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SPARSE REGULARIZED FUZZY REGRESSION
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and Djuro Klipa

In this work, we focus on two things: First, in addition to the data measure-
ment uncertainty, we develop a novel probabilistic model by imposing the
additive noise in the classical fuzzy regression model. We obtain the baseline
LS estimation as the maximum likelihood estimation for regression parame-
ters. Moreover, by assuming the heavy tail distribution and by introducing
the Huber norm instead of square in the cost function, we obtain more gen-
eral robust fuzzy M-estimator, much more suitable for modeling the outliers
often present in the data sets.

1. Introduction

Classical regression models are used as a statistical tool in order to deliver
the relationship between the independent and dependent variables, assuming that
the difference between the observed and the dependent variables, which are crisp
numbers, is due to the additive noise e. When we assume the functional relation-
ship to be affine, and additive noise to be Gaussian € ~ N(0,0), with the known
standard deviation o, the maximum likelihood estimate of crisp regression coeffi-
cients b € R% d € N becomes an LS estimate. In the case of robust noise, as for
example Laplace or heavy tailed additive noise, or the mixture of Gaussian and
Heavy tailed additive noise, the robust M-estimators are introduced [24, 25, 26].

Fuzzy regression models are developed to construct the relationship between
explanatory variables and response in a fuzzy environment. Those could be roughly
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divided into: 1) Linear programming methods, [4]-[8]; 2) least-squares methods [9]-
[14]; 3) support vector machines methods [15]. Fuzzy regression models are still
in focus of many researchers (see [36]-[40], [39]). In [36] and Luo in [37], they
use regularizer (mostly o) in some form on fuzzy regression coefficients. One of
the most significant model was proposed by Tanaka in [3]. It has drawbacks in the
sense that the larger amount of observations leads to fuzzier parameter estimates
and makes the spread of the estimated fuzzy response wider [4], [5], which contra-
dict the statistical principle that the larger amount of observed data produce lower
variance of estimate, i.e., better estimate [9]. In order to deal with the mentioned
problem, Diamond in [11] as well as Kao and Chyu in [9] adopted crisp instead
of fuzzy regression coefficients. Many fuzzy regression models were proposed (see
[5], [10], [16]) that use the criterion of Kim and Bishu, but the particular criterion
has the property that the estimation error remains constant whenever the observed
and the estimated response do not intersect with each other. In [9], Kao and Chyu
also presented a mathematical programming model which minimizes the fuzzy er-
ror term corresponding to the sum of square errors between the observed and the
estimated fuzzy response. That work, as well as those presented in for example
[14], [16], [11] are nevertheless limited to fuzzy observations with triangular fuzzy
numbers and are not computationally efficient. In [17] Chen and Hsueh, proposed
a fuzzy regression approach that uses the LS method to minimize the total esti-
mation error of the distance between the observed and estimated fuzzy responses.
They presented each fuzzy observation as a fuzzy number and then they applied
the LS method to determine the numeric regression coefficients and fuzzy adjust-
ment variables to minimize the estimation error obtained on the basis of a-cuts
of explanatory and observed variables. On the other hand, LASSO technique is
well known in the field of classical, i.e., crisp regression, and is used in problems
of prediction, as well as in feature selection [18] or recently [47] and [48]. It is
obtained by imposing the [, sparse regularizer on regression coefficients into the
particular cost that is to be minimized (see also [41], [42]). We mention that the
sparsity property of the regression coefficients corresponds to the regression model
where a small number of variables are actually really significant to the process of
interest. In those cases, better estimates of the actual regression coefficients are
obtained than in the case of classical LS estimates. The sparsity property in the
problems of regression could be applied on a great number of real world problems
[18, 19], also [29, 30] and most recently [43]-[46].

In this work we focus on two things. First, we observe that all the existing
fuzzy regression models consider only the data measurement uncertainty, which
are then modeled by using fuzzy numbers, but ignore the statistical nature of the
noise which could be imposed on the channel that simulates the transmission path
“between” the fuzzy measurements and the fuzzy response. As the result, the error
term which figures in the cost function of most of the existing fuzzy regression
models is based on the square error criterion, which is there imposed a-priori,
basically mirrored from the crisp regression case, without appropriate probabilistic
considerations. In line with that fact, we invoke the actual model of noise in the
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channel that is “between” the fuzzy measurements and the fuzzy output, where we
focus on the triangular fuzzy number case, which is sufficiently general’. We add
the noise of the same fixed family of distributions on each of the parameters of the
estimated fuzzy response. In that framework, the model proposed by Chen and
Hsueh in [17]? is the special case, when the actual noise imposed on the channel
is Gaussian. Moreover, by using of the concepts of robust statistics, we further
develop the proposed approach by using M-estimator and call it a Robust Fuzzy
Regression (RFR) model. Tt deals with the problems of outliers, which are modeled
by the usage of the Heavy tailed additive noise or the mixture of Heavy tailed
and Gaussian additive noise. Our aim is to model the outliers in the robust way,
but to still maintain existence and the uniqueness of the optimizer by keeping
the convex nature of the optimization problem. Thus, we use Huber norm based
M-estimator in the following sense: The robust error term of the cost that we
propose is the sum of Huber norms of differences between the bounds of the a-
cuts of the estimated and observed fuzzy variables, taken for all predefined «-
cuts. Thus, we generalize the cost proposed in [17] by making it more robust to
outliers. Second, we deliver the novel fuzzy regression model, in further text Sparse
Regularized Fuzzy Regression (SRFR), which deals with the sparsity of the actual
fuzzy data. It uses the assumption that most of the explanatory fuzzy variables have
no significant influence on the actual response of the system. It is also delivered in
the probabilistic framework as the Maximum a-posteriori (MAP) estimate of the
regression coefficients, where we invoke the Laplace prior on the coefficients. The
proposed model automatically distinguish significant from insignificant explanatory
fuzzy variables in the model, without any prior knowledge on the nature of those
particular variables. The cost function that we tend to minimize is contained of
two parts: The first one is the error term between the observed and predicted
fuzzy response, which uses the a-cuts of mentioned differences. The second one
is the [ sparse regularizer on the crisp regression coefficients which tends to favor
the sparseness of the data in comparison to the error term. Moreover, we further
combine the Huber based M-estimator and the [; sparse regularizer and obtain
Robust SRFR model in order to deal with the Heavy tailed noise imposed on the
channel in the case of sparse fuzzy data.

