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ON A FAMILY OF SPECIAL NUMBERS AND
POLYNOMIALS ASSOCIATED WITH APOSTOL-TYPE

NUMBERS AND POYNOMIALS
AND COMBINATORIAL NUMBERS

Irem Kucukoglu and Yilmaz Simsek ∗

In this article, we examine a family of some special numbers and polyno-

mials not only with their generating functions, but also with computation

algorithms for these numbers and polynomials. By using these algorithms,

we provide several values of these numbers and polynomials. Furthermore,

some new identities, formulas and combinatorial sums are obtained by using

relations derived from the functional equations of these generating functions.

These identities and formulas include the Apostol-type numbers and polyno-

mials, and also the Stirling numbers. Finally, we give further remarks and

observations on the generating function including λ-Apostol-Daehee numbers,

special numbers, and finite sums.

1. INTRODUCTION

In this paper, by using a computation formula including the Apostol-Bernoulli
numbers and the Stirling numbers of the first kind, we define a new family of special
numbers and polynomials associated with the Apostol-type numbers and polyno-
mials. This new family provides more information about not only the Apostol-type
numbers and polynomials, but also λ-Apostol-Daehee numbers and polynomials.
Moreover, with the help of this aforementioned computation formula, computation
algorithms are presented for calculating values of the numbers and the polynomials
belonging to this new family.
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In this paper, we first need to specify that Z and C corresponds to the set of
integers and the set of complex numbers, respectively, and also N = {1, 2, 3, . . . },
N0 = N ∪ {0}.

Since the generating functions and their functional equations are used effec-
tively in order to obtain results of this paper, we recall some definitions associated
with the well-known special numbers and polynomials with their generating func-
tions as follows:

The Apostol-Bernoulli polynomials Bn(x;λ) are defined as follows

(1) FB (t, x;λ) =
tetx

λet − 1
=

∞∑
n=0

Bn(x;λ)
tn

n!

where λ ∈ C; |t| < 2π when λ = 1; |t| < |log λ| when λ 6= 1. For x = 0, yields the
Apostol-Bernoulli numbers Bn(λ) = Bn(0;λ) given by

(2)
t

λet − 1
=

∞∑
n=0

Bn(λ)
tn

n!

so that a few values of the polynomials Bn (x;λ) and the numbers Bn(λ) are given
by, respectively

B0 (x;λ) = 0,B1 (x;λ) =
1

λ− 1
,B2 (x;λ) =

2

λ− 1
x− 2λ

(λ− 1)
2 ,

B3 (x;λ) =
3

λ− 1
x2 − 6λ

(λ− 1)
2x+

3λ (λ+ 1)

(λ− 1)
3 , . . .

and

B0(λ) = 0,B1(λ) =
1

λ− 1
,B2(λ) = − 2λ

(λ− 1)
2 ,B3(λ) =

3λ (λ+ 1)

(λ− 1)
3 ,

and so on (cf. [1], [8], [10], [17], [23]; and see also the references cited therein).

An explicit formula for the numbers Bn(λ) is given by the following combi-
natorial sum (cf. [16, Eq-(2.22)]):

(3) Bn(λ) =
n

λ− 1

n−1∑
m=0

m∑
k=0

(−1)
k

(
m

k

)(
λ

λ− 1

)m
kn−1.

In [10], Kim et al. modified the Apostol-Bernoulli polynomials by the λ-
Bernoulli polynomials Bn(x;λ) given as follows

(4) FB (t, x;λ) =
log λ+ t

λet − 1
etx =

∞∑
n=0

Bn(x;λ)
tn

n!
,

for λ ∈ C with assuming that log λ denotes the principal branch of the many-valued
function log λ with the imaginary part Im (log λ) constrained by

−π < Im (log λ) ≤ π.
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The λ-Stirling numbers are given by

(5)
(λet − 1)

m

m!
=

∞∑
n=0

S2(n,m;λ)
tn

n!

which, for λ = 1, reduces to the generating function for the Stirling numbers of the
second kind S2(n,m) with

S2(n,m) = S2(n,m; 1)

which satisfy the following relations: S2(0, 0) = 1, S2(n, 1) = S2(n, n) = 1,
S2(n, 0) = 0 if n > 0, and S2(n,m) = 0 if m > n. Note that these numbers
are of applications in areas related to especially partition theory (cf. [3], [4], [5],
[6], [13], [15], [17], [19], [21]; and see also the references cited therein).

