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THE INVERSE OF A TRIANGULAR MATRIX AND

SEVERAL IDENTITIES OF THE CATALAN NUMBERS

Feng Qi, Qing Zou, and Bai-Ni Guo ∗

In the paper, the authors establish two identities to express higher order

derivatives and integer powers of the generating function of the Chebyshev

polynomials of the second kind in terms of integer powers and higher or-

der derivatives of the generating function of the Chebyshev polynomials of

the second kind respectively, find an explicit formula and an identity for the

Chebyshev polynomials of the second kind, conclude the inverse of an integer,

unit, and lower triangular matrix, derive an inversion theorem, present sev-

eral identities of the Catalan numbers, and give some remarks on the closely

related results including connections of the Catalan numbers with the Cheby-

shev polynomials of the second kind, the central Delannoy numbers, and the

Fibonacci polynomials respectively.

1. PRELIMINARIES

It is common knowledge [5, 11, 42] that the generalized hypergeometric
series

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

is defined for complex numbers ai ∈ C and bi ∈ C \ {0,−1,−2, . . . }, for positive
integers p, q ∈ N, and in terms of the rising factorials (x)n defined by

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1;

1, n = 0.
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Specially, one calls 2F1(a, b; c; z) the classical hypergeometric function.

It is well known [7, 39, 47] that the Catalan numbers Cn for n ≥ 0 form
a sequence of natural numbers that occur in tree enumeration problems such as
“In how many ways can a regular n-gon be divided into n− 2 triangles if different
orientations are counted separately?” whose solution is the Catalan number Cn−2”.
The Catalan numbers Cn can be generated by

2

1 +
√

1− 4x
=

1−
√

1− 4x

2x
=

∞∑
n=0

Cnx
n = 1 + x+ 2x2 + 5x3 + · · ·

and can be explicitly expressed as

Cn =
1

n+ 1

(
2n

n

)
= 2F1(1− n,−n; 2; 1) =

4nΓ(n+ 1/2)√
π Γ(n+ 2)

,

where the classical Euler gamma function Γ(z) can be defined [5, 11, 16, 26, 42]
by

Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

For more information on the Catalan numbers Cn and their recent developments,
please refer to the monographs [2, 7, 47], the papers [8, 9, 14, 18, 19, 22, 27,
28, 29, 30, 33, 35, 36, 37, 38, 39, 44, 49, 50, 51, 52], and the closely related
references therein.

The first six Chebyshev polynomials of the second kind Uk(x) for 0 ≤ k ≤ 5
are

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1, U5(x) = 32x5 − 32x3 + 6x.

They can be generated by

F (t) = F (t, x) =
1

1− 2xt+ t2
=

∞∑
k=0

Uk(x)tk

for |x| < 1 and |t| < 1. For more information on the Chebyshev polynomials of the
second kind Uk(x), please refer to the papers [20, 32, 37], the monographs [5, 10,
11, 42, 43], and the closely related references therein. For more information on
other new and special polynomials, please refer to the papers [15, 17, 31, 40] and
closely related references cited therein.

Let bxc denote the floor function whose value is the largest integer less than
or equal to x and let dxe stand for the ceiling function which gives the smallest
integer not less than x. When n ∈ Z, it is easy to see that⌊n

2

⌋
=

1

2

[
n− 1− (−1)n

2

]
and

⌈n
2

⌉
=

1

2

[
n+

1− (−1)n

2

]
.



520 Feng Qi, Qing Zou and Bai-Ni Guo

In this paper, we will establish two identities to express the generating func-
tion F (t) of the Chebyshev polynomials of the second kind Uk(x) and its higher
order derivatives F (k)(t) in terms of F (k)(t) and F (t) each other, find an explicit
formula and an identity for the Chebyshev polynomials of the second kind Uk(x),
derive the inverse of an integer, unit, and lower triangular matrix, acquire an in-
version theorem, present several identities of the Catalan numbers Ck, and give
some remarks on the closely related results including connections of the Catalan
numbers Ck with the Chebyshev polynomials of the second kind Uk(x), the central
Delannoy numbers [20, 21], and the Fibonacci polynomials [20, 24] respectively.

2. LEMMAS

In order to prove our main results, we recall several lemmas below.

Lemma 2.1 ([2, p. 134, Theorem A] and [2, p. 139, Theorem C]). For n ≥ k ≥ 0,
the Bell polynomials of the second kind, denoted by Bn,k(x1, x2, . . . , xn−k+1), are
defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the
second kind Bn,k(x1, x2, . . . , xn−k+1) by

(2.1)
dn

dtn
f ◦ h(t) =

n∑
k=1

f (k)(h(t)) Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
, n ∈ N.

Lemma 2.2 ([2, p. 135]). For complex numbers a and b, we have

(2.2) Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1).

Lemma 2.3 ([23, Theorem 4.1], [37, Eq. (2.8)], and [48, Lemma 2.5]). For 0 ≤
k ≤ n, the Bell polynomials of the second kind Bn,k satisfy

(2.3) Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n,

where
(
p
q

)
= 0 for q > p ≥ 0.