The work is organized as follows: In Section 2 we give preliminaries, in Section
3, we introduce the probabilistic framework in fuzzy regression. In the same section
we further introduce the novel RFR that deals with the heavy tailed noise imposed
on the channel. In Section 4, we introduce the novel SRFR as well as Robust SRFR
model, with the emphasis on [y regularization. Here we also explain how we use
the method proposed by Wright et al [20] in order to obtain the solution to the
proposed problem. In Section 5, we present experimental results on the synthetic
fuzzy data.

Lother types could also be delivered in the similar manner
2if we assume the triangular fuzzy numbers and some additional not to restrictive assumptions
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2. Preliminaries

In this section we briefly elaborate on some basic definitions concerning fuzzy
numbers with an accent on arithmetic operations on fuzzy numbers, which we later
use in the paper.

A fuzzy number M is an normalized fuzzy set on R, such that p(zo) =1 for
only one xy € R, where piecewise continuous py; : R — R is membership function
of M. It is positive, iff par|(—oo,0) = 0.

Recall, that for a fuzzy set A on R, with membership function p4, a-cut, for
a € [0,1] is defined as A, = {z € R|pa(x) > 0}. If A is fuzzy number, each a-cut
is closed interval [(A)L, (A)F] (see [23]).

) (03
Any of the four basic arithmetic operations on fuzzy numbers * € {+, —, -, /}
can be defined on fuzzy numbers A and B by using a-cut, by first defining

(1) (A% B)y = Aq * Ba,

where a € [0, 1] and where * on the right hand side of (1) is corresponding operation
on closed intervals. For [a, ], [d,e] C R, those are defined as

[U‘?b} + [d76} = [a+d,b+e],

[a,b] — [d,e] =[a—d,b— €],

[a,b] - [d, e] = [min{ad, ae, bd, be}, max{ad, ae, bd, be}]

[a,b]/[d, e] = [min{a/d,a/e,b/d,b/e}, max{a/d,a/e,b/d,b/e}], provided O ¢ [d,e].

If M and N are fuzzy numbers, by application of the extension principle (see
[49]) for the binary operation * : R x R — R, the membership function of the fuzzy
number M x N is given by

(2) parsn (2) = sup min{pa(z), pn(y)}
Z=x*y
A special type of representation for fuzzy numbers that we use in this paper
is of the LR type (see [49]), as follows: Let L(R) : R — [0,1] is a decreasing, with
L(0) =1, L(z) < 1, for z > 0, L(z) > 0, for x < 1 and L(1) = 0. Recall the
following (see [49]):

Definition 1. A fuzzy number M of LR-type, if there exist reference function L
(for left), R (for right) and scalars I, > 0 (left and right spreads), m € R (mean)
with

It is denoted by M = (m,l,7)LR.
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Note, that by choosing L(z) = max{0,1 — z}, we obtain triangular fuzzy
number which are those that we further use in paper. Recall (see [49]), that for
LR-type3fuzzy numbers M = (m,l,7)rr, N = (n,p,q)Lr, the following definitions
given in the LR representation framework is equivalent to corresponding definitions
given by (2) (x € {4+, —}) and also to the definition (1):

M+N = (mvlvr)LR—’_ (nvpaQ)LR = (m+n;l+P>T+fJ)LR
(4) M—-N= (mvl7T)LR - (nvpa Q)LR = (m - nJ"“]ﬂ""‘l’)LR-

Also, we obtain

(5) —M:(0,0,0)LR—M:(—’ITL,’I’,Z)LR
and
(6) AM = Xm,L,r)Lr = (Am, (AL A7) LR, A € Ry

Triangular fuzzy numbers could also be presented by the triple (u,m,v)rg,
u,m,v € R, u < m < v, and by setting I = m —u, r = v — m, we obtain the
equivalent LR representation (m,[,r)rr. We say that the triangular fuzzy number
in LR representation (m,[,r)rg is non-negative, iff it holds m — 1 > 0.