Let
χ : (Z/dZ)

∗ → C\ {0}
where (Z/dZ)

∗
denote the unit group of reduced residue class modulo d ∈ N and

χ (x+ d) = χ (x) .

The function χ is called a Dirichlet character with conductor d. This function is
also a group homomorphism (cf. [2]).

By using p-adic integral equation, the second author [16] defined the following
generating functions for the family of special numbers Yn,χ(λ, q) and polynomials
Yn,χ(z;λ, q) including the generalized Apostol-type numbers and polynomials at-
tached to Dirichlet character χ, respectively

(6) H(t;λ, q, χ) =
[2 : q]

∑d−1
j=0(−1)jχ(j) (λq)

j
(1 + λt)j

(λq)
d

(1 + λt)d − 1
=

∞∑
n=0

Yn,χ(λ, q)
tn

n!
,

where

[x : q] =

{
1−qx
1−q , q 6= 1

x, q = 1

and

(7) H(t, z;λ, q, χ) = (1 + λt)zH(t;λ, q, χ) =

∞∑
n=0

Yn,χ(z;λ, q)
tn

n!
,

where λ ∈ C.

It follows from (6) and (7) that

Yn,χ(λ, q) = Yn,χ(0;λ, q),

and note that the relation between the numbers Yn,χ(λ, q) and the polynomials
Yn,χ(z;λ, q) is given as follows

(8) Yn,χ(z;λ, q) =

n∑
j=0

(
n

j

)
λn−j(z)n−jYj,χ(λ, q),
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where n ∈ N0 (cf. [16]). In the special case when q goes to 1 and d = 1, the
polynomials Yn,χ(z;λ, q) are reduced to the polynomials Yn(z;λ), given by the
following generating functions:

(9) F (t, z;λ) =
2 (1 + λt)

z

λ(1 + λt)− 1
=

∞∑
n=0

Yn(z;λ)
tn

n!
,

(cf. [16], [24]).

Moreover, in the special case when q goes to 1, the numbers Yn,χ(λ, q) are
reduced to the numbers Yn,χ(λ), given by the following generating functions

2
∑d−1
j=0(−1)jχ(j)λj(1 + λt)j

λd(1 + λt)d − 1
=

∞∑
n=0

Yn,χ(λ)
tn

n!
,

which, for d = 1, yields the generating functions for the numbers Yn(λ) given as
follows

(10) F (t;λ) =
2

λ(1 + λt)− 1
=

∞∑
n=0

Yn(λ)
tn

n!

so that a few of the numbers Yn(λ) are given as follows

Y0(λ) =
2

λ− 1
, Y1(λ) = − 2λ2

(λ− 1)
2 ,

Y2(λ) =
4λ4

(λ− 1)
3 , Y3(λ) = − 12λ6

(λ− 1)
4 , . . .

(cf. [16], [24]).

Remark 1 (Remarks and Observations). The numbers Yn(λ) are constructed by
Simsek [16]. Recently, Srivastava et al. [24] gave various novel identities and rela-
tions including the numbers Yn(λ), the Apostol-Bernoulli numbers and polynomials,
the Apostol-Euler numbers and polynomials, the Stirling numbers of the first kind.
In [7], Choi modified the numbers Yn(λ) as follows:

γn :=
1

2n!
Yn(λ)

in order to give new identities related to the Apostol-type Daehee polynomials. On
the other hand, by using the numbers Yn(λ) and the Stirling numbers of the second
kind, the Apostol-Bernoulli numbers are given as follows (cf. [16]):

Bn(λ) =
n

2

n−1∑
m=0

λ−mYm(λ)S2 (n− 1,m) .
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Other relation between the numbers Yn(λ) and the Apostol-Bernoulli numbers is
given as follows (cf. [24, Theorem 9], [16, Corollary 4]):

(11) Yn(λ) = 2λn
n∑

m=0

S1 (n,m)Bm+1(λ)

m+ 1
,

where S1(n,m) denotes the Stirling numbers of the first kind given by

(12)
(log(1 + t))

m

m!
=

∞∑
n=0

S1(n,m)
tn

n!