Lemma 2.4 ([4] and [7, pp. 112–114]). Let T (r, 1) = 1 and

T (r, c) =

r∑
i=c−1

T (i, c− 1), c ≥ 2,
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or, equivalently,

T (r, c) =

c∑
j=1

T (r − 1, j), r, c ∈ N.

Then

T (r, c) =
r − c+ 2

r + 1

(
r + c− 1

r

)
, r, c ∈ N

and T (n, n) = Cn for n ∈ N.

Lemma 2.5 ([12, p. 2, Eq. (10)] and [3, 18, 19, 27, 45, 46]). For n ∈ N, the
Catalan numbers Cn have the integral representation

(2.4) Cn =
1

2π

∫ 4

0

√
4− x
x

xn dx.

Lemma 2.6. For 0 6= |t| < 1 and k ∈ N, we have

2F1

(
1− k

2
,

2− k
2

; 1− k;
1

t2

)
=

t

2k
√
t2 − 1

[(
1 +

√
t2 − 1

t

)k
−
(

1−
√
t2 − 1

t

)k]
.

Proof. In [5, pp. 999–1000] and [11, pp. 442 and 449, Items 18.5.10 and 18.12.4],
it was listed that
(2.5)

Gλn(t) =
1√
π

Γ(2λ+ n)

n!Γ(2λ)

Γ
(

2λ+1
2

)
Γ(λ)

∫ π

0

(
t+
√
t2 − 1 cosφ

)n
sin2λ−1 φdφ, |t| < 1

and

(2.6) Gλn(t) =
(2t)nΓ(λ+ n)

n!Γ(λ)
2F1

(
−n

2
,

1− n
2

; 1− λ− n;
1

t2

)
, 0 6= |t| < 1,

where Gλn(t) stands for the Gegenbauer polynomials which are the coefficients of
αn in the power-series expansion

1

(1− 2tα+ α2)λ
=

∞∑
k=0

Gλk(t)αk, |t| < 1.

Taking n = j − 1 and λ = 1 in equalities (2.5) and (2.6), combining them, and
simplifying give

2F1

(
1− j

2
,

2− j
2

; 1− j; 1

t2

)
=

j

2j
1

tj−1

∫ π

0

(
t+
√
t2 − 1 cosφ

)j−1

sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

∫ π

0

(
t√

t2 − 1
+ cosφ

)j−1

sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

∫ π

0

j−1∑
`=0

(
j − 1

`

)(
t√

t2 − 1

)j−1−`

cos` φ sinφ dφ
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=
j

2j
(t2 − 1)(j−1)/2

tj−1

j−1∑
`=0

(
j − 1

`

)(
t√

t2 − 1

)j−1−` ∫ π

0

cos` φ sinφ dφ

=
j

2j
(t2 − 1)(j−1)/2

tj−1

(
t√

t2 − 1

)j−1 j−1∑
`=0

(
j − 1

`

)(√
t2 − 1

t

)`
(−1)` + 1

`+ 1

=
j

2j

j−1∑
`=0

(
j − 1

`

)(√
t2 − 1

t

)`
(−1)` + 1

`+ 1

=
1

2j
t√

t2 − 1

[(
1 +

√
t2 − 1

t

)j
−
(

1−
√
t2 − 1

t

)j]
for |t| < 1 and t 6= 0. The proof of Lemma 2.6 is complete.

Lemma 2.7 ([5, p. 399]). If <(ν) > 0, then

(2.7)

∫ π/2

0

cosν−1 x cos(ax) dx =
π

2ννB
(
ν+a+1

2 , ν−a+1
2

) ,
where B(α, β) stands for the classical beta function satisfying

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
= B(β, α), <(α),<(β) > 0.

3. IDENTITIES OF THE CHEBYSHEV POLYNOMIALS OF THE
SECOND KIND

In this section, we establish three identities and an explicit formula for the
Chebyshev polynomials of the second kind Uk(x), their generating function F (t),
and higher order derivatives F (k)(t).

Theorem 3.1. Let n ∈ N. Then

1. the nth derivatives of the generating function F (t) of the Chebyshev polyno-
mials of the second kind Uk(x) satisfy

(3.8) F (n)(t) =
n!

[2(t− x)]n

n∑
k=dn/2e

(−1)k
(

k

n− k

)
[2(t− x)]2kF k+1(t)

and

(3.9) Fn+1(t) =
1

n

1

[2(t− x)]2n

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
[2(t− x)]kF (k)(t);

2. the equations (3.8) and (3.9) are equivalent to each other.
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Consequently,

1. the Chebyshev polynomials of the second kind Un(x) satisfy

(3.10) Un(x) =
(−1)n

(2x)n

n∑
k=dn/2e

(−1)k
(

k

n− k

)
(2x)2k

and

(3.11)

n∑
k=1

k

(
2n− k − 1

n− 1

)
(2x)kUk(x) = n(2x)2n;

2. the equations (3.10) and (3.11) are equivalent to each other.