3. Probabilistic framework for fuzzy regression and the Robust Fuzzy
Regression

One of the most effective methods to formulate the functional relationship
between several input variables and the response variable is classical statistical re-
gression, which is thus widely used in the feature selection problems. The model is
formulated in the probabilistic, i.e., statistical manner (see for example [21]) in the
following way. Let (X,Y) = {(Xi1,..., Xip;Yi)[i = 1,...,n}, n € N be the set of
observations, where X;; represent the input variable of the ith observation, ¥; rep-
resents the response of the ith observation and n is the number of the observation.
The model is given as:

(7) Y;‘:b()+b1Xi1+b2X1‘2+"'+prip+€, iil,...,n, n € N.

where b = [bg,b1,...,bp]T € RPFL are crisp regression coefficients and ¢ is zero
mean additive Gaussian noise, i.e., ¢ ~ N (0,0), where o is fixed known standard
deviation. The term Y; = by + b1 X1 + ba X2 + - - - + bp X, is estimated while Y is

3Note that LR is just a representation of a fuzzy number.
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observed response. It is well known (see for example [21]) that the ML estimate brs
is given by the LS estimate, which is obtained as the solution of the minimization
problem min 2?21(571 -Y;)2

Suppose that the observations, i.e., explanatory and response observed vari-
ables, are given as triangular fuzzy numbers {(X1,. .. ,X:ip;}}i)ﬁ =1,...,n}. We
assume that by using those we can model the particular process with sufficient ac-
curacy. The common fuzzy regression model used for example by [3]-[6] and [17],
is then given by

(8) {/Z':bT-Xi:bo—‘rleﬂ—‘rngiQ-i-“'—‘rprip, i=1,...,n, n€eN.

where Y; estimated fuzzy response and X; = [1 X .. .Xip]T. We note [23] that any
linear combination (in means of operations on fuzzy numbers) of triangular fuzzy
numbers, is a triangular fuzzy number. Term b € RP, as in the case of classical
regression model introduced preciously, represent crisp regression coefficients. In
literature [17], [22], researchers used additional additive fuzzy adjustment term &
in order to deal with degenerate cases when the explanatory variables are crisp,
so that the estimated response is also crisp, which leads to large fuzzy error for a
given fuzzy response, but for the sake of simplicity and without loss of generality,
we excluded that particular case, as our experimental data contain only “real” fuzzy
explanatory observations, i.e., with no crisp observations. In order to invoke the
statistical additive noise in the channel in conjunction with the fuzzy model (8),
we formulate the following model

(9) Y=Y, ®& i=1,...,n, n€N.

where V; = b’ - X is estimated and Y; is observed fuzzy response. In (9), term
=, means that terms Y} on the left hand side of =; are only those realizations

of random triple Y; & & which are triangular fuzzy numbers, i.e., it holds Yit =

(Y, VI Vi) g, with V"' < Vit < Vbt Tn (9) the meaning of operation & is
given by the Definition 2. We define operation (-) @ € in the following way:

Definition 2. Let ¢ = (g;,&.,&,) be the noise triple where e, for h € {l,¢,r}
are independent random variables * representing additive noise corresponding to
the left, center and right of particular triangular fuzzy number operand. Let X =
(X1, X, Xo)rR, Xi < Xe < X, be a triangular fuzzy number. We define random
tripleY = (V,Y,,Y,) =X®é=(Xi+e,Xe+ee, Xy +61).

Remark 3. Note that if €}, are independent random variables, then P((Y; > Y.)U
(Y. >Y,)) > 0, so there is no guaranty that the realizations of Y; are fuzzy numbers.
The sort operation performed on realizations of Yy h € {l, ¢, r} that could be invoked

4Two random variables X and Y are independent if their probability distributions satisfy
px,v (%, y) = px (2)py (y)-
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in order to assure that the realizations of Y; are indeed triangular fuzzy numbers,
would spoil the Gaussian (or Cauchy) distribution of Y; which is the assumption
(see Propositions 1 and 2) that we use further assume. In the case when the noise
triple satisfies e, = €, h =1, ¢c,r, i.e., all three components are the same random
variable, then every realization of the triple Y = (Y, Y., Y,) = X @ e is indeed
triangular fuzzy number.

We deliver the following observations which correspond to models that use
assumptions on Gaussian and Cauchy additive noise models respectively, as well
as the mixture of the previous two, which we use further in formulating our target
cost functionals.

Proposition 1. Let X = (X}, X., X,) be a triangular fuzzy number. LetY = X ®¢,
where (-) &€ is defined by definition 2 and € = (g1, €¢, &), where e, ~ N(0,0},), for
h e {l,c,r} are zero mean Gaussian variables. Let ()7)5 =(1-a)Y+aY,, ()7)5‘ =
(1 — @)Y, +aY,. Then it holds (V)% ~ N((1 — a)X; + aX., /(1 — a)20? + a?0?)

and also (Y)E ~ N((1 — a) X, + aX,, /(1 — )22 + a202).

Proof:

We consider the case (Y)% and the proof for case (V)% is analogous. It holds
that Y, = X, + & ~ N(X;,0;) and Y, = X, 4+ e ~ N(X,,o.), so that any of
their convex combination also have Gaussian distribution. For convex combination
Zx =2AX;+ (1= X+ Aer+ (1= Ne. for some A € [0, 1], we obtain E(Zy) = AX;+
(1-N)X. and D(Zy) = DIAX;+(1=N)X.)+D(Aer+(1—N)e.) = Ao +(1—N)?02.
As it holds (V)L = (1 — @)Y} + aY., based on the previous we obtain that (Y)X is

drown from N ((1 — a)X; + aXe, /(1 — a)20? + a202), it ends the proof. O

Proposition 2. Let X = (X;,X.,X,) be a triangular fuzzy number. Let Y =
X @ &, where () @ € is defined by definition 2 and € = (g;,¢.,€,), where g5, =

C0,y) = £ [W}, for h € {l,e,r} are zero median Cauchy variables. Let

V)l =(1-a)V+aY. and (Y)E=(1 —a)Y.+aY,. Then it holds (Y)E~c((1-
@)X +aX., (1—a)y +av.) and also (Y)E ~ C((1-a)X.+aX,, (1 —a)y.+ay,).