so that these numbers satisfy the following relations: S1(0, 0) = 1, S1(0,m) = 0 if
m > 0, S1(n, 0) = 0 if n > 0, and S1(n,m) = 0 if m > n. Note that the numbers
S1(n,m) are of applications in areas related to permutations (cf. [3], [5], [6], [23];
and see also the references cited therein). An explicit formula for the numbers
S1(n,m) is given by the following combinatorial sum:

(13) S1(n,m) =

n−m∑
r=0

r∑
j=0

(−1)
j

(
r

j

)(
n+ r − 1

m− 1

)(
2n−m
n−m− r

)
jn−m+r

r!
,

(cf. [3, p. 233, Theorem 4.66], [5, p. 291, Eq-(8.21)]).

On the other hand, replacing λ by −λ in (11), another relation between the
numbers Yn(λ) and the other special numbers such as the Apostol-Euler numbers
are given as follows (cf. [24, Theorem 10]):

(14) Yn(−λ) = (−1)
n+1

λn
n∑

m=0

Em(λ)S1 (n,m)

where Em(λ) denotes the Apostol-Euler numbers given by the following generating
function

FE(t;λ) =
2

λet + 1
=

∞∑
n=0

En(λ)
tn

n!

where λ ∈ C; |t| < π when λ = 1; |t| < |log (−λ)| when λ 6= 1 (cf. [11], [12], [9],
[14], [22], [23]; and see also the references cited therein).

The motivation of this paper, in the light of the above knowledge regarding
to the numbers Yn(λ), is to not only define a new family of special numbers and
polynomials associated with the Apostol-type numbers and polynomials with their
computation algorithms, but also derive miscellaneous novel identities, relations
and combinatorial sums including the Stirling numbers and Apostol-type numbers
and polynomials.

A summary of this article is given in the following manner:

In Section 2, we define a new family of special numbers and polynomials as-
sociated with the Apostol-type numbers and polynomials. In Section 3, we give
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computation algorithm for these numbers and polynomials. By using these algo-
rithms, we provide several values of these numbers and polynomials. In Section
4, by combining functional equation and generating function techniques, we give
some results including not only these numbers and polynomials, but also the Stir-
ling numbers, and Apostol-type numbers and polynomials. In Section 5, we observe
generating function for the λ-Apostol-Daehee numbers and we give some remarks
on this observation. Moreover, we provide an explicit formula for the λ-Apostol-
Daehee numbers with their several values.

2. GENERATING FUNCTIONS FOR A NEW FAMILY OF
SPECIAL NUMBERS AND POLYNOMIALS

In this section, we define a new family of special numbers and polynomials
associated with the Apostol-type numbers and polynomials.

Let λq 6= 1 with λ, q ∈ C and d ∈ N. We set the following generating functions
for a new family of special numbers denoted by Im,d (λ, q):

(15) Fd (t;λ, q) =
log(1 + λt)

(λq)
d

(1 + λt)d − 1
=

∞∑
m=0

Im,d (λ, q)
tm

m!
.

We also set a new family of special polynomials Im,d (x;λ, q) by the following gen-
erating function:

(16) Gd (t, x;λ, q) = (1 + λt)xFd (t;λ, q) =

∞∑
m=0

Im,d (x;λ, q)
tm

m!

so that, obviously,
Im,d (λ, q) = Im,d (0;λ, q) .

We now give computation formula for the numbers Im,d (λ, q) associated with the
Apostol-type numbers and the Stirling numbers of the first kind. By using Eq-(2.2)
in [16], we set

1

(λq)
d

(1 + λt)d − 1
=

d log(1 + λt)

d log(1 + λt)
(

(λq)
d
ed log(1+λt) − 1

) .
Combining the above equation with (2) yields

1

(λq)
d

(1 + λt)d − 1
=

1

log(1 + λt)

∞∑
n=0

Bn((λq)
d
)
dn−1 (log(1 + λt))

n

n!
.

Therefore, combining (12) with the above equation yields

1

(λq)
d

(1 + λt)d − 1
=

1

log(1 + λt)

∞∑
m=0

(
m∑
n=0

dn−1λmBn((λq)
d
)S1 (m,n)

)
tm

m!
.
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Combining the above equation with (15) yields

∞∑
m=0

Im,d (λ, q)
tm

m!
=

∞∑
m=0

(
m∑
n=0

dn−1λmBn((λq)
d
)S1 (m,n)

)
tm

m!
.