Proof. By the formulas (2.1), (2.2), and (2.3) in sequence, we have

F (n)(t) =
dn

dtn

(
1

1− 2tx+ t2

)
=

n∑
k=1

(
1

u

)(k)

Bn,k(−2x+ 2t, 2, 0, . . . , 0)

=

n∑
k=1

(−1)kk!

uk+1
2k Bn,k(t− x, 1, 0, . . . , 0)

=

n∑
k=1

(−1)kk!

uk+1
2k

1

2n−k
n!

k!

(
k

n− k

)
(t− x)2k−n

= (−1)nn!

n∑
k=1

(−1)k22k−n
(

k

n− k

)
(x− t)2k−n

(1− 2tx+ t2)k+1

= (−1)nn!

n∑
k=1

(−1)k22k−n
(

k

n− k

)
(x− t)2k−nF k+1(t)

for n ∈ N, where u = u(t, x) = 1 − 2tx + t2. This can be rewritten as the for-
mula (3.8).

We can reformulate the formula (3.8) as

[2(t−x)]1

1! F ′(t)
[2(t−x)]2

2! F ′′(t)
[2(t−x)]3

3! F (3)(t)
...

[2(t−x)]n−2

(n−2)! F (n−2)(t)
[2(t−x)]n−1

(n−1)! F (n−1)(t)
[2(t−x)]n

n! F (n)(t)


= An



(−1)1[2(x− t)]2F 2(t)
(−1)2[2(x− t)]4F 3(t)
(−1)3[2(x− t)]6F 4(t)

...
(−1)n−2[2(x− t)]2(n−2)Fn−1(t)
(−1)n−1[2(x− t)]2(n−1)Fn(t)

(−1)n[2(x− t)]2nFn+1(t)


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for n ∈ N, where An = (ai,j)n×n with

(3.12) ai,j =


0, i < j(

j

i− j

)
, j ≤ i ≤ 2j

0, i > 2j

for i, j ∈ N. This means that

(3.13)



(−1)1[2(x− t)]2F 2(t)
(−1)2[2(x− t)]4F 3(t)
(−1)3[2(x− t)]6F 4(t)

...
(−1)n−2[2(x− t)]2(n−2)Fn−1(t)
(−1)n−1[2(x− t)]2(n−1)Fn(t)

(−1)n[2(x− t)]2nFn+1(t)


= A−1

n



[2(t−x)]1

1! F ′(t)
[2(t−x)]2

2! F ′′(t)
[2(t−x)]3

3! F (3)(t)
...

[2(t−x)]n−2

(n−2)! F (n−2)(t)
[2(t−x)]n−1

(n−1)! F (n−1)(t)
[2(t−x)]n

n! F (n)(t)


for n ∈ N, where A−1

n = (bi,j)n×n denotes the inverse matrix of An.

By the software Mathematica or by hands, we can obtain immediately that

(3.14) A−1
7 =


1 0 0 0 0 0
1 1 0 0 0 0
0 2 1 0 0 0
0 1 3 1 0 0
0 0 3 4 1 0
0 0 1 6 5 1



−1

=


1 0 0 0 0 0
−1 1 0 0 0 0
2 −2 1 0 0 0
−5 5 −3 1 0 0
14 −14 9 −4 1 0
−42 42 −28 14 −5 1

 .

The first few values of the sequence T (r, c) can be listed as Table 1, where T (r, c)
denote the rth element in column c for r, c ≥ 1, see [7, p. 113]. Comparing Table 1

Table 1: Definition of T (r, c)
1 2 3 4 5

1 1
2 1 2
3 1 3 5
4 1 4 9 14
5 1 5 14 28 42

and the inverse matrix (3.14) should infer that

T (k +m, k) = (−1)k+1bk+m+1,m+2, k ≥ 1, m ≥ 0.

Hence, by Lemma 2.4, we should obtain

bp,q = (−1)p−qT (p− 1, p− q + 1) = (−1)p−q
q

p

(
2p− q − 1

p− 1

)
, p ≥ q ≥ 2.
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It is easy to see that the formula

bp,q = (−1)p−q
q

p

(
2p− q − 1

p− 1

)
should be valid for all p ≥ q ≥ 1. This should imply that

(3.15) (−1)n[2(x− t)]2nFn+1(t) =

n∑
k=1

bn,k
[2(t− x)]k

k!
F (k)(t), n ∈ N.

We now start out to inductively verify the equation (3.15). When n = 1, 2,
the equation (3.15) are

−[2(x− t)]2F 2(t) = b1,1
2(t− x)

1!
F ′(t) = b1,1

2(t− x)

1!

2x− 2t

(1− 2tx+ t2)2

and

[2(x− t)]4F 3(t) =

2∑
k=1

b2,k
[2(t− x)]k

k!
F (k)(t)

= b2,1
2(t− x)

1!
F ′(t) + b2,2

[2(t− x)]2

2!
F ′′(t)

= b2,1
2(t− x)

1!