Proof:

We consider the case (V)X and the proof for case (V)£ is analogous. We

consider the convex combination

(10) =AY, +1-NY, = MXj+e)+1Q-N(Xc+e)
= A+ 0 -NX)+ A+ (1—Nee
= A+ Z§

for any fixed A € [0,1], where A = AX; + (1 — A) X, and Z5 = Aeg; + (1 — Ne.. It
holds that if X ~ C(0,7;), then X + xg ~ C(xo,7;) (it could be easily proved by
using characteristic functions). Using the fact that &; and e, are independent, which
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implies p(eie.) = p(er)p(ec) and also the fact that e, ~ C(0,v;) and €. ~ C(0,7,)
respectively, the characteristic function kz, (t) of Z is equal to

(11) kzs(t) = Eleeitei1-)eet)

+oo too
_ / 1>\slt (El)dgl/ el(l—A)Ectp(Ec)dEc
_ [ Mszt] [ i(1=Nect ] = ki, (t)k’(l,,\)gu (t)

As it holds that kx.,(t) = e Ml and k(). (t) = e~ =Ml respectively
(it can be easily verified by using characteristic functions), from (11) we obtain
kzs(t) = e~ ANt and consequently Z§ ~ C(0, My + (1 — A\)7.). Now,
as Zy = A+ Z5, it holds that Zy ~ C(A, My + (1 — A\)7.). As it holds (V)L =
(1 — @)Y; + aY,, from previous, we obtain that (Y)% is drown from C((1 — o)X, +
aX., (1 —a)y + av.), which ends the proof.

0

Using the similar arguments as in Propositions 1 and 2, it can be shown that
the similar can be concluded for mixtures of Gaussian and Cauchy noise:

Corollary 1. Let X = (X;, X, X,) be a triangular fuzzy number. Let Y = X @€,
where (-) @ £ is defined by definition (2) and € = (g1,€.,€,), where €, = apey, +
(1 — ap)esh, with € ~ N(0,01), €5 ~ C(0,73), for h € {l,¢,r}, ap, € [0,1]. Let
V)t =0 -V +aY, and (V)L = (1 — )Y, + aY,. Then (YHL = 29 4 z{"
where Z] ~ N((1 — a)X; + aX,, \/ 1—a)’ajo? + a2a202) and Z§" ~ C(0, (1 —
@) (1—a))yi+a(l—ag)ye). Also, it holds (V)2 ZngZ , where Z§ is drown from
N((1 = a)X. + aX,, /(1 — a)2a202 + a2a202) and Z" is drown from C(0, (1 —
a)(1 = ac)ve + a(l — ap)yr).

Remark 4. As it is already noted in Remark 3, the fuzzy data Yt that we deal with
will (see (9) and the explanation above) be composed of triangular fuzzy numbers
which we consider to be realizations off/ present in Propositions 1, 2 and Corollary
1, such that it holds Y = (fﬂt,th,Y,f) with fflt < YCt < Y! satisfied, i.e., it holds
that (Y}, Y2, Y )R is triangular fuzzy number. Thus, by doing that, we actually
distort the particular distribution listed in 1, 2 and Corollary 1, so that in the rest
of the paper, for an arbitrary a-cut [(Y)E (YHE] of Y}, i = 1,...,n, for some

€ [0,1], we assume that (Y')E and (Y')E are approzimately distributed as in
some of the previously mentioned propositions.

We further give the statistical interpretation of cost function invoked in work
of Chen and Hsueh [17], which is a staring point for our robust fuzzy model as well
as our sparse representation and the fusion of the two.

Let us consider a given set of fuzzy observations (X, yt) given as follows: Let
X={X;li=1,...,n} with X; = (X” |7 =1,...,p) where X;; are triangular fuzzy

numbers. Let J}t = {Y}li=1,...,n}, where Y} = (Yl(i),t’ YOt v 0 e =, ; are
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realizations of i.i.d. random triples Y; = Y;®e, ¥; = b - X;, with @ given by (9) and
Definition 2, with the additional assumption that those realizations are triangular
fuzzy numbers, i.e., Yl(z)’t < Yc(z)’t < Yr(l)’t holds (see Remark 3). Consider also a
given set Ay = {a1,...,a4}, a; €[0,1], j=1,... k.

Because of the previously mentioned independence assumption, it holds for
the data likelihood °

p(Xa ytlb) = p((?lt - ffl)oq’Lv (fflt - Y/1)&1’1’?17 SRR (i/lt - Yfl)ak’L’ (}}f - ffl)ak’Ra

“ey

(Vo = Y ), (V= Y P (V= V)™, (V= V)™ =
-V (= et

S AN S

= V)T L (V= V)

= V)T (T = V)R

(12)

and further, as for any sequence of random variables { X; }7 it holds p(X,,,..., X7) =

P(Xn|Xn-1...X1) - p(X2|X1)p(X1), we have

p((Y =Yyt (Y = Yi)et)

= p((V} — V) L|(VE = Vy)onl, (Vi — Yy)owk)

(13) p((V} = V)22 H| (V= Vo)™ Dyp((V) — Vi)™ h)

If we assume e, ~ N(0,0), for h € {l,¢,r}, then based on Proposition 1
and Remark 4, for conditional random variables appearing in (13) it holds:

(14
(7 V)t

(7 = Vet (7 = T m N (0,1 agPof +ao?)

as well

(15)
(V= Yo R| (7 = Yiero B (V= Yoo A (0,/(1 - )02 + a202)

K3

where ¢ = 1,...,k and use symbol = is instead of ~ to emphasize the fact that
this is approximate, because we neglect situations when Yl(’)’t <Vt <y e
not satisfied.