Therefore, comparing the coefficients of tm

m! on both sides of the above equation
yields a computation formula for the numbers Im,d (λ, q) by the following theorem:

Theorem 1. Let m ∈ N0. Then we have

(17) Im,d (λ, q) = λm
m∑
n=0

dn−1Bn((λq)
d
)S1 (m,n) .

Remark 2. By using the special case when q goes to 1 and d = 1 of (17), we set

Im,1 (λ) = lim
q→1

Im,1 (λ, q) .

Thus, for λ 6= 1, we have

(18) Im,1 (λ) = λm
m∑
n=0

Bn (λ)S1 (m,n) .

Let (x)m denote the well-known falling factorial polynomial given by

(x)m = x (x− 1) · · · (x−m+ 1) (x ∈ C;m ∈ N)

with (x)0 = 1. Using (15) and (16) yields

∞∑
m=0

Im,d (x;λ, q)
tm

m!
=

∞∑
m=0

(x)m λ
m t

m

m!

∞∑
m=0

Im,d (λ, q)
tm

m!
.

Using the Cauchy product in the above equation yields

∞∑
m=0

Im,d (x;λ, q)
tm

m!
=

∞∑
m=0

(
m∑
k=0

(
m

k

)
(x)m−k λ

m−kIk,d (λ, q)

)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation yields the
following theorem:

Theorem 2. Let m ∈ N0. Then we have

(19) Im,d (x;λ, q) =

m∑
k=0

(
m

k

)
(x)m−k λ

m−kIk,d (λ, q) .



On a family of special numbers and polynomials associated with Apostol-type numb... 485

3. COMPUTATION ALGORITHMS FOR THE NUMBER Im,d (λ, q)
AND THE POLYNOMIALS Im,d (x;λ, q)

In this section, in order to compute values of the numbers Im,d (λ, q) and the
polynomials Im,d (x;λ, q), we give some computation algorithms. For the purpose of
computing these numbers and polynomials, equations (17) and (19) are used. Since
equation (17) contains the Apostol-Bernoulli numbers and the Stirling numbers
of the second kind, we firstly give computation algorithms including procedures
for these numbers. Then, by using these procedures, we also give computation
algorithms for the numbers Im,d (λ, q) and the polynomials Im,d (x;λ, q).

By Algorithm 1, we give a computation algorithm including APOST BERN NUM

procudure for calculating values of the Apostol-Bernoulli numbers.

Algorithm 1 Let n be a nonnegative integer and λ ∈ C \ {1}. By using the equation (3), this
algorithm will return the n-th Apostol-Bernoulli number Bn(λ).

procedure Apost Bern Num(n, λ)
Global variable B ← 0
Local variable m, k : integer
if n = 0 then

return 0
else

if n > 0 then
for m = 0; m ≤ n− 1; m = m+ 1 do

for k = 0; k ≤ m; k = k + 1 do
B ← B + power (−1, k) ∗Binomial Coef (m, k)

↪→ ∗power (λ/ (λ− 1) ,m) ∗ power (k, n− 1)
end for

end for
return (n/ (λ− 1)) ∗B

end if
end if

end procedure

By Algorithm 2, we give a computation algorithm including STIRLING FIRST NUM

procedure as a computation algorithm for calculating values of the Stirling numbers
of the first kind.
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Algorithm 2 Let n and m be a nonnegative integer. By using the equation (13), this algorithm
will return the Stirling numbers of the first kind S1 (n,m).

procedure Stirling First Num(n, k)
Global variable S ← 0
Local variable r, j : integer
if n = 0 ∧ m = 0 then

return 1
else

if m > 0 ∨ n > 0 ∨ m > n then
return 0

else
for r = 0; r ≤ n−m; r = r + 1 do

for j = 0; j ≤ r; j = j + 1 do
S ← S + power (−1, j) ∗Binomial Coef (r, j)

↪→ ∗Binomial Coef (n+ r − 1,m− 1)
↪→ ∗Binomial Coef (2n−m,n−m− r)
↪→ ∗ (power (j, n−m+ r) /factorial (r))

end for
end for
return S

end if
end if

end procedure

Remark 3. Algorithm 1 and Algorithm 2 may have been given up to now with
different programming languages or algorithms. However, these two procedures have
been given in order to run the algorithm 3 which forms the basis of this section.

