In this regard, Chesneau [8, 9] gave
tight lower bounds of exp(x2) over the real line. For some other sharp bounds,
see [3, 4], where the bounds are obtained over (0, 1) by the use of circular and
hyperbolic functions. This type of bounds can in fact be obtained naturally over
(0, π/2)(see [10]). Interested readers are referred to [2, 8, 9, 14, 20], and the
references therein.
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The aim of this paper is to present more tight bounds for exp(−x2) in the
interval (−π/2, π/2). Some bounds are obtained on (−ε, ε). For applications, these
bounds are then used to refine some known Cusa-Huygens type inequalities and
to exhibit new sharp bounds for Gaussian type integrals, including the so-called
error function, opening new perspectives in many applied areas, including statistics,
probability, physics and engineering.

This paper is organized, as follows. Section 2 presents main results of the
paper, with graphical and numerical evidences. Then, with the aim of providing
the complete proofs of them, some auxiliary results are discussed in Section 3. The
full proofs of the main results are available in Section 4. Finally, some applications
are given in Section 5.

2. RESULTS

This section contains the two main results of the paper.

2.1 First Result

We state the first main result of this paper as follows:

Theorem 1. For x ∈
(
−π2 ,

π
2

)
, we have(

1 + cosx

2

)a
6 exp(−x2) 6

(
1 + cosx

2

)b
(2.1)

and (
2 + cosx

3

)c
6 exp(−x2) 6

(
2 + cosx

3

)d
,(2.2)

with the best possible constants a = 4, b = −(π/2)2

ln(1/2) ≈ 3.559707, c = −(π/2)2

ln(2/3) ≈
6.08536 and d = 6, and the inequalities hold as equalities at x = 0.

Note: The right inequality in (2.2) has been proved in [23, Theorem 2]. In
fact, it holds for x ∈ (0,∞). However, it is not sharp for large values of x. Again,
our proof will use different method.

Some graphical and numerical illustrations: The inequalities (2.1) are
illustrated in Figures 1 and 2. We clearly observe the sharpness of the obtained
bounds. In particular, with this graphical investigation, the inequalities (2.2) seem
more sharp; the curves of the functions of the bounds are almost visually con-
founded, even with a reasonable zoom. In order to illustrate this point, let us

investigate the global L2 error defined by: e(h) =
∫ π/2
−π/2(exp(−x2) − h(x))2dx,

where h(x) denotes any function in the bounds (2.1) and (2.2). The obtained nu-
merical results are collected in Table 1. From this numerical point of view, we see
that the bounds in (2.2) are sharper to those in (2.1).
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Table 1: Global L2 errors e(h) for the functions h(x) in the bounds of (2.1) and
(2.2).

Inequality (2.1) Inequality (2.2)

h(x)
(

1+cos x
2

)a (
1+cos x

2

)b (
2+cos x

3

)c (
2+cos x

3

)d
e(h) ≈ 0.000629229 ≈ 0.001120559 ≈ 2.791112× 10−5 ≈ 4.605539× 10−6
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Figure 1: Graphs of the functions of bounds (2.1) for x ∈ (−π/2, π/2).
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Figure 2: Graphs of the functions of bounds (2.1) for x ∈ (0.5, 1).
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2.2 Second Result

The hyperbolic variants are given in the following theorem.

Theorem 2. For x ∈ (−π/2, π/2), we have

(
1 + coshx

2

)α
6 exp(x2) 6

(
1 + coshx

2

)β
(2.3)

and

(
2 + coshx

3

)θ
6 exp(x2) 6

(
2 + coshx

3

)γ
(2.4)

with the best possible constants α = 4, β = (π/2)2

ln[(1+cosh(π/2))/2] ≈ 4.38856, θ = 6 and

γ = (π/2)2

ln[(2+cosh(π/2))/3] ≈ 6.054932, and the inequalities hold as equalities at x = 0.

The bounds of exp(x2) given in (2.4) are very sharp. Moreover they are sim-
ple and better than the corresponding bounds of exp(x2) given in [8, 9] as far as
x ∈ (−π/2, π/2).

Some graphical and numerical illustrations: The inequalities (2.3) are
illustrated in Figures 3 and 4, showing the sharpness of the obtained bounds. After a
graphical investigation, the inequalities (2.4) seem more sharp. In order to illustrate
this point, as the previous numerical study, let us consider the global L2 error

defined by: e∗(h) =
∫ π/2
−π/2(exp(x2)− h(x))2dx, where h(x) denotes any function in

the bounds of (2.3) and (2.4). The results are set in Table 2. From this numerical
point of view, we then see that the bounds in (2.4) are sharper to those in (2.3).