5Note that in (12), b is present implicitly via Y;
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In the special case e, ~ N(0,0), h =1, c,r with fixed standard deviation o,
by taking the maximum likelihood approach, i.e., by applying the In(-) operation of
likelihood (12) and by taking into account (12)-(15), we obtain that the following
cost

1) L= 3 [(Fa = (T + (V) - (7))

which is to be minimized with respect to the regression parameters b € RPT! in
order to obtain the ML estimate. The cost (16) is actually proposed and used by
Chen and Hsueh in [17]. The solution bys that minimizes (16) is delivered in the
close form in [17].

Nevertheless, in the presence of outliers, i.e., atypical observations that differ
from the main part of the data set, the Heavy tailed additive noise is usually used
instead of Gaussian in the actual regression model (see [24, 25]). It is for example,
common approach in image processing, and can be induced during the acquisition
process [31, 32]. It is also common to model outliers with the mixture of Heavy
tailed and Gaussian noise (see for example applications in image processing [31,
33]). In order to deal with problems when there is an assumption on Heavy tailed
additive noise, an M-estimators are introduced in the area of ordinary i.e. crisp
linear regression, which utilize robust statistics approach [24]. To the knowledge
of authors of this paper, such an approach is not applied yet in the area of fuzzy
regression modeling. The main reason is, that in the existing literature, there is no
proper statistical interpretation of costs used in fuzzy regression in the means of the
noise imposed on the channel which is one of the novelty that this work introduces.
We go further by introducing the cost that can be viewed as fuzzy M-estimator
that deals with the situation where the additive noise £ imposed on the channel (see
the definition (2)) is such that €, h =1, ¢,r is robust noise of Cauchy type, or the
mixture of Cauchy and Gaussian type, which are one of the most common of robust
noise models used in applications. Thus, based on Proposition 2 and Corollary 1, we
conclude that conditional variables appearing at the left-hand side of (14) and (15)
both have either Cauchy, or the mixture of Cauchy and the Gaussian distributions
(with corresponding parameters), respectively, instead of Gaussian distribution as
it in (14) and (15). Thus, as the fuzzy M-estimator we propose the one that utilize
the Huber norm on each a-cut. It is most commonly used as M-estimator for that
particular types of robust noise, which is due to its robustness and simplicity (see
[24]). In the line with previous, we formulate the following cost

(17) LB) =33 pnl(YH)a = (VL) + pn(V ) = (VR)Y)

i=1 a€EAy

which is to be minimized with respect to b € RPT!. The term p,,(-), m > 0, is the
Huber norm defined by
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2
. 0<|z|<m
(18) pm(x) = { %, T -
lz] =&, |z|>m

We call the proposed method that utilized the cost (17), the Robust Fuzzy
Regression (RFR). As (18) is a convex function with respect to the b, it stays convex
as in the case of (17), so that consequently, the existence and the uniqueness of
the minimizer is maintained. As p,, € C*(R) for all m > 0, it is obvious that,
for example, simple gradient descent methodology could be applied in order to
minimize cost (17). The choice of parameter m must be such that it is sufficiently
large in order not to mask the Gaussian like behavior of the data near the origin,
and at the same time sufficiently small in order to catch outliers. We obtain it
heuristically, dependent on the actual application. In our experiments, as we target
sparse regularized case that we propose, we use the method proposed by Wright
et al. in [20] to efficiently obtain optimal solution to the corresponding sparse
regularized minimizing problems. For the simplicity we use the same method in
order to obtain the minimizer for the cost (17) by just setting 7 = 0 (see [20]). We
note that M-estimators, such as Huber estimator which we use in this paper, are
able to interpolate between [y and ls estimators (by using different values of € > 0)
and thus potentially obtain better results on some particular data set. Moreover,
the convex combination A|| - [|;;, + (1 — A)|| - |lis, A € [0,1] could also interpolate
between [; and l5 estimators, but we did not considered those possibilities in this
work.

4. Sparse Regularized Fuzzy Regression

One of the major problems that emerges in the application of the regression
models, crisp or fuzzy, on the real world problems is that the set of the input
or explanatory variables is chosen with out enough prior knowledge of the actual
problem that one tends to model. In many cases, it results in the fact that there are
to many input variables and that most of them have no significant influence on the
output variable, i.e., the response of the system, thus worsening the performance
of the regression. Equivalently, it means that only few of them have significant
influence on the response. It is referred to, as the sparsity of the data. In the area
of crisp regression the problem of feature reduction which extract those significant
variables is specially effectively solved by using the LASSO regression models, first
introduced by Tibshirani in [18], and further developed in [34, 35].

Although, the same previously described problem also emerges in the area
of fuzzy regression and was treated by using Iy regularizer (see [36] and [37]), to
the knowledge of authors of this paper, it was not treated by the means of sparse
regularizer of any kind. In line with that, in this section we expand the concept of
LASSO which is well known in the crisp regression, on the problems of fuzzy regres-
sion. We do it by using the probabilistic framework that we impose in the previous
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section which enables us to consider classical LS as well as robust M-estimator in
conjunction with the actual [; regularizer which emerge as a consequence of the
Laplace prior imposed on the crisp regression coefficients b. Actually, we go along
the line of Bayesian approach and assume that the vector of crisp regression param-
eters b is random vector with probability density p(b). In order to obtain the MAP
estimate of b, we tend to maximize a-posterior probability density p(b|(X,)?)).
Using the Bayesian theorem, we obtain

(19) byap = argmax, p((X,V")|b)p(b)
= argmax, [ln(p((X,yt)|b)) +1np(b)]

with p((X,Y!)|b) given by (12).