Now, we are ready to give a computation algorithm including APOST TYPE NUM I

procedure as a computation algorithm for calculating values of the numbers Im,d (λ, q)
by Algorithm 3.

Algorithm 3 Let λq 6= 1 with λ, q ∈ C and d ∈ N. By using (17), this algorithm will return the
numbers Im,d (λ, q) with the help of APOST BERN NUM and STIRLING FIRST NUM procedures given
by Algorithm 1 and Algorithm 2.

procedure Apost Type Num I(m, d, λ, q)
Global variable Inum← 0
Local variable n : integer
for n = 0; n ≤ m; n = n+ 1 do

Inum← Inum+power (d, n− 1) ∗APOSTOL BERN NUM(n, power (λq, d))
↪→ ∗STIRLING FIRST NUM(m,n)

end for
return power(λ,m) ∗ Inum

end procedure
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Moreover, we also give a computation algorithm including APOST TYPE POLY I

procedure as a computation algorithm for calculating values of the polynomials
Im,d (x;λ, q) by Algorithm 4.

Algorithm 4 Let λq 6= 1 with λ, q ∈ C and d ∈ N. By using (19), this algorithm will return
the polynomials Im,d (x;λ, q) with the help of APOST TYPE POLY I procedure given by Algorithm
3.

procedure Apost Type Poly I(m, d, x, λ, q)
Global variable Ipoly ← 0
Local variable k : integer
for k = 0; k ≤ m; k = k + 1 do

Ipoly ← Ipoly +Binomial Coef (m, k) ∗ Falling Fact (x,m− k)
↪→ ∗power (λ,m− k) ∗APOST TYPE NUM I(k, d, λ, q)

end for
return Ipoly

end procedure

By Algorithm 3, we compute a few values of the numbers Im,d (λ, q) as follows:

I0,d (λ, q) = 0, I1,d (λ, q) =
λ

(λq)
d − 1

,

I2,d (λ, q) =
λ2
(

1− (1 + 2d) (λq)
d
)

(
(λq)

d − 1
)2 ,

I3,d (λ, q) =
λ3
((

2 + 6d+ 3d2
)

(λq)
2d

+
(
−4− 6d+ 3d2

)
(λq)

d
+ 2
)

(
(λq)

d − 1
)3 .

Therefore, a few values of the numbers Im,1 (λ) are given as follows:

I0,1 (λ) = 0, I1,1 (λ) =
λ

λ− 1
, I2,1 (λ) =

λ2 (1− 3λ)

(λ− 1)
2 , I3,1 (λ) =

λ3
(
11λ2 − 7λ+ 2

)
(λ− 1)

3 .

By using Algorithm 4, we also compute a few values of the polynomials
Im,d (x;λ, q) as follows:

I0,d (x;λ, q) = 0,

I1,d (x;λ, q) =
λ

(λq)
d − 1

,

I2,d (x;λ, q) =
2λ2

(λq)
d − 1

x+
λ2
(

1− (1 + 2d) (λq)
d
)

(
(λq)

d − 1
)2 ,
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I3,d (x;λ, q) =
3λ3

(λq)
d − 1

x2 +

6λ3
(

1− (1 + d) (λq)
d
)

(
(λq)

d − 1
)2

x

+
λ3
((

2 + 6d+ 3d2
)

(λq)
2d

+
(
−4− 6d+ 3d2

)
(λq)

d
+ 2
)

(
(λq)

d − 1
)3 .

4. IDENTITIES AND RELATIONS

In this section, by using generating function and their functional equations
technique, we give some identities, relations and combinatorial sums associated with
the numbers Im,d (λ, q) and the polynomials Im,d (x;λ, q) including the Apostol-
type numbers and polynomials, and the Stirling numbers.

Substituting λt = ez − 1 into (16) yields

z

(λq)
d
ezd − 1

ezx =

∞∑
m=0

Im,d (x;λ, q)
(ez − 1)

m

λmm!
.