2x− 2t

(1− 2tx+ t2)2
+ b2,2

[2(t− x)]2

2!

2
(
3t2 − 6tx+ 4x2 − 1

)
(t2 − 2tx+ 1)3

which are clearly valid. When n ≥ 3, we rewrite (3.15) as

(3.16) (−1)nFn+1(t) =

n∑
k=1

bn,k
[2(t− x)]k−2n

k!
F (k)(t).

Differentiating with respect to t on both sides of (3.16) yields

(−1)n(n+ 1)Fn(t)F ′(t)

=

n∑
k=1

bn,k
k!

{
2(k − 2n)[2(t− x)]k−2n−1F (k)(t) + [2(t− x)]k−2nF (k+1)(t)

}
=

n∑
k=1

bn,k
k!

2(k − 2n)[2(t− x)]k−2n−1F (k)(t) +

n∑
k=1

bn,k
k!

[2(t− x)]k−2nF (k+1)(t)

=

n∑
k=1

2(k − 2n)bn,k
k!

[2(t− x)]k−2n−1F (k)(t) +

n+1∑
k=2

bn,k−1

(k − 1)!
[2(t− x)]k−1−2nF (k)(t)

=
bn,1
1!

2(1− 2n)

[2(t− x)]2n
F ′(t) +

bn,n
n!

1

[2(t− x)]n
F (n+1)(t)

+

n∑
k=2

[
bn,k
k!

2(k − 2n) +
bn,k−1

(k − 1)!

]
[2(t− x)]k−2n−1F (k)(t)
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which can be rearranged as

(−1)n+1Fn+2(t) =
2(1− 2n)bn,1

n+ 1

[2(t− x)]1−2(n+1)

1!
F ′(t)

+ bn,n
[2(t− x)](n+1)−2(n+1)

(n+ 1)!
F (n+1)(t)

+

n∑
k=2

2(k − 2n)bn,k + kbn,k−1

n+ 1

[2(t− x)]k−2(n+1)

k!
F (k)(t).

It is easy to see that

2(1− 2n)bn,1
n+ 1

=
2(1− 2n)

n+ 1
(−1)n−1 1

n

(
2n− 2

n− 1

)
= (−1)n

1

n+ 1

(
2n

n

)
= bn+1,1.

Since bk,k = 1 for all 1 ≤ k ≤ n ∈ N, it is sufficient to show

(3.17)
2(k − 2n)bn,k + kbn,k−1

n+ 1
= bn+1,k

for 2 ≤ k ≤ n. This is equivalent to

2(k − 2n)

n+ 1
(−1)n−k

k

n

(
2n− k − 1

n− 1

)
+

k

n+ 1
(−1)n−k+1 k − 1

n

(
2n− k
n− 1

)
= (−1)n+1−k k

n+ 1

(
2n− k + 1

n

)
which can be verified straightforwardly. The equation (3.15), which can be refor-
mulated as (3.9) for n ∈ N, is thus proved.

The formulas (3.10) and (3.11) follow readily from taking t→ 0 on both sides
of (3.8) and (3.9) respectively. The proof of Theorem 3.1 is complete.

4. THE INVERSE OF A TRIANGULAR MATRIX AND AN
INVERSION THEOREM

In this section, we will conclude the inverse A−1
n of the integer, unit, and

lower triangular matrix An defined by (3.12) and derive an inversion theorem from
A−1
n .

4.1 The inverse of a triangular matrix

Basing on equations (3.8) and (3.9), we first derive the inverse of an integer, unit,
and lower triangular matrix.
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Theorem 4.2. For n ∈ N, let

An = (ai,j)n×n =



(
1
0

)
0 0 0 · · · 0 0 0 0(

1
1

) (
2
0

)
0 0 · · · 0 0 0 0

0
(

2
1

) (
3
0

)
0 · · · 0 0 0 0

0
(

2
2

) (
3
1

) (
4
0

)
· · · 0 0 0 0

0 0
(

3
2

) (
4
1

)
· · · 0 0 0 0

0 0
(

3
3

) (
4
2

)
· · · 0 0 0 0

0 0 0
(

4
3

)
· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · ·
(
n−3

0

)
0 0 0

0 0 0 0 · · ·
(
n−3

1

) (
n−2

0

)
0 0

0 0 0 0 · · ·
(
n−3

2

) (
n−2

1

) (
n−1

0

)
0

0 0 0 0 · · ·
(
n−3

3

) (
n−2

2

) (
n−1

1

) (
n
0

)


n×n

,

where

ai,j =


0, i < j(

j

i− j

)
, j ≤ i ≤ 2j

0, i > 2j

for 1 ≤ i, j ≤ n. Then

A−1
n = (bi,j)n×n

=



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
2 −2 1 · · · 0 0
−5 5 −3 · · · 0 0
14 −14 9 · · · 0 0
−42 42 −28 · · · 0 0

...
...