In order to obtain sparse regularization in the final cost, we assume the
Laplace prior on coefficients b, i.e., that b~ p(b) = (1/2n)e~1%11/7 with fixed 1 >
0. The term ||b||; is l; norm of parameters b € RP*!, defined by ||b|l; = >_1_, [bk|-
If we assume the Gaussian case in the sense of (2), i.e., e, =&, h =1, ¢,r is zero
mean Gaussian noise given by p.(y|®) = & ~ N (0, o) with fixed standard deviation
o, and simplifying O o, = 0, Op,, =~ o and also setting A = 1/, we obtain the
MAP estimate as the solution to the task of minimizing the following cost:

(200 £(0) =30 3 [((VF)a = (PEIL)? + (VR)a = (FR)L)?] + Al

i=1 a€Ag

with respect to regression parameters b € RPT1. The cost (20) is the generalization
of the cost (16), by the means of {; sparse regularization, which is to be applied if
the assumption on fuzzy data sparsity holds. We call the proposed method that
utilize cost (20) the Sparse Fuzzy Regression (SFR).

In the robust noise case in the sense of (2), if we assume ¢, h = l,¢,r is
robust additive noise of Cauchy type, or the mixture of Cauchy and Gaussian type
of noise, if the additional assumption on fuzzy data sparsity is imposed, we use the
fuzzy M-estimator which we introduce in the previous section in conjunction with
the [ sparse regularization corresponding to the Laplace prior with parameter 7.
Thus, we model the combine case of fuzzy data sparsity coupled with the presence
of data outliers inherent to the robustness of the noise imposed on the data, where
robust fuzzy M-estimator also obtain significantly better results in comparison to
LS, as we show on our experiments in Section 5. We obtain the task of minimizing
the following cost

n

@) LB =33 sV = (V9L + pu((Y ) — (FF)L) + Ab1

i=1 a€Ay

with respect to parameters b € RPT1 where p,, is Huber norm defined by (18).
The value of parameter m > 0 is obtained heuristically, depending on the actual
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application, as in the case of (17) in the previous section. Parameter A\ = 1/7 is
obtained as in the case of (20). We call the proposed method that utilize cost (21),
the Robust Sparse Fuzzy Regression (RSFR).

The costs (20) and (21) are convex, continuous and coercive with respect to
parameters b € RPT!, which implies that in both cases, from arbitrary minimizing
sequence, one can extract subsequence converging to the unique minimizer (see
[28]). Note however, that both (20) and (21) contain regularization term || b||; which
is not smooth, so that smooth optimization techniques can not be implied in order
to obtain their minimizers. For that task we use the SpaRSA method proposed by
Wright et al. in [20]. It is the method for solving general unconstrain optimization
problem of the form min, ¢(z) := f(x) + Ac(x), where f : R — R is smooth
function, and ¢ : R™ — R is regulizer, usually non-smooth (as it is the case in our
application) and possibly non-convex. The case of regularizer |blx = Y 5_, |bk|
which we use in the cost (20) and (21) is the special convex case of the more
general separable regularizer ¢(b) = Y 7_, ¢k (by), where ¢(+) are arbitrary non-
smooth and possibly non-convex real functions of the real argument. Following the
SpaRSA method [20], in the case of cost (20), we set

(22) A =3 D (e = (P2 + (V)0 = (V7)4)?]

i=1 a€Ag

and in the case of (21), we set

23) L) =33 pul(YH)a = (VL) + pm(VF)a — (TR)L),

=1 OCEA;c

for which we obtain gradients in closed form. In the case of cost (20), we obtain
j-th component of V f1(b) as

(24) gf)bjfl(@ = 33 AT~ THE .

and also of V f2(b) as

(25) a5 20 = 2 > vn((a — (K

+ (V)0 = (VLX)
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where 1, is a derivative of the Huber norm with parameter m, given by

L 0<|e|<m
(26) Ym(x) = 1, z>m ,
-1, z<m

and f; and f, are functions of b via the terms Y~ and Y.

Now, following the line of SpaRSA [20], we obtain minimizers for cost (20)
and cost (21) respectively by alternatingly performing following two steps: Step
one is given by

1 A A
(27) b = argmin = (z — uf)? + Alz] = soft (uf7 )
z 2 (077 (o7
where soft(u,a) = sign(u) max{|u| — a,0} denotes the well known soft-threshold
function. Step two is given by

(28) M:HfiVﬁW)

in the case of cost (20), and by

(29) M:Hfith)
Qi

in the case of cost (21) respectively. We obtain a; adaptively, following the SpaRSA
scheme proposed in [20]. Under the mild condition (see [20]) which are all satisfied
for both cost (20) and (21), this scheme obtain stationary point which is in our
case the unique solution of the corresponding minimization problems.

5. Experimental results

In this Section we give the experimental results on the syntectic data. We
evaluate the performance of the proposed RFR, SFR and RSFR respectively. The
experiments are given, in comparison to the baseline FR model given by Chen and
Hsueh in [17] in the case of non-sparse and sparse fuzzy data, and in the presence
of Gaussian, Cauchy noise and the mixture of these two. Moreover, we compare
proposed regression models among each other, for the same data settings.