Combining left hand side of the above equation with (1) and right hand side of the
above equation with (5) yields

∞∑
n=0

dn−1Bn
(x
d

; (λq)
d
) zn
n!

=

∞∑
m=0

Im,d (x;λ, q)

λm

∞∑
n=0

S2 (n,m)
zn

n!
.

Since S2 (n,m) = 0 when m > n, we have

∞∑
n=0

dn−1Bn
(x
d

; (λq)
d
) zn
n!

=

∞∑
n=0

(
n∑

m=0

Im,d (x;λ, q)

λm
S2 (n,m)

)
zn

n!
.

Comparing the coefficients of zn

n! on both sides of the above equation yields the
following theorem:

Theorem 3. Let n ∈ N. Then we have

(20) Bn
(x
d

; (λq)
d
)

=
1

dn−1

n∑
m=0

Im,d (x;λ, q)

λm
S2 (n,m) .

Substituting t = ez − 1
λ into (16) yields the following functional equation

Gd

(
ez − 1

λ
, x;λ, q

)
= λx

(
FB

(
z, x;λ (λq)

d
)
− log (λq)

d

z
FB

(
z, x;λ (λq)

d
))

.
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By combining the above functional equation with (16), (1), and (4), we have

∞∑
m=0

Im,d (x;λ, q)
(λez − 1)

m

λmm!
= λx

∞∑
n=0

(
Bn(x;λ (λq)

d
)− log (λq)

d

n+ 1
Bn+1(x;λ (λq)

d
)

)
zn

n!
.

Combining left hand side of the above equation with (5) yields

∞∑
m=0

∞∑
n=0

Im,d (x;λ, q)S2 (n,m;λ)

λm
zn

n!
= λx

∞∑
n=0

(
Bn(x;λ (λq)

d
)− log (λq)

d

n+ 1
Bn+1(x;λ (λq)

d
)

)
zn

n!
.

By using some elementary calculations in the above equation, we arrive at the
following theorem:

Theorem 4. Let n ∈ N. Then we have

(21)

∞∑
m=0

Im,d (x;λ, q)S2 (n,m;λ)

λm+x
= Bn(x;λ (λq)

d
)− log (λq)

d

n+ 1
Bn+1

(
x;λ (λq)

d
)
.

Since S2 (n,m; 1) = 0 when m > n, substituting λ = 1 into (21) yields the
following corollary:

Corollary 1. Let n ∈ N. Then we have

n∑
m=0

Im,d (x; 1, q)S2 (n,m) = Bn(x; qd)− d log q

n+ 1
Bn+1(x; qd).

From (6), we get the following functional equation:

H(t;λ, q, χ) log(1 + λt) = (1 + q)

d−1∑
j=0

(−1)jχ(j) (λq)
j
Gd (t, j;λ, q) .

Thus,

∞∑
m=0

(−1)
m

(λt)
m+1

m+ 1

∞∑
m=0

Ym,χ(λ, q)
tm

m!

= (1 + q)

d−1∑
j=0

(−1)jχ(j) (λq)
j
∞∑
m=0

Im,d (j;λ, q)
tm

m!
.

Therefore

∞∑
m=0

(
m

m−1∑
k=0

(
m− 1

k

)
(−1)

k
λk+1k!

(k + 1)
Ym−k−1,χ(λ, q)

)
tm

m!

=

∞∑
m=0

(1 + q)

d−1∑
j=0

(−1)jχ(j) (λq)
j
Im,d (j;λ, q)

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation yields the
following theorem:
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Theorem 5. Let m ∈ N. Then we have

m

m−1∑
k=0

(−1)
k

(
m− 1

k

)
λk+1k!

(k + 1)
Ym−k−1,χ(λ, q)(22)

= (1 + q)

d−1∑
j=0

(−1)jχ(j) (λq)
j
Im,d (j;λ, q) .

Setting χ ≡ 1 in (22) yields the following corollary:

Corollary 2. Let m ∈ N. Then we have

(23)

m−1∑
k=0

(−1)
k
λk+1

(k + 1) (m− k − 1)!
Ym−k−1(λ, q) =

1 + q

m!
Im,1 (λ, q) .