Table 2: Global L2 errors e∗(h) for the functions h(x) in the bounds of (2.3) and
(2.4).

Inequality (2.3) Inequality (2.4)

h(x)
(

1+cosh x
2

)α (
1+cosh x

2

)β (
2+cosh x

3

)θ (
2+cosh x

3

)γ
e∗(h) ≈ 1.011738 ≈ 0.05904132 ≈ 0.01013854 ≈ 0.001456429
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Figure 3: Graphs of the functions of bounds (2.3) for x ∈ (−π/2, π/2).
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Figure 4: Graphs of the functions of bounds (2.3) for x ∈ (0.5, 1).

Note: It follows from Theorem 2 that, for x ∈ (−π/2, π/2), we have

(
2 + coshx

3

)−γ
6 exp(−x2) 6

(
2 + coshx

3

)−θ
.(2.5)

It is natural to address the following question: what are the best bounds for
exp(−x2) between those in (2.2) and (2.5) ? An element of answer can be given nu-

merically. By considering again the global L2 error, i.e., e(h) =
∫ π/2
−π/2(exp(−x2)−

h(x))2dx, where h(x) denotes any function in the bounds (2.2) and (2.5). The
results are set in Table 3. From this numerical point of view, we then see that the
bounds in (2.5) are near twice sharper to those in (2.2).
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Table 3: Global L2 errors e(h) for the functions h(x) in the bounds of (2.2) and
(2.5).

Inequality (2.2) Inequality (2.5)

h(x)
(

2+cos x
3

)c (
2+cos x

3

)d (
2+cosh x

3

)−γ (
2+cosh x

3

)−θ

e(h) ≈ 2.791112× 10−5 ≈ 4.605539× 10−6 ≈ 1.068113× 10−5 ≈ 2.338449× 10−6

3. PRELIMINARIES AND LEMMAS

We now present two lemmas which will be useful for the proofs of our theo-
rems.

Lemma 1. The following inequalities hold:

sinx

x
>

1 + 2 cosx

2 + cosx
; x ∈ (0, π)(3.6)

and
x

sinhx
+ coshx > 2; x 6= 0.(3.7)

Proof: For (3.6), let f(x) = sinx(2 + cosx)− x (1 + 2 cosx). Then, a simple
computation yields

f ′(x) = − sin2 x+ cos2 x+ 2x sinx− 1 = 2x sinx− 2 sin2 x

= 2 sinx(x− sinx) > 0,

for x ∈ (0, π). Hence, f(x) is strictly increasing in (0, π). Thus f(x) > f(0) for any
x ∈ (0, π), implying that

sinx (2 + cosx) > x (1 + 2 cosx).

For (3.7), by symmetry of the function, we need to consider only positive values of
x. In this regard, let us set

g(x) = 2 sinhx− sinhx coshx− x.

Differentiation gives

g′(x) = 2 coshx− sinh2 x− cosh2 x− 1 = 2 coshx− 2 cosh2 x

= 2 coshx(1− coshx) < 0.

Therefore, g(x) is strictly decreasing in (0,∞). So, g(x) < 0 for every x ∈ (0,∞),
meaning that x+ sinhx coshx > 2 sinhx. This completes the proof.

Note: For hyperbolic version of (3.6), one can see [12, Remark 1].
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Lemma 2. (The L’Hospital’s monotonicity rule [1]) : Let f, g : [p, q]→ R be two
continuous functions which are derivable on (p, q) and g′(x) 6= 0 for any x ∈ (p, q).

If f ′/g′ is increasing (or decreasing) on (p, q), then the functions f(x)−f(p)
g(x)−g(p) and

f(x)−f(q)
g(x)−g(q) are also increasing (or decreasing) on (p, q). If f ′/g′ is strictly monotone,

then the monotonicity in the conclusion is also strict.

Lemma 3. (Theorem 4)[16] If f : (a, b)→ R is a real analytic function such that

f(x) =

∞∑
k=0

ck(x− a)k

where ck ∈ R and ck > 0 for all k ∈ N ∪ {0}, then

f(0+) 6 f(x) 6 f(b−).

For general form of Lemma 3 and its applications to analytical inequalities
we refer reader to [16, 17].

4. PROOFS OF THE THEOREMS

In this section we prove our main results.