For all experiments, elements of the observation set Y = {Y;|i = 1...,n} are

generated as the random triangular fuzzy numbers Y; = Y; @ & by the means of (9)
and the definition (2), where e, ~ p(-,04), h € {l,¢,r} is Gaussian, Cauchy or the
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mixture of these two distributions, depending on the particular experiment. We

obtained Y; = b’ - X;, where for the particular experiment, we fix the dimension
p € N and the true regression parameters b € RPT! were given a priori and the
task of the experiments was to reconstruct them with the minimal possible error.
The input variables X; also randomly generated for the sake of completeness of
the experiments, although are considered in the previous sections to be given as
deterministic input. For each i € {1,...,n}, the center of the triangular fuzzy
number X; is generated by setting X,c = LS + f, where S ~ U(0,1) and we
set L = 10, f = 1. For the simplicity and without loosing generality, we obtain
Xi1=X;c—Di, X = Xic+ D,, where D; = 0.5, D, = 0.2 are fixed. Number of
a-cuts was k = 3, for all experiments. In each experiment we estimate b and report
the mean square error, calculated as Egq = p—_IHHiJ — b||3, for different parameter
setting. In order to obtain minimizer for the baseline FR, we use the close form
solution proposed in [17], in all experiments. In order to obtain minimizers in case
of the proposed RFR, SFR and RSFR, we use the SpaRSA algorithm [20], where
we set ag = 0.07, Qmin = 0.05, Qe = 0.2, n = 1.3 in all cases. In the cases
of SFR and RSFR, we set 7 = 20, while in the RFR case we set 7 = 0, in all
the experiments. Also, in the cases of RFR and RSFR, we set m = 10 for the
parameter of Huber norm p,,, in all experiments. For each experiment, we vary
the following parameters: number of observations n, scale parameter v > 0 of the
Cauchy noise and the standard deviation ¢ > 0 of the Gaussian noise, if they are
used in the particular experiment.

In Table 1, experimental results of comparison of the proposed RFR with the
baseline FR model are presented. We used fixed p = 7, and also the true regression
vector b =[0.4,5,8,2,3.6,7.2,0.2,0.1], while varying the scale of the Cauchy noise
v > 0 and the number of observations n. It can be seen that in the case of Gaussian
noise, the proposed RFR obtain significantly better results in the means of mean
square error Fsg,, in comparison to the baseline FR model, for all scales v and all
number of observations n tested.

In Table 2, experimental results of comparison of the proposed SFR with the
baseline FR model are presented. We used fixed p = 19, and also the true regression
vector b = [0,5,2,0,...,0], dim(b) = 20, while varying the standard deviation of
the Gaussian noise o and the number of observations n. It can be seen that in the
case of sparse fuzzy data and Gaussian noise, the proposed SFR obtain significantly
better results in the means of mean square error Ey,, in comparison to the baseline
FR model, for all standard deviations ¢ and all number of observations n tested.

In Table 3, experimental results of comparison of the proposed SFR and
RSFR are presented. We used fixed p = 19, and also the true regression vector
b =10,5,2,0,...,0], dim(b) = 20, while varying the scale parameter v of the
Cauchy noise imposed, and the number of observations n. It can be seen that
in the case of sparse fuzzy data and imposed Cauchy noise, robustification of the
SFR model that we previously invoke, significantly improve performance of fuzzy
regression model, in the case of Cauchy noise, for all scale parameters v and number
of observations n.
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In Table 4, experimental results of comparison of the proposed RFR and
RSFR are presented. We used fixed p = 19, and also the true regression vector
b = 1[0,5,2,0,...,0], dim(b) = 20, while varying the scale parameter v of the
Cauchy noise imposed, and the number of observations n. It can be seen that in
the case of sparse fuzzy data and imposed Cauchy noise, sparse regularization of
RFR model significantly improve performance of fuzzy regression model, in the case
of Cauchy noise, for all scale parameters v and number of observations n.

In Table 5, experimental results of comparison of the proposed RFR with
the baseline FR model are presented, in the case when the mixture of Cauchy and
Gaussian noise was imposed. As in example in Table 1, we used fixed p = 7, and the
true regression vector b= [0.4,5,8,2,3.6,7.2,0.2,0.1], while varying the number of
observations n, the scale parameter v of the Cauchy component and the standard
deviation o of the Gaussian component in the noise mixture. It can be concluded
that similar conclusions as for Table 1 hold in the case of Table 5, when the mixture
is imposed.

In Table 6, experimental results of comparison of proposed SFR and RSFR
are presented, in the case when the mixture of Cauchy and Gaussian noise was
imposed. As in the case of Table 3, we used fixed p = 19, and also the true
regression vector b = [0,5,2,0,...,0], dim(b) = 20, while varying the number of
observations n, the scale parameter v of the Cauchy component and the standard
deviation o of the Gaussian component of the mixture imposed. It can be concluded
that similar conclusions as for Table 3 hold in the case of Table 5, when the mixture
is imposed.
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n baseline FR RFR

v=1lvr=3|lv=5|r=1jv=3|r=>5
20 |0.306 |0.762 | 1.227 | 0.311 | 0.543 | 0.686
100 |0.636 |2.056 |3.558 [0.010 [ 0.126 | 0.158
500 10.643 |1.093 | 3.306 | 0.084 [ 0.104 |0.117