...
. . .

...
...

(−1)n−1

n−2

(
2n−6
n−3

) (−1)n2
n−2

(
2n−7
n−3

) (−1)n−13
n−2

(
2n−8
n−3

)
· · · 0 0

(−1)n

n−1

(
2n−4
n−2

) (−1)n−12
n−1

(
2n−5
n−2

) (−1)n3
n−1

(
2n−6
n−2

)
· · · 1 0

(−1)n−1

n

(
2n−2
n−1

) (−1)n2
n

(
2n−3
n−1

) (−1)n−13
n

(
2n−4
n−1

)
· · · −(n− 1) 1


n×n

,

where

(4.18) bi,j =

0, 1 ≤ i < j ≤ n;

(−1)i−j
j

i

(
2i− j − 1

i− 1

)
, n ≥ i > j ≥ 1.

Proof. This follows straightforwardly from combining (3.13) with (3.9). The proof
of Theorem 4.2 is complete.
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4.2 An inversion theorem

In [6, p. 4, Eq. (1.1.9d)], it was given that

(4.19)

n∑
k=`

(−1)n−k
(
n

k

)(
k

`

)
=

{
1, ` = n;

0, 1 ≤ ` < n.

We now deduce a similar result to (4.19) from Theorem 4.2 as follows.

Theorem 4.3. For `, n ∈ N with ` ≤ n, we have

n∑
k=`

(−1)k−`k

(
2n− k − 1

n− 1

)(
`

k − `

)
=

{
n, ` = n;

0, 0 < ` < n.

Proof. Since A−1
n A = In, using the last row of A−1

n to multiply every column of An
gives the desired conclusion. The proof of Theorem 4.3 is complete.

It is well known [2, pp. 143–144] that the binomial inversion theorem reads
that

sn =

n∑
k=0

(
n

k

)
Sk if and only if Sn =

n∑
k=0

(−1)n−k
(
n

k

)
sk

for n ≥ 0, where {sn, n ≥ 0} and {Sn, n ≥ 0} are sequences of complex numbers.
The formula (4.19) plays a central role in proving the above binomial inversion
theorem. Now we use Theorem 4.3 to deduce an inversion theorem similar to the
binomial inversion theorem.

Theorem 4.4. For k ≥ 1, let sk and Sk be two sequences independent of n such
that n ≥ k ≥ 1. Then

sn
n!

=

n∑
k=1

(−1)k
(

k

n− k

)
Sk if and only if nSn =

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)
sk

or, equivalently,

sn =

n∑
k=1

(
k

n− k

)
Sk if and only if (−1)nnSn =

n∑
k=1

(
2n− k − 1

n− 1

)
(−1)kksk.

First proof. By standard argument, we have

nSn =

n∑
k=1

(−1)k

(k − 1)!

(
2n− k − 1

n− 1

)[
k!

k∑
`=1

(−1)`
(

`

k − `

)
S`

]

=

n∑
k=1

k∑
`=1

(−1)k−`k

(
2n− k − 1

n− 1

)(
`

k − `

)
S`
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=

n∑
`=1

[
n∑
k=`

(−1)k−`k

(
2n− k − 1

n− 1

)(
`

k − `

)]
S`

= nSn,

where we used Theorem 4.3 in the last step.

Similarly, we can prove the converse direction. The first proof of Theorem 4.4
is complete.

Second proof. Let ~sn = (s1, s2, . . . , sn)T and ~Sn = (S1, S2, . . . , Sn)T , where T

stands for the transpose of a matrix. Theorem 4.2 means that ~sn = An~Sn if
and only if ~Sn = A−1

n ~sn. This necessary and sufficient condition is equivalent to
the one that

sn =

n∑
k=1

an,kSk =
n∑
k=1

(
k

n− k

)
Sk

if and only if

Sn =

n∑
k=1

bn,ksk =

n∑
k=1

(−1)n−k
k

n

(
2n− k − 1

n− 1

)
sk

for all n ∈ N. In other words,

sn =

n∑
k=1

(
k

n− k

)
Sk if and only if (−1)nnSn =

n∑
k=1

(
2n− k − 1

n− 1

)
(−1)kksk.

Further replacing Sk by (−1)kSk and sk by sk
k! reveals that

sn
n!

=

n∑
k=1

(
k

n− k

)
(−1)kSk

if and only if

(−1)nn(−1)nSn =
n∑
k=1

(−1)kk

(
2n− k − 1

n− 1

)
sk
k!

for all n ∈ N. The second proof of Theorem 4.4 is thus complete.

5. IDENTITIES OF THE CATALAN NUMBERS

In this section, we present several identities of the Catalan numbers Ck.