Proof of Theorem 1: Clearly, for x = 0, equalities hold. We need to
consider only positive values of x in (−π/2, π/2) as bounds and exp(−x2) are even
functions. For (2.1) , let

f(x) =
−x2

ln
(

1+cos x
2

) =
f1(x)

f2(x)
,

where f1(x) = −x2 and f2(x) = ln
(

1+cos x
2

)
with f1(0) = f2(0) = 0. Upon differ-

entiation, we get

f ′1(x)

f ′2(x)
=

2x (1 + cosx)

sinx
= 2

x

sinx
(1 + cosx) = 2F (x),

where F (x) = x
sin x (1 + cosx). Again, upon differentiation,

F ′(x) = −x+
(sinx− x cosx)

sin2 x
(1 + cosx)

=
1

sin2 x

[
−x sin2 x+ sinx+ sinx cosx− x cosx− x cos2 x

]
=

1

sin2 x
[−x(1 + cosx) + sinx(1 + cosx)]

=
1

sin2 x
[(1 + cosx)(sinx− x)] < 0,
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since sinx − x < 0 in (0, π/2). Therefore, F (x) is strictly decreasing in (0, π/2)
and so is f(x) by Lemma 2. Consequently, a = f(0+) = 4 by L’Hospital’s rule and

b = f(π/2) = −(π/2)2

ln(1/2) ≈ 3.559707.

Similarly to (2.2), let us consider

g(x) =
−x2

ln
(

2+cos x
3

) =
g1(x)

g2(x)
,

where g1(x) = −x2 and g2(x) = ln
(

2+cos x
3

)
with g1(0) = g2(0) = 0. Then,

g′1(x)

g′2(x)
=

2x (2 + cosx)

sinx
= 2G(x),

where G(x) = x
sin x (2 + cosx). Differentiation gives

G′(x) = −x+
(sinx− x cosx)(2 + cosx)

sin2 x

=
1

sin2 x
[sinx(2 + cosx)− x(1 + 2 cosx)] > 0,

by virtue of Lemma 1, i.e., (3.6) and thus, G(x) is strictly increasing in (0, π/2).
Therefore g(x) is strictly increasing in (0, π/2) by Lemma 2. Thus, c = g(π/2) =
−(π/2)2

ln(2/3) ≈ 6.08536 and d = g(0+) = 6. This completes the proof.

Remark 1. For x ∈ [−ε, ε] where ε ∈ (0, π), we can actually see that, the inequal-

ities in Theorem 1 hold with the best possible constants a = 4, b = −ε2
ln( 1+cos ε

2 )
, c =

−ε2
ln( 2+cos ε

3 )
and d = 6. The same proof as given above is applicable as (3.6) is valid in

(0, π). There is also an alternative method to prove Theorem 1 by using algorithm
presented in [6, 15].

Proof of Theorem 2: Equalities hold for x = 0. As in the proof of Theorem
1, we need to consider only positive values of x in (−π/2, π/2). For (2.3), let

f(x) =
x2

ln
(

1+cosh x
2

) =
f1(x)

f2(x)
,

where f1(x) = x2 and f2(x) = ln
(

1+cosh x
2

)
with f1(0) = 0 = f2(0). Upon differen-

tiation, we get
f ′1(x)

f ′2(x)
=

2x(1 + coshx)

sinhx
=
f3(x)

f4(x)
,

where f3(x) = 2x(1 + coshx) and f4(x) = sinhx with f3(0) = f4(0) = 0. Differen-
tiation yields

f ′3(x)

f ′4(x)
= 2

[
x sinhx+ 1 + coshx

coshx

]
= 2 [x tanhx+ sechx+ 1]

= 2F (x),
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where F (x) = x tanhx+ sechx+ 1. Again, by differentiating

F ′(x) = x sech2 x+ tanhx− sechx tanhx

= tanhx sechx
[ x

sinhx
+ coshx− 1

]
> 0,

since x
sinh x +coshx > 2 by (3.7) of Lemma 1. Therefore, F (x) is strictly increasing,

which implies that f(x) is also strictly increasing by Lemma 2. Thus, α = f(0+) =

4 and β = f(π/2) = (π/2)2

ln[ 1+cosh(π/2)
2 ]

≈ 4.38856.