Table 1: Results of the proposed RFR, in the means of mean square error Eygp, in
comparison to the baseline FR method, when the Cauchy noise is imposed. The
true regression parameter vector is fixed on b = [0.4,5,8,2,3.6,7.2,0.2,0.1]. Term n
represents the number of observations, while term v represents the scale parameter
for the imposed Cauchy noise.

n baseline FR SFR

c=2|c=5|c=10|lc=2|c=5|c=10
20 10.223 10.284 |10.536 |0.069 |0.161 |0.328
100{0.059 |0.106 {0.202 |0.051 |0.080 |0.139
500(0.047 10.053 |0.073 |0.039 | 0.037 |0.036

Table 2: Results of the proposed SFR, in the means of mean square error Egq,
in comparison to the baseline FR method, applied on sparse fuzzy data, when
the Gaussian noise is imposed. The true regression parameter vector is fixed on
b=10,5,2,0,...,0] € RPT1 p=19. Term n represents the number of observations,
while term o represents the standard deviation for the imposed Gaussian noise.

n SFR RSFR

v=1lvr=3lv=5|r=1jlv=3|rvr=>5
20 |0.134]0.395|0.545 |0.129 | 0.282 | 0.390
100 0.665 |2.261 [4.290 |0.064 |0.115 | 0.161
500(0.591 | 2.820 | 5.04 |0.041 |0.047 |0.059

Table 3: Results of the proposed RSFR and SFR methods, in the means of mean
square error g, applied on the sparse fuzzy data, when the Cauchy noise is im-
posed. The true regression parameter vector is fixed on b = [0,5,2,0,...,0] €
RPHL p =19. Term n represents the number of observations, while term v repre-
sents the scale parameter for the imposed Cauchy noise.
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n RFR RSFR

v=1lvr=3|lv=5|r=1jv=3|r=>5
20 10.380 |0.774 10.966 | 0.129 | 0.282 | 0.391
100(0.124 {0.249 {0.349 | 0.065 | 0.115 | 0.161
50010.035 |0.053 {0.074 | 0.042 [ 0.047 | 0.059

Table 4: Results of the proposed RSFR and RFR methods, in the means of mean
square error Ey,., applied on the sparse fuzzy data, when the Cauchy noise is im-
posed. The true regression parameter vector is fixed on b = [0,5,2,0,...,0] €
RPHL, p =19. Term n represents the number of observations, while term v repre-
sents the scale parameter for the imposed Cauchy noise

n baseline FR RFR

o=25 o=10 o=25 o=10
v=1|lvr=3|lv=5|vr=1lv=3|lv=5|lr=1|vr=3|lv=5|r=1jlv=3|r=>5
20 10.430|0.975|1.557 {0.590 [ 1.140 [1.718 [0.330 |0.426 |0.538 | 0.487 | 0.574 | 0.685
100{0.283 [0.659 [1.063 |0.407 |0.730 {1.114 {0.242 | 0.332 | 0.405 | 0.360 | 0.448 | 0.526
50010.329 |0.953 | 1.583 | 0.345 [ 0.959 | 1.588 [0.111 |0.135 |0.159 | 0.150 | 0.180 | 0.206

Table 5: Results of the proposed RFR in comparison to the baseline FR, in
the means of mean square error E,,., when the mixture of Cauchy and the
Gaussian noise is imposed. The true regression parameter vector is fixed on
b =104,5,8,2,3.6,7.2,0.2,0.1]. The term n represents the number of observa-
tions, the term v represents the scale parameter of the Cauchy component, while
o represents the standard deviation of the Gaussian component in the mixture

n SFR RSFR

o=25 o=10 og=25 o=10
v=1lvr=3lv=5|vr=1lv=3|lv=5|lr=1|lvr=3|lv=5|r=1jlv=3|r=>5
20 |0.776 |3.944 | 7.335 [ 0.791 [ 3.936 | 7.298 | 0.100 [0.148 |0.210 | 0.165 | 0.218 | 0.287
100 0.387 [1.245 |2.354 |1 0.395 | 1.253 | 2.376 | 0.074 | 0.127 | 0.189 |0.117 |0.176 | 0.237
50010.364 |1.194 | 1.880 [ 0.349 [ 1.175 | 1.870 [0.045 |0.067 | 0.084 | 0.060 | 0.081 | 0.099

Table 6: Results of the proposed SFR and RSFR, in the means of mean square error
Eyqr on the sparse fuzzy data, when the mixture of Cauchy and the Gaussian noise
is imposed. The true regression parameter vector is fixed on b= [0,5,2,0,...,0] €
RPFTL p = 19. The term n represents the number of observations, the term v
represents the scale parameter of the Cauchy component, while o represents the
standard deviation of the Gaussian component in the mixture
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6. Conclusion

In this work we propose the novel Robust Fuzzy Regression model, by intro-
ducing fuzzy M-estimator that utilize Huber robust norm, where we first invoke
the statistical framework in a fuzzy regression concept, by introducing additive
noise that could be induced in the channel that simulate the transmission path
between the fuzzy measurements and the fuzzy response. Thus we are able to han-
dle outliers present in the fuzzy data which are modeled by the usage of heavy
tailed noise. Moreover, we introduce novel Sparse Fuzzy Regression and also Ro-
bust Sparse Fuzzy Regression models, dealing with the sparsity of the actual fuzzy
data in the presence of Gaussian or heavy tailed noise respectively. Experimental
results obtained on synthetic data support our claims. In the future work we intend
to expend the scarcity concept not only on the fuzzy regression task, but on the
general task of sparse representation of fuzzy data.
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