By using (10), we have

∞∑
m=0

Im,1 (λ)
tm

m!
=

1

2

∞∑
m=0

(−1)
m

(λt)
m+1

m+ 1

∞∑
m=0

Ym (λ)
tm

m!
.

Using the Cauchy product in the above equation yields

∞∑
m=0

Im,1 (λ)
tm

m!
=

1

2

∞∑
m=0

(
m−1∑
k=0

(−1)
k
λk+1m!

(k + 1) (m− k − 1)!
Ym−1−k (λ)

)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation yields the
following theorem:

Theorem 6. Let m ∈ N. Then we have

(24) Im,1 (λ) =
m!

2

m−1∑
k=0

(−1)
k
λk+1

(k + 1) (m− k − 1)!
Ym−k−1 (λ) .

Remark 4. By substituting q → 1 into (23), we also arrive at (24).

Substituting (11) into (24) yields the following corollary:

Corollary 3. Let m ∈ N. Then we have

Im,1 (λ) = m!λm
m−1∑
k=0

m−k−1∑
j=0

(−1)
k

(j + 1) (k + 1) (m− k − 1)!
Bj+1(λ)S1 (m− k − 1, j) .

By replacing λ by −λ in (14) and substituting final equation into (24) yields
the following corollary:
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Corollary 4. Let m ∈ N. Then we have

Im,1 (λ) =
m!λm

2

m−1∑
k=0

m−k−1∑
j=0

(−1)
k+1

(k + 1) (m− k − 1)!
Ej(−λ)S1 (m− k − 1, j) .

5. FURTHER REMARKS AND OBSERVATIONS ON THE
GENERATING FUNCTION G (t, λ) INCLUDING APOSTOL-TYPE

NUMBERS

In this section, we give some survey and investigation on the generating func-
tion G (t, λ) which has recently defined by second author [18], given as follows:

G (t, λ) =
log λ+ log(1 + λt)

λ(1 + λt)− 1
.

What constructed function as above correspond to generating function for
which type of numbers?

The main purpose of this section is to investigate the answer to this question.

In [18] and [20], the function G (t, λ) are studied as generating functions
which are related to the λ-Apostol-Daehee numbers Dn(λ). That is,

G (t, λ) =

∞∑
n=0

Dn(λ)
tn

n!
.

Therefore, in order to give another explicit numbers for this generating func-
tion, combining (10) and (15) with the above equation, we have the following
functional equation:

G (t, λ) =
log λ

2
F (t;λ) + F1 (t;λ, 1) .

Thus, we have

∞∑
n=0

Dn(λ)
tn

n!
=

log λ

2

∞∑
n=0

Yn(λ)
tn

n!
+

∞∑
n=0

In,1 (λ)
tn

n!
.

Equating coefficients of the tn

n! on the both sides of the above equation yields the
following theorem:

Theorem 7.

(25) Dn(λ) =
log λ

2
Yn(λ) + In,1 (λ) .
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Combining the following explicit formula for the numbers Yn(λ):

Yn(λ) = (−1)
n 2n!

λ− 1

(
λ2

λ− 1

)n
(cf. [16, Eq. (2.18)]) with (24) and (25), we obtain an explicit formula for the
numbers Dn(λ) by the following theorem:

Theorem 8. Let n ∈ N. Then we have

(26) Dn(λ) = n! (−1)
n

(
λ2

λ− 1

)n(
log λ

λ− 1
− 1

λ

n−1∑
k=0

1

k + 1

(
λ− 1

λ

)k)
.

By using formula in (26), we compute a few values of the number Dn(λ) as
follows:

D1(λ) = − λ
2 log λ

(λ− 1)
2 +

λ

λ− 1
,

D2(λ) =
2λ3 log λ

(λ− 1)
3 +

λ2 (1− 3λ)

(λ− 1)
2 ,

D3(λ) = −6λ6 log λ

(λ− 1)
4 +

λ3
(
11λ2 − 7λ+ 2

)
(λ− 1)

3 , . . . .

Remark 5. From (26), we give the following the value of finite sum in terms of
the numbers Dn(λ):

n−1∑
k=0

1

k + 1

(
λ− 1

λ

)k
=

(−1)
n+1

λDn(λ)

n!

(
λ− 1

λ2

)n
+
λ log λ

λ− 1
.
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