Theorem 5.5. For i ≥ j ≥ 1, we have

(5.20)

b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1 =

j

i

(
2i− j − 1

i− 1

)
.
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Proof. Observing the special result (3.14) again, we guess that the elements bi,j of
the inverse of the triangular matrix An should satisfy the following relations:

1. for i < j, the elements in the upper triangle are bi,j = 0;

2. for all i ∈ N, the elements on the main diagonal are bi,i = 1;

3. the elements in the first two columns satisfy bi,1 = −bi,2 for i ≥ 2;

4. the elements in the first column are bi,1 = (−1)i−1Ci−1;

5. for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 2,

bi+1,j+2 = bi,j − bi+1,j+1;

6. for i ≥ j ≥ 2,

bi,j =

i−j−1∑
k=−1

(−1)k+1bi−1,j+k.

Basing on these observations, we guess out that the elements bi,j should alterna-
tively satisfy

(5.21) bi,j = (−1)i−j
b(j−1)/2c∑

`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1, i ≥ j ≥ 1.

Combining this with (4.18) and simplifying should yield the identity (5.20).

We now start off to verify the identity (5.20). By virtue of the integral
representation (2.4), Lemma 2.6, and the integral (2.7) in Lemma 2.7, we acquire

b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1

=
1

2π

∫ 4

0

√
4− x
x

[b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
xi−`−1

]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/2

[b(j−1)/2c∑
`=0

(j − 1− `)!
(j − 1− 2`)!

1

`!

(
− 1

x

)`]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/2

[b(j−1)/2c∑
`=0

(
1−j

2

)
`

(
2−j

2

)
`

(1− j)`
1

`!

(
4

x

)`]
dx

=
1

2π

∫ 4

0

xi−3/2(4− x)1/2
2F1

(
1− j

2
,

2− j
2

; 1− j; 4

x

)
dx

=
4i

2π

∫ 1

0

ti−3/2(1− t)1/2
2F1

(
1− j

2
,

2− j
2

; 1− j; 1

t

)
dt
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=
4i

2π

∫ 1

0

ti−3/2(1− t)1/2 1

2j

√
t√

t− 1

[(
1 +

√
t− 1√
t

)j
−
(

1−
√
t− 1√
t

)j]
dt

=
22i−j

2π
i

∫ 1

0

ti−1

[(
1 +

√
1− 1

t

)j
−
(

1−
√

1− 1

t

)j]
dt

(
i =
√
−1
)

=
22i−j

π
i

∫ ∞
0

s

(1 + s2)i+1

[(
1− is

)j − (1 + is
)j]

ds

=
22i−j

π
i

∫ ∞
0

s

(1 + s2)i+1

[(√
1 + s2 e−i arctan s

)j
−
(√

1 + s2 ei arctan s
)j]

ds

=
22i−j

π
i

∫ ∞
0

s

(1 + s2)i−j/2+1

(
e−ij arctan s − eij arctan s

)
ds

=
22i−j

π

∫ ∞
0

s

(1 + s2)i−j/2+1
sin(j arctan s) ds

=
22i−j

π

∫ π/2

0

tan t

(1 + tan2 t)i−j/2+1
sin(jt) sec2 tdt

=
22i−j

π

∫ π/2

0

tan t

sec2i−j t
sin(jt) dt

=
22i−j

π

∫ π/2

0

sin t cos2i−j−1 t sin(jt) dt

=
22i−j

π

∫ π/2

0

[cos((j − 1)t)− cos((j + 1)t)] cos2i−j−1 tdt

=
22i−j

π

[
π

22i−j(2i− j)B(i, i− j + 1)
− π

22i−j(2i− j)B(i+ 1, i− j)

]
=

1

2i− j

[
1

B(i, i− j + 1)
− 1

B(i+ 1, i− j)

]
=

1

2i− j

[
Γ(2i− j + 1)

Γ(i)Γ(i− j + 1)
− Γ(2i− j + 1)

Γ(i+ 1)Γ(i− j)

]
= (2i− j − 1)!

[
1

Γ(i)Γ(i− j + 1)
− 1

Γ(i+ 1)Γ(i− j)

]
= (2i− j − 1)!

[
1

(i− 1)!(i− j)!
− 1

i!(i− j − 1)!

]
=
j

i

(
2i− j − 1

i− 1

)
.

The identity (5.20) is thus proved. The proof of Theorem 5.5 is complete.

Theorem 5.6. For i, j, n ∈ N, the Catalan numbers Cn satisfy

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Cn−k = 1,(5.22)
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∑
i≤2`≤2i
`≥j

b(j−1)/2c∑
k=0

(−1)`−k
(

`

i− `

)(
j − k − 1

k

)
C`−k−1 = 0,(5.23)

and

(5.24)
∑
i≥`≥j
`≤2j

b(`−1)/2c∑
k=0

(−1)`−k
(

j

`− j

)(
`− k − 1

k

)
Ci−k−1 = 0.

Proof. This follows from expanding the matrix equation

(5.25) AnA
−1
n = A−1

n An = In

and utilizing the expression (5.21), where In stands for the identity matrix of n
orders. This can be written in details as follows.