Next, let us prove (2.4). We set

g(x) =
x2

ln
(

2+cosh x
3

) =
g1(x)

g2(x)
,

where g1(x) = x2 and g2(x) = ln
(

2+cosh x
3

)
with g1(0) = g2(0) = 0. Differentiation

gives
g′1(x)

g′2(x)
=

2x (2 + coshx)

sinhx
=
g3(x)

g4(x)
,

where g3(x) = 2x(2+coshx) and g4(x) = sinhx with g3(0) = g4(0) = 0. Therefore,

g′3(x)

g′4(x)
= 2

[
x sinhx+ 2 + coshx

coshx

]
= 2G(x),

where G(x) = x tanhx+ 2 sechx+ 1. By differentiation, we get

G′(x) = x sech2 x+ tanhx− 2 sechx tanhx

= tanhx sechx
[ x

sinhx
+ coshx− 2

]
> 0,

due to second inequality (3.7) of Lemma 1. So, G(x) is strictly increasing and
hence g(x) in (0, π/2) by Lemma 2. Therefore, θ = g(0+) = 6 and γ = g(π/2) =

(π/2)2

ln[ 2+cosh(π/2)
3 ]

≈ 6.054932. This proves Theorem 2.

Remark 2. For x ∈ (−ε, ε) where ε > 0, it is easy to see that, the inequalities

in Theorem 2 hold with the best possible constants α = 4, β = ε2

ln( 1+coshε
2 )

, γ =

ε2

ln( 2+cosh ε
3 )

and θ = 6. Again, the same proof can be given in this case also or, as

mentioned in Remark 1, an alternative method can be applied to prove Theorem 2
by using algorithm presented in [6, 15].

It is quite interesting to see that the inequality in (2.1) can also be generalized
and proved by the method described in the recent papers [16, 17] by B. Malešević
et al. We state and prove the generalized statement.
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Theorem 3. For x ∈ [−ε, ε] where ε ∈ (0, π) it is true that:(
1 + cosx

2

)4

6 exp(−x2) 6

(
1 + cosx

2

)η
with the best possible constants 4 and η = −ε2

ln( 1+cos ε
2 )

.

New proof of Theorem 3: It suffices to prove the theorem in (0, ε]. Con-
sider the function

h(x) = −
ln
(

1+cos x
2

)
x2

= −2 ln (cos(x/2))

x2
.

Using logarithmic series expansion (Formula 1.518/2)[11] we get

h(x) =
1

4
+
x2

96
+

x4

1440
+

17x6

322560
+

31x8

7257600
+

691x10

1916006400
· · ·

which is analytic in (0, ε] and ck > 0 for all k ∈ N ∪ {0}. Therefore by Lemma 3,
we have

h(0+) 6 h(x) 6 h(ε−).

Lastly h(0+) = 1
4 and η = 1

h(ε−) = −ε2
ln( 1+cos ε

2 )
complete the proof.

5. SOME APPLICATIONS

Three applications of Theorems 1 and 2 are presented below. Applications of
general cases can also be given accordingly.

5.3 Application 1: On Cusa-Huygens Type Inequalities

The famous Cusa-Huygen’s inequality [7, 13, 18, 19, 21] is known as

sinx

x
<

2 + cosx

3
; x ∈

(
0,
π

2

)
(5.8)

and its hyperbolic version, sometimes called hyperbolic Cusa-Huygen’s inequality
[19] is stated as follows:

sinhx

x
<

2 + coshx

3
; x 6= 0.(5.9)

Some researchers have tried to obtain extended sharp versions of the inequalities
(5.8) and (5.9) in recent years. In [7, 21] the following inequalities have been
established: (

2 + cosx

3

)λ
<

sinx

x
<

2 + cosx

3
; x ∈

(
0,
π

2

)
,(5.10)
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with the best possible constants λ ≈ 1.11374 and 1.
The authors of [7, 21] proved double inequality (5.10) in a complex way. In 2013,
a simple proof of it was claimed by Sun and Zhu [22]; but later it was found that
the proof was logically incorrect [5]. We present here very simple and lucid proof
of (5.10).

Simple Proof of Inequality (5.10): Using [3, Theorem 2] and [10, Propo-
sition 3], we have

exp(−kx2) <
sinx

x
< exp(−x2/6) ;x ∈

(
0,
π

2

)
,

where k = − ln(2/π)
(π/2)2 . Hence, we can write

(
sinx

x

)6

< exp(−x2) <

(
sinx

x

)1/k

;x ∈
(

0,
π

2

)
,(5.11)

where k = −4 ln(2/π)
π2 . From (2.2) and (5.11), it is clear that(

2 + cosx

3

)λ
<

sinx

x
<

2 + cosx

3
,

where λ = kc = −4 ln(2/π)
π2 . −π2

4 ln(2/3) = ln(2/π)
ln(2/3) ≈ 1.11374. Moreover, λ and 1 are the

best possible constants, because k and c are. The proof of (5.10) is complete.