The matrix equation (5.25) is equivalent to

n∑
`=1

ai,`b`,j =


0, i < j
i∑
`=j

ai,`b`,j , i ≥ j =

{
0, i 6= j

1, i = j

and

n∑
`=1

bi,`a`,j =


0, i < j
i∑
`=j

bi,`a`,j , i ≥ j =

{
0, i 6= j

1, i = j

which can be rearranged as

i∑
`=j

ai,`b`,j =

{
0, i > j

1, i = j
and

i∑
`=j

bi,`a`,j =

{
0, i > j

1, i = j

for 1 ≤ i, j ≤ n.

When 1 ≤ i = j ≤ n, it follows that

1 =

i∑
`=j

ai,`b`,j =

i∑
`=j

bi,`a`,j = ai,ibi,i = bi,i =

b(i−1)/2c∑
k=0

(−1)k
(
i− k − 1

k

)
Ci−k−1.

The identity (5.22) is thus concluded.

When 1 ≤ j < i ≤ n, it follows that

0 =

i∑
`=j

ai,`b`,j =
∑

i/2≤`≤i
`≥j

ai,`b`,j
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=
∑

i/2≤`≤i
`≥j

(
`

i− `

)
(−1)`−j

b(j−1)/2c∑
k=0

(−1)k
(
j − k − 1

k

)
C`−k−1

= (−1)j
∑

i/2≤`≤i
`≥j

b(j−1)/2c∑
k=0

(−1)`−k
(

`

i− `

)(
j − k − 1

k

)
C`−k−1

and

0 =

i∑
`=j

bi,`a`,j =
∑
i≥`≥j
`≤2j

bi,`a`,j

=
∑
i≥`≥j
`≤2j

(−1)i−`
b(`−1)/2c∑
k=0

(−1)k
(
`− k − 1

k

)
Ci−k−1

(
j

`− j

)

= (−1)i
∑
i≥`≥j
`≤2j

b(`−1)/2c∑
k=0

(−1)`−k
(

j

`− j

)(
`− k − 1

k

)
Ci−k−1.

The identities (5.23) and (5.24) are thus derived. The proof of Theorem 5.6 is
complete.

Theorem 5.7. Let m,n ∈ N. If n ≥ 2m ≥ 2, then

(5.26)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
n+ 2`+ 1

n− `+ 1
Cn−`−1

m−1∑
`=0

(−1)`
(

2m− `− 2

`

)
1

2m− 2`− 1
Cn−`−1

= m(2m− 1).

Proof. Employing the expression (5.21) and making use of Theorem 5.5, we can
write the recursive equation (3.17) as

2(k − 2n)(−1)n−k
b(k−1)/2c∑

`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

+k(−1)n−k+1

b(k−2)/2c∑
`=0

(−1)`
(
k − `− 2

`

)
Cn−`−1

= (−1)n−k+1

{
k

b(k−2)/2c∑
`=0

(−1)`
(
k − `− 2

`

)
Cn−`−1

−2(k − 2n)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

}
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= (−1)n−k+1(n+ 1)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`

for n ≥ 2, that is,

k

b(k−2)/2c∑
`=0

(−1)`
(
k − `− 2

`

)
Cn−`−1 − 2(k − 2n)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

= (n+ 1)

b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`

for n ≥ 2. When k = 2m and m ∈ N, the above equality is equivalent to

2m

m−1∑
`=0

(−1)`
(

2m− `− 2

`

)
Cn−`−1 − 4(m− n)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`−1

= (n+ 1)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`,

2m

m−1∑
`=0

(−1)`
(

2m− `− 2

`

)
Cn−`−1 − 4m

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`−1

= (n+ 1)

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−` − 4n

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
Cn−`−1,

2m

m−1∑
`=0

(−1)`
[(

2m− `− 2

`

)
− 2

(
2m− `− 1

`

)]
Cn−`−1

=

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
[(n+ 1)Cn−` − 4nCn−`−1],

m(2m− 1)

m−1∑
`=0

(−1)`
(2m− `− 2)!

`!(2m− 2`− 1)!
Cn−`−1

=

m−1∑
`=0

(−1)`
(

2m− `− 1

`

)
n+ 2`+ 1

n− `+ 1
Cn−`−1

which can be rearranged as

m−1∑
`=0

(−1)`
[
m(2m− 1)− (2m− `− 1)(n+ 2`+ 1)

n− `+ 1

]
(2m− `− 2)!

`!(2m− 2`− 1)!
Cn−`−1 = 0

for n ≥ 2m ≥ 2. This can be further rewritten as (5.26). The proof of Theorem 5.7
is complete.
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6. REMARKS

Finally, we give some remarks on the closely related results stated in previous
sections.

Remark 6.1. The identity (5.22) recovers [50, p. 2187, Theorem 2, Eq. (15b)]. It
can also be verified alternatively and directly by the same method used in the proof
of the identity (5.20).

Actually, the identity (5.22) is a special case i = j ∈ N of the identity (5.20).
In other words, the identity (5.20) generalizes, or say, extends (5.22).

It is clear that the proof of the identity (5.22) in this paper is simpler than
the one adopted in [50] and the related references therein.

In [7, p. 322, Theorem 12.1], it was given that

(6.27) Cn =

b(n+1)/2c∑
r=1

(−1)r−1

(
n− r + 1

r

)
Cn−r, n ≥ 1

which can be rearranged as

(6.28)

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Cn−k−1 = 0, n ≥ 1.

This identity is a special case j = 1 of the equality (5.23). Indeed, when j = 1, the
identity (5.23) becomes

i∑
`=di/2e

(−1)`
(

`

i− `

)
C`−1 = 0.

Further letting k = i− ` leads to (6.28).

The identity (6.27) was also generalized by the third identity (7) in [9, The-
orem 1].

Remark 6.2. Let An = In+Mn and In be the identity matrix of order n. By linear
algebra, it is easy to see that Mn

n = 0 and

(In +Mn)
(
In −Mn +M2

n −M3
n + · · ·+ (−1)n−1Mn−1

n

)
= In −Mn

n = In.

This means that

A−1
n = (In +Mn)−1 = In +

n−1∑
k=1

(−1)kMk
n .

In theory, this formula is useful for computing the inverse A−1
n . But, in practice, it

is too difficult to acquire the simple forms in (4.18) and (5.21).

Can one conclude a general and concrete formula for computing Mk
n? If yes,

then one can find an alternative method to compute A−1
n .
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Remark 6.3. In [11, p. 387, 15.4.18], it was listed that the formula

(6.29) 2F1

(
a, a+

1

2
; 2a; z

)
=

1√
1− z

(
1

2
+

√
1− z
2

)1−2a

, |z| < 1

holds for a, a + 1
2 6∈ {0,−1,−2, . . . } and for the principal branch. Replacing z by

1
t2 leads to the equality

2F1

(
a, a+

1

2
; 2a;

1

t2

)
=

1

21−2a

|t|√
t2 − 1

(
1 +

√
t2 − 1

|t|

)1−2a

for a, a+ 1
2 6∈ {0,−1,−2, . . . } and |t| > 1.

By the way, the formula (6.29) can also be derived from the facts that

2F1(a, b; b; z) =

∞∑
n=0

(a)n
(b)n

zn

n!
= (1− z)−a, |z| < 1,

dn

dzn
(1− z)−a = (a)n(1− z)−a−n, dn

dzn
(1− z)−a

∣∣∣∣
z=0

= (a)n,

(a)n =
Γ(a+ n)

Γ(a)
, Γ(2z) =

22z−1/2

√
2π

Γ(z)Γ

(
z +

1

2

)
,

where the first formula can be found in [11, p. 1015, Item 9.121(1)] and the last
formula is the duplication formula [1, p. 256, Item 6.1.18] for the classical gamma
function Γ(z).

Remark 6.4. Comparing main results of this paper with those in [20, 21, 32], we
can see that there exist some close connections among the Chebyshev polynomials
of the second kind Un, the Catalan numbers Cn, the central Delannoy numbers Dn,
the Fibonacci polynomials Fn(x), and triangular and tridiagonal matrices.

Comparing Theorem 3.1 with Theorem 5.5 reveals that the equality (3.11)
can be reformulated in terms of the Catalan numbers Cn as

(6.30)

n∑
k=1

[b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

]
(2x)kUk(x) = (2x)2n.

Taking x = 3 in (6.30) and considering results in [20, Section 9] disclose that

n∑
k=1

6k

[b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

][
k∑
`=0

D(`)D(k − `)

]
= 62n,

where D(k) denotes the central Delannoy numbers which are combinatorially the
numbers of “king walks” from the (0, 0) corner of an n × n square to the upper
right corner (n, n) and can be generated analytically by

1√
1− 6x+ x2

=

∞∑
k=0

D(k)xk = 1 + 3x+ 13x2 + 63x3 + · · ·
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Taking x = s
2

√
−1 in (6.30) and utilizing results in [20, Section 7] expose

that

n∑
k=1

(−1)k

[b(k−1)/2c∑
`=0

(−1)`
(
k − `− 1

`

)
Cn−`−1

]
skFk+1(s) = (−1)ns2n,

where the Fibonacci polynomials

Fn(s) =
1

2n

(
s+
√

4 + s2
)n − (s−√4 + s2

)n
√

4 + s2

can be generated [24] by

t

1− ts− t2
=

∞∑
n=1

Fn(s)tn = t+ st2 +
(
s2 + 1

)
t3 +

(
s3 + 2s

)
t4 + · · · .

Remark 6.5. Recently Theorem 4.4 has been cited and applied in the papers [13,
34] and closely related references therein.

Remark 6.6. We conjecture that the range of k ∈ N in Lemma 2.6 can be extended
to k ∈ R.

Remark 6.7. This paper is an extended and revised version of two preprints [25, 41].

Acknowledgements. The authors appreciate anonymous referees for their careful
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