Sándor [21] proved that the best positive constants m and n such that(
1 + coshx

2

)m
<

sinhx

x
<

(
1 + coshx

2

)n
; x > 0(5.12)

are 2/3 and 1, respectively.
In the following corollary, we refine the right inequality of (5.12) over the interval
(0, π/2).

Corollary 1. For x ∈ (0, π/2) one has

sinhx

x
<

(
1 + coshx

2

)µ
,(5.13)

where µ = π2

24 ln[ 1+cosh(π/2)
2 ]

≈ 0.731427 is the best possible constant.

Proof: Using [3, Theorem 3], [10] we can actually see that

e−x
2/6 <

x

sinhx
;x ∈ x ∈

(
0,
π

2

)
,
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which implies that (
sinhx

x

)6

< exp(x2); x ∈
(

0,
π

2

)
.(5.14)

Now, by virtue of (2.3) and (5.14), we obtain

sinhx

x
<

(
1 + coshx

2

)µ
,

where µ = β
6 = π2

24 ln[ 1+cosh(π/2)
2 ]

≈ 0.731427 is the best possible constant.

Other useful applications of (2.1) and (2.2) include the sharp bounds of Gaus-
sian type integrals, with simple analytical expressions. Both of them are described
below.

5.4 Application 2: Simple Bounds for a Truncated Sine Gaus-
sian Integral

In Corollary 2, we determine simple bounds for the truncated Gaussian sine inte-
gral defined by

∫ y
0

sinx exp(−x2)dx. This function has some connection with the
Dawson type integrals.

Corollary 2. For y ∈ (0, π/2), it is true that

3

c+ 1

[
1−

(
2 + cos y

3

)c+1
]
6
∫ y

0

sinx exp(−x2)dx

6
3

d+ 1

[
1−

(
2 + cos y

3

)d+1
]
,

with the best possible constants c ≈ 6.08536 and d = 6.

Proof: By utilizing (2.2), we can write∫ y

0

sinx

(
2 + cosx

3

)c
dx 6

∫ y

0

sinx exp(−x2)dx 6
∫ y

0

sinx

(
2 + cosx

3

)d
dx.

By remarking that
∫ y

0
sinx

(
2+cos x

3

)c
dx = 3

c+1

[
1−

(
2+cos y

3

)c+1
]
, with the same

for d in place of c, we end the assertion.

5.5 Application 3: Simple Bounds for the Error Function erf

For the last application, we consider the well known error function defined by

erf(y) =
2√
π

∫ y

0

exp(−x2)dx.
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For this function also we give sharp explicit bounds in Corollary 3.

Corollary 3. For y ∈ (0, π/2), it holds that

(
6 cos3 y + 32 cos2 y + 81 cos y + 160

)
sin y + 105y

384
6

√
π erf(y)

2
6

(40 cos y + 576) sin5 y − (3730 cos y + 14720) sin3 y + (37965 cos y + 87360) sin y + 49635y

174960

(5.15)

Proof: Using (2.1) and (2.2), we have

(
1 + cosx

2

)4

6 exp(−x2) 6

(
2 + cosx

3

)6

.

Therefore,

∫ y

0

(
1 + cosx

2

)4

dx 6

√
π erf(y)

2
6
∫ y

0

(
2 + cosx

3

)6

dx.

Using the expansions : (1+cosx)4 = 1
8 (56 cosx+28 cos(2x)+8 cos(3x)+cos(4x)+

35) and (2 + cosx)6 = 1
32 (10224 cosx+ 4815 cos(2x) + 1400 cos(3x) + 246 cos(4x) +

24 cos(5x) + cos(6x) + 6618) and by integration, we obtain required result.

Some graphical and numerical illustrations: The sharpness of the
bounds in (5.15) are illustrated in Figures 5 and 6. Let us now investigate the

global L2 error : eo(h) =
∫ π/2

0

(√
π erf(x)

2 − h(x)
)2

dx, where h(x) denotes any

function in the bounds of (5.15). The results are set in Table 4. We see that the
error is negligible, attesting the interest of our findings.

Table 4: Global L2 errors eo(h) for the functions h(x) in the bounds of (5.15) ;
Boundinf is for the lower bound and Boundsup is for the upper bound.

h(x) Boundinf Boundsup

eo(h) ≈ 6.930623× 10−5 ≈ 2.314179× 10−7
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Figure 5: Graphs of the functions of bounds (5.15) for x ∈ (0, π/2).
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Figure 6: Graphs of the functions of bounds (5.15) for x ∈ (1, π/2).
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